Cleanup lines resulting from plane intersection before detecting polygons. This allows for more tolerance with dirty models. Performance impact depends on how many layers are detected as dirty. #16 #28

This commit is contained in:
Alessandro Ranellucci 2011-11-11 22:01:27 +01:00
parent fec816b065
commit c5d5e4d244
10 changed files with 259 additions and 132 deletions

View File

@ -39,6 +39,7 @@ slic3r.pl
t/arcs.t t/arcs.t
t/clean_polylines.t t/clean_polylines.t
t/clipper.t t/clipper.t
t/collinear.t
t/geometry.t t/geometry.t
t/polyclip.t t/polyclip.t
t/stl.t t/stl.t

View File

@ -31,13 +31,9 @@ has 'retract_speed' => (
default => sub { $Slic3r::retract_speed * 60 }, # mm/min default => sub { $Slic3r::retract_speed * 60 }, # mm/min
); );
use Slic3r::Geometry qw(points_coincide); use Slic3r::Geometry qw(points_coincide PI X Y);
use XXX; use XXX;
use constant PI => 4 * atan2(1, 1);
use constant X => 0;
use constant Y => 1;
sub move_z { sub move_z {
my $self = shift; my $self = shift;
my ($z) = @_; my ($z) = @_;

View File

@ -7,10 +7,7 @@ extends 'Slic3r::Polyline';
# expressed in layers # expressed in layers
has 'depth_layers' => (is => 'ro', default => sub {1}); has 'depth_layers' => (is => 'ro', default => sub {1});
use constant X => 0; use Slic3r::Geometry qw(PI X Y epsilon deg2rad rotate_points);
use constant Y => 1;
use Slic3r::Geometry qw(PI epsilon deg2rad rotate_points);
use XXX; use XXX;
sub clip_end { sub clip_end {

View File

@ -5,7 +5,7 @@ use warnings;
require Exporter; require Exporter;
our @ISA = qw(Exporter); our @ISA = qw(Exporter);
our @EXPORT_OK = qw( our @EXPORT_OK = qw(
PI epsilon slope line_atan lines_parallel three_points_aligned PI X Y Z A B epsilon slope line_atan lines_parallel three_points_aligned
line_point_belongs_to_segment points_coincide distance_between_points line_point_belongs_to_segment points_coincide distance_between_points
line_length midpoint point_in_polygon point_in_segment segment_in_segment line_length midpoint point_in_polygon point_in_segment segment_in_segment
point_is_on_left_of_segment polyline_lines polygon_lines nearest_point point_is_on_left_of_segment polyline_lines polygon_lines nearest_point
@ -17,7 +17,7 @@ our @EXPORT_OK = qw(
clip_segment_complex_polygon longest_segment angle3points clip_segment_complex_polygon longest_segment angle3points
polyline_remove_parallel_continuous_edges polyline_remove_acute_vertices polyline_remove_parallel_continuous_edges polyline_remove_acute_vertices
polygon_remove_acute_vertices polygon_remove_parallel_continuous_edges polygon_remove_acute_vertices polygon_remove_parallel_continuous_edges
shortest_path shortest_path collinear
); );
use Slic3r::Geometry::DouglasPeucker qw(Douglas_Peucker); use Slic3r::Geometry::DouglasPeucker qw(Douglas_Peucker);
@ -28,6 +28,7 @@ use constant A => 0;
use constant B => 1; use constant B => 1;
use constant X => 0; use constant X => 0;
use constant Y => 1; use constant Y => 1;
use constant Z => 2;
our $parallel_degrees_limit = abs(deg2rad(3)); our $parallel_degrees_limit = abs(deg2rad(3));
our $epsilon = 1E-4; our $epsilon = 1E-4;
@ -416,6 +417,22 @@ sub line_intersection {
: undef; : undef;
} }
sub collinear {
my ($line1, $line2, $require_overlapping) = @_;
my $intersection = _line_intersection(map @$_, @$line1, @$line2);
return 0 unless !ref($intersection)
&& ($intersection eq 'parallel collinear'
|| ($intersection eq 'parallel vertical' && abs($line1->[A][X] - $line2->[A][X]) < epsilon));
if ($require_overlapping) {
my @box_a = bounding_box([ $line1->[0], $line1->[1] ]);
my @box_b = bounding_box([ $line2->[0], $line2->[1] ]);
return 0 unless bounding_box_intersect( 2, @box_a, @box_b );
}
return 1;
}
sub _line_intersection { sub _line_intersection {
my ( $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3 ); my ( $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3 );

