Follow-up to 1c9ba291fe32bc4a4c78cabbab0639b0c164f23f
Refactoring of Curves.hpp for better memory management and vectorization
This commit is contained in:
parent
42e802c1b8
commit
c19770189f
@ -64,7 +64,8 @@ struct PiecewiseFittedCurve {
|
||||
NumberType start;
|
||||
NumberType length;
|
||||
NumberType n_segment_size;
|
||||
size_t segments_count;
|
||||
|
||||
size_t segments() const { return this->coefficients.cols(); }
|
||||
|
||||
NumberType get_n_segment_start(int segment_index) const {
|
||||
return n_segment_size * segment_index;
|
||||
@ -81,7 +82,7 @@ struct PiecewiseFittedCurve {
|
||||
int start_segment_idx = int(floor(t / this->n_segment_size)) - int(Kernel::kernel_span * 0.5f - 1.0f);
|
||||
for (int segment_index = start_segment_idx; segment_index < int(start_segment_idx + Kernel::kernel_span);
|
||||
segment_index++) {
|
||||
if (segment_index < 0 || segment_index >= int(this->segments_count)) {
|
||||
if (segment_index < 0 || segment_index >= int(this->coefficients.cols())) {
|
||||
continue;
|
||||
}
|
||||
NumberType segment_start = this->get_n_segment_start(segment_index);
|
||||
@ -100,13 +101,12 @@ struct PiecewiseFittedCurve {
|
||||
// number_of_inner_splines: how many full inner splines are fit into the normalized valid range 0,1;
|
||||
// final number of knots is Kernel::kernel_span times number_of_inner_splines + additional segments on start and end
|
||||
// Kernel: model used for the curve fitting
|
||||
template<int Dimension, typename NumberType, typename Kernel>
|
||||
template<typename Kernel, int Dimension, typename NumberType>
|
||||
PiecewiseFittedCurve<Dimension, NumberType, Kernel> fit_curve(
|
||||
const std::vector<Vec<Dimension, NumberType>> &observations,
|
||||
const std::vector<NumberType> &observation_points,
|
||||
const std::vector<NumberType> &weights,
|
||||
size_t number_of_inner_splines,
|
||||
Kernel kernel) {
|
||||
size_t number_of_inner_splines) {
|
||||
|
||||
// check to make sure inputs are correct
|
||||
assert(number_of_inner_splines >= 1);
|
||||
@ -124,9 +124,13 @@ PiecewiseFittedCurve<Dimension, NumberType, Kernel> fit_curve(
|
||||
sqrt_weights[index + extremes_repetition] = sqrt(weights[index]);
|
||||
}
|
||||
//repeat weights for addtional extreme segments
|
||||
for (int index = 0; index < int(extremes_repetition); ++index) {
|
||||
sqrt_weights[index] = sqrt(weights.front());
|
||||
sqrt_weights[sqrt_weights.size() - index - 1] = sqrt(weights.back());
|
||||
{
|
||||
auto first = sqrt_weights[extremes_repetition];
|
||||
auto last = sqrt_weights[extremes_repetition + weights.size() - 1];
|
||||
for (int index = 0; index < int(extremes_repetition); ++index) {
|
||||
sqrt_weights[index] = first;
|
||||
sqrt_weights[sqrt_weights.size() - index - 1] = last;
|
||||
}
|
||||
}
|
||||
|
||||
// prepare result and compute metadata
|
||||
@ -136,8 +140,8 @@ PiecewiseFittedCurve<Dimension, NumberType, Kernel> fit_curve(
|
||||
NumberType orig_segment_size = orig_len / NumberType(number_of_inner_splines * Kernel::kernel_span);
|
||||
result.start = observation_points.front() - extremes_repetition * orig_segment_size;
|
||||
result.length = observation_points.back() + extremes_repetition * orig_segment_size - result.start;
|
||||
result.segments_count = number_of_inner_splines * Kernel::kernel_span + extremes_repetition * 2;
|
||||
result.n_segment_size = NumberType(1) / NumberType(result.segments_count - 1);
|
||||
size_t segments_count = number_of_inner_splines * Kernel::kernel_span + extremes_repetition * 2;
|
||||
result.n_segment_size = NumberType(1) / NumberType(segments_count - 1);
|
||||
|
||||
//normalize observations points by start and length
|
||||
std::vector<NumberType> normalized_obs_points(observation_points.size() + extremes_repetition * 2);
|
||||
@ -157,22 +161,18 @@ PiecewiseFittedCurve<Dimension, NumberType, Kernel> fit_curve(
|
||||
// Eigen defaults to column major memory layout.
