Merge branch 'master' into fs_emboss

# Conflicts:
#	src/libslic3r/Technologies.hpp
#	src/slic3r/GUI/GLCanvas3D.cpp
#	src/slic3r/GUI/Gizmos/GLGizmosManager.cpp
#	src/slic3r/GUI/Plater.cpp
#	src/slic3r/GUI/Selection.hpp
This commit is contained in:
Filip Sykala - NTB T15p 2022-11-07 15:44:33 +01:00
commit c77f8373bd
52 changed files with 5938 additions and 233 deletions

View file

@ -186,6 +186,9 @@ set(SLIC3R_SOURCES
MultiMaterialSegmentation.hpp
MeshNormals.hpp
MeshNormals.cpp
Measure.hpp
Measure.cpp
MeasureUtils.hpp
CustomGCode.cpp
CustomGCode.hpp
Arrange.hpp
@ -261,6 +264,7 @@ set(SLIC3R_SOURCES
Surface.hpp
SurfaceCollection.cpp
SurfaceCollection.hpp
SurfaceMesh.hpp
SVG.cpp
SVG.hpp
Technologies.hpp

View file

@ -1502,27 +1502,27 @@ void GCode::process_layers(
}
});
const auto spiral_vase = tbb::make_filter<LayerResult, LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[&spiral_vase = *this->m_spiral_vase](LayerResult in) -> LayerResult {
[spiral_vase = this->m_spiral_vase.get()](LayerResult in) -> LayerResult {
if (in.nop_layer_result)
return in;
spiral_vase.enable(in.spiral_vase_enable);
return { spiral_vase.process_layer(std::move(in.gcode)), in.layer_id, in.spiral_vase_enable, in.cooling_buffer_flush};
spiral_vase->enable(in.spiral_vase_enable);
return { spiral_vase->process_layer(std::move(in.gcode)), in.layer_id, in.spiral_vase_enable, in.cooling_buffer_flush};
});
const auto pressure_equalizer = tbb::make_filter<LayerResult, LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[&pressure_equalizer = *this->m_pressure_equalizer](LayerResult in) -> LayerResult {
return pressure_equalizer.process_layer(std::move(in));
[pressure_equalizer = this->m_pressure_equalizer.get()](LayerResult in) -> LayerResult {
return pressure_equalizer->process_layer(std::move(in));
});
const auto cooling = tbb::make_filter<LayerResult, std::string>(slic3r_tbb_filtermode::serial_in_order,
[&cooling_buffer = *this->m_cooling_buffer](LayerResult in) -> std::string {
[cooling_buffer = this->m_cooling_buffer.get()](LayerResult in) -> std::string {
if (in.nop_layer_result)
return in.gcode;
return cooling_buffer.process_layer(std::move(in.gcode), in.layer_id, in.cooling_buffer_flush);
return cooling_buffer->process_layer(std::move(in.gcode), in.layer_id, in.cooling_buffer_flush);
});
const auto find_replace = tbb::make_filter<std::string, std::string>(slic3r_tbb_filtermode::serial_in_order,
[&self = *this->m_find_replace](std::string s) -> std::string {
return self.process_layer(std::move(s));
[find_replace = this->m_find_replace.get()](std::string s) -> std::string {
return find_replace->process_layer(std::move(s));
});
const auto output = tbb::make_filter<std::string, void>(slic3r_tbb_filtermode::serial_in_order,
[&output_stream](std::string s) { output_stream.write(s); }
@ -1584,25 +1584,25 @@ void GCode::process_layers(
}
});
const auto spiral_vase = tbb::make_filter<LayerResult, LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[&spiral_vase = *this->m_spiral_vase](LayerResult in)->LayerResult {
[spiral_vase = this->m_spiral_vase.get()](LayerResult in)->LayerResult {
if (in.nop_layer_result)
return in;
spiral_vase.enable(in.spiral_vase_enable);
return { spiral_vase.process_layer(std::move(in.gcode)), in.layer_id, in.spiral_vase_enable, in.cooling_buffer_flush };
spiral_vase->enable(in.spiral_vase_enable);
return { spiral_vase->process_layer(std::move(in.gcode)), in.layer_id, in.spiral_vase_enable, in.cooling_buffer_flush };
});
const auto pressure_equalizer = tbb::make_filter<LayerResult, LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[&pressure_equalizer = *this->m_pressure_equalizer](LayerResult in) -> LayerResult {
return pressure_equalizer.process_layer(std::move(in));
[pressure_equalizer = this->m_pressure_equalizer.get()](LayerResult in) -> LayerResult {
return pressure_equalizer->process_layer(std::move(in));
});
const auto cooling = tbb::make_filter<LayerResult, std::string>(slic3r_tbb_filtermode::serial_in_order,
[&cooling_buffer = *this->m_cooling_buffer](LayerResult in)->std::string {
[cooling_buffer = this->m_cooling_buffer.get()](LayerResult in)->std::string {
if (in.nop_layer_result)
return in.gcode;
return cooling_buffer.process_layer(std::move(in.gcode), in.layer_id, in.cooling_buffer_flush);
return cooling_buffer->process_layer(std::move(in.gcode), in.layer_id, in.cooling_buffer_flush);
});
const auto find_replace = tbb::make_filter<std::string, std::string>(slic3r_tbb_filtermode::serial_in_order,
[&self = *this->m_find_replace](std::string s) -> std::string {
return self.process_layer(std::move(s));
[find_replace = this->m_find_replace.get()](std::string s) -> std::string {
return find_replace->process_layer(std::move(s));
});
const auto output = tbb::make_filter<std::string, void>(slic3r_tbb_filtermode::serial_in_order,
[&output_stream](std::string s) { output_stream.write(s); }