View File

@ -3,14 +3,10 @@ use Moo;
use Math::Clipper ':all'; use Math::Clipper ':all';
use Slic3r::Geometry qw(polygon_lines points_coincide angle3points polyline_lines nearest_point use Slic3r::Geometry qw(polygon_lines points_coincide angle3points polyline_lines nearest_point
line_length); line_length collinear X Y A B PI);
use Slic3r::Geometry::Clipper qw(safety_offset union_ex PFT_EVENODD); use Slic3r::Geometry::Clipper qw(safety_offset union_ex);
use XXX; use XXX;
use constant PI => 4 * atan2(1, 1);
use constant A => 0;
use constant B => 1;
# a sequential number of layer, starting at 0 # a sequential number of layer, starting at 0
has 'id' => ( has 'id' => (
is => 'ro', is => 'ro',
@ -116,122 +112,149 @@ sub add_line {
return $line; return $line;
} }
sub remove_line { # merge overlapping lines
sub cleanup_lines {
my $self = shift; my $self = shift;
my ($line) = @_;
@{ $self->lines } = grep $_ ne $line, @{ $self->lines };
}
sub remove_surface { my $lines = $self->lines;
my $self = shift; my $line_count = @$lines;
my ($surface) = @_;
@{ $self->surfaces } = grep $_ ne $surface, @{ $self->surfaces }; for (my $i = 0; $i <= $#$lines-1; $i++) {
for (my $j = $i+1; $j <= $#$lines; $j++) {
# lines are collinear and overlapping?
next unless collinear($lines->[$i], $lines->[$j], 1);
# lines have same orientation?
next unless ($lines->[$i][A][X] <=> $lines->[$i][B][X]) == ($lines->[$j][A][X] <=> $lines->[$j][B][X])
&& ($lines->[$i][A][Y] <=> $lines->[$i][B][Y]) == ($lines->[$j][A][Y] <=> $lines->[$j][B][Y]);
# resulting line
my @x = sort { $a <=> $b } ($lines->[$i][A][X], $lines->[$i][B][X], $lines->[$j][A][X], $lines->[$j][B][X]);
my @y = sort { $a <=> $b } ($lines->[$i][A][Y], $lines->[$i][B][Y], $lines->[$j][A][Y], $lines->[$j][B][Y]);
my $new_line = Slic3r::Line->new([$x[0], $y[0]], [$x[-1], $y[-1]]);
for (X, Y) {
($new_line->[A][$_], $new_line->[B][$_]) = ($new_line->[B][$_], $new_line->[A][$_])
if $lines->[$i][A][$_] > $lines->[$i][B][$_];
}
# save new line and remove found one
$lines->[$i] = $new_line;
splice @$lines, $j, 1;
$j--;
}
}
Slic3r::debugf " merging %d lines resulted in %d lines\n", $line_count, scalar(@$lines);
} }
# build polylines from lines # build polylines from lines
sub make_surfaces { sub make_surfaces {
my $self = shift; my $self = shift;
my @lines = (); if (0) {
push @lines, @{$self->lines}; require "Slic3r/SVG.pm";
#@lines = grep line_length($_) > xx, @lines; Slic3r::SVG::output(undef, "lines.svg",
lines => [ grep !$_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
#use Slic3r::SVG; red_lines => [ grep $_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
#Slic3r::SVG::output(undef, "lines.svg", );
# lines => [ map $_->p, grep !$_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
# red_lines => [ map $_->p, grep $_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
#);
my $get_point_id = sub { sprintf "%.0f,%.0f", @{$_[0]} };
my (%pointmap, @pointmap_keys) = ();
foreach my $line (@lines) {
my $point_id = $get_point_id->($line->[A]);
if (!exists $pointmap{$point_id}) {
$pointmap{$point_id} = [];
push @pointmap_keys, $line->[A];
}
push @{ $pointmap{$point_id} }, $line;
} }
my $n = 0;
my (@polygons, %visited_lines, @discarded_lines, @discarded_polylines) = (); my (@polygons, %visited_lines, @discarded_lines, @discarded_polylines) = ();
while (my $first_line = shift @lines) {
next if $visited_lines{ $first_line->id };
my @points = @$first_line;