|
||||
Eigen::MatrixXf data_points(Dimension, observations.size() + extremes_repetition * 2);
|
||||
for (size_t index = 0; index < observations.size(); ++ index) {
|
||||
for (size_t dim = 0; dim < Dimension; ++dim) {
|
||||
data_points(dim, index + extremes_repetition) = observations[index](dim)
|
||||
* sqrt_weights[index + extremes_repetition];
|
||||
}
|
||||
data_points.col(index + extremes_repetition) = observations[index]
|
||||
* sqrt_weights[index + extremes_repetition];
|
||||
}
|
||||
//duplicate observed data at the extremes
|
||||
for (int index = 0; index < int(extremes_repetition); index++) {
|
||||
for (size_t dim = 0; dim < Dimension; ++dim) {
|
||||
data_points(dim, index) = observations.front()(dim) * sqrt_weights[index];
|
||||
data_points(dim, data_points.cols() - index - 1) = observations.back()(dim)
|
||||
* sqrt_weights[data_points.cols() - index - 1];
|
||||
}
|
||||
data_points.col(index) = observations.front() * sqrt_weights[index];
|
||||
data_points.col(data_points.cols() - index - 1) = observations.back()
|
||||
* sqrt_weights[data_points.cols() - index - 1];
|
||||
}
|
||||
|
||||
//Create weight matrix T for each point and each segment;
|
||||
Eigen::MatrixXf T(normalized_obs_points.size(), result.segments_count);
|
||||
Eigen::MatrixXf T(normalized_obs_points.size(), segments_count);
|
||||
T.setZero();
|
||||
|
||||
//Fill the weight matrix
|
||||
@ -183,19 +183,19 @@ PiecewiseFittedCurve<Dimension, NumberType, Kernel> fit_curve(
|
||||
for (int segment_index = start_segment_idx; segment_index < int(start_segment_idx + Kernel::kernel_span);
|
||||
segment_index++) {
|
||||
// skip if we overshoot segment_index - happens at the extremes
|
||||
if (segment_index < 0 || segment_index >= int(result.segments_count)) {
|
||||
if (segment_index < 0 || segment_index >= int(segments_count)) {
|
||||
continue;
|
||||
}
|
||||
NumberType segment_start = result.get_n_segment_start(segment_index);
|
||||
NumberType normalized_segment_distance = (segment_start - knot_val) / result.n_segment_size;
|
||||
// fill in kernel value with weight applied
|
||||
|
||||
T(i, segment_index) += kernel.kernel(normalized_segment_distance) * sqrt_weights[i];
|
||||
T(i, segment_index) += Kernel::kernel(normalized_segment_distance) * sqrt_weights[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Solve for linear least square fit
|
||||
result.coefficients.resize(Dimension, result.segments_count);
|
||||
result.coefficients.resize(Dimension, segments_count);
|
||||
const auto QR = T.fullPivHouseholderQr();
|
||||
for (size_t dim = 0; dim < Dimension; ++dim) {
|
||||
result.coefficients.row(dim) = QR.solve(data_points.row(dim).transpose());
|
||||
@ -211,8 +211,7 @@ fit_cubic_bspline(
|
||||
std::vector<NumberType> observation_points,
|
||||
std::vector<NumberType> weights,
|
||||
size_t number_of_segments) {
|
||||
return fit_curve(observations, observation_points, weights, number_of_segments,
|
||||
CubicBSplineKernel<NumberType> { });
|
||||
return fit_curve<CubicBSplineKernel<NumberType>>(observations, observation_points, weights, number_of_segments);
|
||||
}
|
||||
|
||||
template<int Dimension, typename NumberType>
|
||||
@ -222,8 +221,7 @@ fit_catmul_rom_spline(
|
||||
std::vector<NumberType> observation_points,
|
||||
std::vector<NumberType> weights,
|
||||
size_t number_of_segments) {
|
||||
return fit_curve(observations, observation_points, weights, number_of_segments,
|
||||
CubicCatmulRomKernel<NumberType> { });
|
||||
return fit_curveCubicCatmulRomKernel<NumberType>(observations, observation_points, weights, number_of_segments);
|
||||
}
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user