my @seen_lines = ($first_line); my $detect = sub {
my %seen_points = map { $get_point_id->($points[$_]) => $_ } 0..1; my @lines = @{$self->lines};
(@polygons, %visited_lines, @discarded_lines, @discarded_polylines) = ();
my $get_point_id = sub { sprintf "%.0f,%.0f", @{$_[0]} };
CYCLE: while (1) { my (%pointmap, @pointmap_keys) = ();
my $next_lines = $pointmap{ $get_point_id->($points[-1]) }; foreach my $line (@lines) {
my $point_id = $get_point_id->($line->[A]);
if (!exists $pointmap{$point_id}) {
$pointmap{$point_id} = [];
push @pointmap_keys, $line->[A];
}
push @{ $pointmap{$point_id} }, $line;
}
# shouldn't we find the point, let's try with a slower algorithm my $n = 0;
# as approximation may make the coordinates differ while (my $first_line = shift @lines) {
if (!$next_lines) { next if $visited_lines{ $first_line->id };
my $nearest_point = nearest_point($points[-1], \@pointmap_keys); my @points = @$first_line;
#printf " we have a nearest point: %f,%f (%s)\n", @$nearest_point, $get_point_id->($nearest_point);
if ($nearest_point) { my @seen_lines = ($first_line);
local $Slic3r::Geometry::epsilon = 1000000; my %seen_points = map { $get_point_id->($points[$_]) => $_ } 0..1;
$next_lines = $pointmap{$get_point_id->($nearest_point)}
if points_coincide($points[-1], $nearest_point); CYCLE: while (1) {
my $next_lines = $pointmap{ $get_point_id->($points[-1]) };
# shouldn't we find the point, let's try with a slower algorithm
# as approximation may make the coordinates differ
if (!$next_lines) {
my $nearest_point = nearest_point($points[-1], \@pointmap_keys);
#printf " we have a nearest point: %f,%f (%s)\n", @$nearest_point, $get_point_id->($nearest_point);
if ($nearest_point) {
local $Slic3r::Geometry::epsilon = 1000000;
$next_lines = $pointmap{$get_point_id->($nearest_point)}
if points_coincide($points[-1], $nearest_point);
}
} }
#Slic3r::SVG::output(undef, "lines.svg",
# lines => [ map $_->p, grep !$_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
# red_lines => [ map $_->p, grep $_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ],
# points => [ $points[-1] ],
# no_arrows => 1,
#) if !$next_lines;
$next_lines
or die sprintf("No lines start at point %s. This shouldn't happen. Please check the model for manifoldness.", $get_point_id->($points[-1]));
last CYCLE if !@$next_lines;
my @ordered_next_lines = sort
{ angle3points($points[-1], $points[-2], $next_lines->[$a][B]) <=> angle3points($points[-1], $points[-2], $next_lines->[$b][B]) }
0..$#$next_lines;
#if (@$next_lines > 1) {
# Slic3r::SVG::output(undef, "next_line.svg",
# lines => $next_lines,
# red_lines => [ polyline_lines([@points]) ],
# green_lines => [ $next_lines->[ $ordered_next_lines[0] ] ],
# );
#}
my ($next_line) = splice @$next_lines, $ordered_next_lines[0], 1;
push @seen_lines, $next_line;
push @points, $next_line->[B];
my $point_id = $get_point_id->($points[-1]);
if ($seen_points{$point_id}) {
splice @points, 0, $seen_points{$point_id};
last CYCLE;
}
$seen_points{$point_id} = $#points;
} }
#Slic3r::SVG::output(undef, "lines.svg", if (@points < 4 || !points_coincide($points[0], $points[-1])) {
# lines => [ map $_->p, grep !$_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ], # discarding polyline
# red_lines => [ map $_->p, grep $_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ], push @discarded_lines, @seen_lines;
# points => [ $points[-1] ], if (@points > 2) {
# no_arrows => 1, push @discarded_polylines, [@points];
#) if !$next_lines; }
next;
$next_lines
or die sprintf("No lines start at point %s. This shouldn't happen. Please check the model for manifoldness.", $get_point_id->($points[-1]));
last CYCLE if !@$next_lines;
my @ordered_next_lines = sort
{ angle3points($points[-1], $points[-2], $next_lines->[$a][B]) <=> angle3points($points[-1], $points[-2], $next_lines->[$b][B]) }
0..$#$next_lines;
#if (@$next_lines > 1) {
# Slic3r::SVG::output(undef, "next_line.svg",
# lines => $next_lines,
# red_lines => [ polyline_lines([@points]) ],
# green_lines => [ $next_lines->[ $ordered_next_lines[0] ] ],
# );
#}
my ($next_line) = splice @$next_lines, $ordered_next_lines[0], 1;
push @seen_lines, $next_line;
push @points, $next_line->[B];
my $point_id = $get_point_id->($points[-1]);
if ($seen_points{$point_id}) {
splice @points, 0, $seen_points{$point_id};
last CYCLE;
} }
$seen_points{$point_id} = $#points; $visited_lines{ $_->id } = 1 for @seen_lines;
pop @points;
Slic3r::debugf "Discovered polygon of %d points\n", scalar(@points);
push @polygons, Slic3r::Polygon->new(@points);
$polygons[-1]->cleanup;
} }
};
if (@points < 4 || !points_coincide($points[0], $points[-1])) { $detect->();
# discarding polyline
if (@points == 2) {
push @discarded_lines, [@points];
} else {
push @discarded_polylines, [@points];
}
next;
}
$visited_lines{ $_->id } = 1 for @seen_lines;
pop @points;
Slic3r::debugf "Discovered polygon of %d points\n", scalar(@points);
push @polygons, Slic3r::Polygon->new(@points);
$polygons[-1]->cleanup;
}
# Now, if we got a clean and manifold model then @polygons would contain everything # Now, if we got a clean and manifold model then @polygons would contain everything
# we need to draw our layer. In real life, sadly, things are different and it is likely # we need to draw our layer. In real life, sadly, things are different and it is likely
@ -243,10 +266,11 @@ sub make_surfaces {
# other line. # other line.
# So, let's first check what lines were not detected as part of polygons. # So, let's first check what lines were not detected as part of polygons.
if (@discarded_lines || @discarded_polylines) { if (@discarded_lines) {
print " Warning: errors while parsing this layer (dirty or non-manifold model)\n";
Slic3r::debugf " %d lines out of %d were discarded and %d polylines were not closed\n", Slic3r::debugf " %d lines out of %d were discarded and %d polylines were not closed\n",
scalar(@discarded_lines), scalar(@{$self->lines}), scalar(@discarded_polylines); scalar(@discarded_lines), scalar(@{$self->lines}), scalar(@discarded_polylines);
print " Warning: errors while parsing this layer (dirty or non-manifold model).\n";
print " Retrying with slower algorithm.\n";
if (0) { if (0) {
require "Slic3r/SVG.pm"; require "Slic3r/SVG.pm";
@ -261,10 +285,17 @@ sub make_surfaces {
); );
exit; exit;
} }
$self->cleanup_lines;
$detect->();
if (@discarded_lines) {
print " Warning: even slow detection algorithm throwed errors. Review the output before printing.\n";
}
} }
{ {
my $expolygons = union_ex([ @polygons ], PFT_EVENODD); my $expolygons = union_ex([ @polygons ]);
Slic3r::debugf " %d surface(s) having %d holes detected from %d polylines\n", Slic3r::debugf " %d surface(s) having %d holes detected from %d polylines\n",
scalar(@$expolygons), scalar(map $_->holes, @$expolygons), scalar(@polygons); scalar(@$expolygons), scalar(map $_->holes, @$expolygons), scalar(@polygons);

View File

@ -2,10 +2,7 @@ package Slic3r::Line;
use strict; use strict;
use warnings; use warnings;
use constant A => 0; use Slic3r::Geometry qw(A B X Y);
use constant B => 1;
use constant X => 0;
use constant Y => 1;
sub new { sub new {
my $class = shift; my $class = shift;
@ -100,4 +97,9 @@ sub midpoint {
); );
} }
sub reverse {
my $self = shift;
@$self = reverse @$self;
}
1; 1;

View File

@ -3,12 +3,9 @@ use Moo;
use Math::Clipper ':all'; use Math::Clipper ':all';
use Math::ConvexHull 1.0.4 qw(convex_hull); use Math::ConvexHull 1.0.4 qw(convex_hull);
use Slic3r::Geometry qw(shortest_path); use Slic3r::Geometry qw(X Y shortest_path);
use XXX; use XXX;
use constant X => 0;
use constant Y => 1;
sub make_perimeter { sub make_perimeter {
my $self = shift; my $self = shift;
my ($layer) = @_; my ($layer) = @_;

View File

@ -2,12 +2,10 @@ package Slic3r::Print;
use Moo; use Moo;
use Math::Clipper ':all'; use Math::Clipper ':all';
use Slic3r::Geometry qw(X Y);
use Slic3r::Geometry::Clipper qw(explode_expolygons safety_offset diff_ex intersection_ex); use Slic3r::Geometry::Clipper qw(explode_expolygons safety_offset diff_ex intersection_ex);
use XXX; use XXX;
use constant X => 0;
use constant Y => 1;
has 'x_length' => ( has 'x_length' => (
is => 'ro', is => 'ro',
required => 1, required => 1,

View File

@ -2,12 +2,9 @@ package Slic3r::STL;
use Moo; use Moo;
use Math::Clipper qw(integerize_coordinate_sets is_counter_clockwise); use Math::Clipper qw(integerize_coordinate_sets is_counter_clockwise);
use Slic3r::Geometry qw(three_points_aligned longest_segment); use Slic3r::Geometry qw(X Y Z three_points_aligned longest_segment);
use XXX; use XXX;
use constant X => 0;
use constant Y => 1;
use constant Z => 2;
use constant MIN => 0; use constant MIN => 0;
use constant MAX => 1; use constant MAX => 1;

91
t/collinear.t Normal file
View File

@ -0,0 +1,91 @@
use Test::More;
use strict;
use warnings;
plan tests => 11;
BEGIN {
use FindBin;
use lib "$FindBin::Bin/../lib";
}
use Slic3r;
use Slic3r::Geometry qw(collinear);
#==========================================================
{
my @lines = (
[ [0,4], [4,2] ],
[ [2,3], [8,0] ],
[ [6,1], [8,0] ],
);
is collinear($lines[0], $lines[1]), 1, 'collinear';
is collinear($lines[1], $lines[2]), 1, 'collinear';
is collinear($lines[0], $lines[2]), 1, 'collinear';
}
#==========================================================
{
# horizontal
my @lines = (
[ [0,1], [5,1] ],
[ [2,1], [8,1] ],
);
is collinear($lines[0], $lines[1]), 1, 'collinear';
}
#==========================================================
{
# vertical
my @lines = (
[ [1,0], [1,5] ],
[ [1,2], [1,8] ],
);
is collinear($lines[0], $lines[1]), 1, 'collinear';
}
#==========================================================
{
# non overlapping
my @lines = (
[ [0,1], [5,1] ],
[ [7,1], [10,1] ],
);
is collinear($lines[0], $lines[1], 1), 0, 'non overlapping';
is collinear($lines[0], $lines[1], 0), 1, 'overlapping';
}
#==========================================================
{
# with one common point
my @lines = (
[ [0,4], [4,2] ],
[ [4,2], [8,0] ],
);
is collinear($lines[0], $lines[1], 1), 1, 'one common point';
is collinear($lines[0], $lines[1], 0), 1, 'one common point';
}
#==========================================================
{
# not collinear
my @lines = (
[ [290000000,690525600], [285163380,684761540] ],
[ [285163380,684761540], [193267599,575244400] ],
);
is collinear($lines[0], $lines[1], 0), 0, 'not collinear';
is collinear($lines[0], $lines[1], 1), 0, 'not collinear';
use Slic3r::SVG;
Slic3r::SVG::output(undef, "collinear.svg",
lines => \@lines,
);
}
#==========================================================