1190
src/libslic3r/Measure.cpp Normal file

File diff suppressed because it is too large Load diff

208
src/libslic3r/Measure.hpp Normal file
View file

@ -0,0 +1,208 @@
#ifndef Slic3r_Measure_hpp_
#define Slic3r_Measure_hpp_
#include <optional>
#include <memory>
#include "Point.hpp"
struct indexed_triangle_set;
namespace Slic3r {
namespace Measure {
enum class SurfaceFeatureType : int {
Undef = 0,
Point = 1 << 0,
Edge = 1 << 1,
Circle = 1 << 2,
Plane = 1 << 3
};
class SurfaceFeature {
public:
SurfaceFeature(SurfaceFeatureType type, const Vec3d& pt1, const Vec3d& pt2, std::optional<Vec3d> pt3 = std::nullopt, double value = 0.0)
: m_type(type), m_pt1(pt1), m_pt2(pt2), m_pt3(pt3), m_value(value) {}
explicit SurfaceFeature(const Vec3d& pt)
: m_type{SurfaceFeatureType::Point}, m_pt1{pt} {}
// Get type of this feature.
SurfaceFeatureType get_type() const { return m_type; }
// For points, return the point.
Vec3d get_point() const { assert(m_type == SurfaceFeatureType::Point); return m_pt1; }
// For edges, return start and end.
std::pair<Vec3d, Vec3d> get_edge() const { assert(m_type == SurfaceFeatureType::Edge); return std::make_pair(m_pt1, m_pt2); }
// For circles, return center, radius and normal.
std::tuple<Vec3d, double, Vec3d> get_circle() const { assert(m_type == SurfaceFeatureType::Circle); return std::make_tuple(m_pt1, m_value, m_pt2); }
// For planes, return index into vector provided by Measuring::get_plane_triangle_indices, normal and point.
std::tuple<int, Vec3d, Vec3d> get_plane() const { assert(m_type == SurfaceFeatureType::Plane); return std::make_tuple(int(m_value), m_pt1, m_pt2); }
// For anything, return an extra point that should also be considered a part of this.
std::optional<Vec3d> get_extra_point() const { assert(m_type != SurfaceFeatureType::Undef); return m_pt3; }
bool operator == (const SurfaceFeature& other) const {
if (this->m_type != other.m_type) return false;
switch (this->m_type)
{
case SurfaceFeatureType::Undef: { break; }
case SurfaceFeatureType::Point: { return (this->m_pt1.isApprox(other.m_pt1)); }
case SurfaceFeatureType::Edge: {
return (this->m_pt1.isApprox(other.m_pt1) && this->m_pt2.isApprox(other.m_pt2)) ||
(this->m_pt1.isApprox(other.m_pt2) && this->m_pt2.isApprox(other.m_pt1));
}
case SurfaceFeatureType::Plane:
case SurfaceFeatureType::Circle: {
return (this->m_pt1.isApprox(other.m_pt1) && this->m_pt2.isApprox(other.m_pt2) && std::abs(this->m_value - other.m_value) < EPSILON);
}
}
return false;
}
bool operator != (const SurfaceFeature& other) const {
return !operator == (other);
}
private:
SurfaceFeatureType m_type{ SurfaceFeatureType::Undef };
Vec3d m_pt1{ Vec3d::Zero() };
Vec3d m_pt2{ Vec3d::Zero() };
std::optional<Vec3d> m_pt3;
double m_value{ 0.0 };
};
class MeasuringImpl;
class Measuring {
public:
// Construct the measurement object on a given its. The its must remain
// valid and unchanged during the whole lifetime of the object.
explicit Measuring(const indexed_triangle_set& its);
~Measuring();
// Return a reference to a list of all features identified on the its.
// Use only for debugging. Expensive, do not call often.
std::vector<SurfaceFeature> get_all_features() const;
// Given a face_idx where the mouse cursor points, return a feature that
// should be highlighted (if any).
std::optional<SurfaceFeature> get_feature(size_t face_idx, const Vec3d& point) const;
// Returns a list of triangle indices for each identified plane. Each
// Plane object contains an index into this vector. Expensive, do not
// call too often.
std::vector<std::vector<int>> get_planes_triangle_indices() const;
// Returns the surface features of the plane with the given index
const std::vector<SurfaceFeature>& get_plane_features(unsigned int plane_id) const;
private:
std::unique_ptr<MeasuringImpl> priv;
};
struct DistAndPoints {
DistAndPoints(double dist_, Vec3d from_, Vec3d to_) : dist(dist_), from(from_), to(to_) {}
double dist;
Vec3d from;
Vec3d to;
void transform(const Transform3d& trafo);
};
struct AngleAndEdges {
AngleAndEdges(double angle_, const Vec3d& center_, const std::pair<Vec3d, Vec3d>& e1_, const std::pair<Vec3d, Vec3d>& e2_, double radius_, bool coplanar_)
: angle(angle_), center(center_), e1(e1_), e2(e2_), radius(radius_), coplanar(coplanar_) {}
double angle;
Vec3d center;
std::pair<Vec3d, Vec3d> e1;
std::pair<Vec3d, Vec3d> e2;
double radius;
bool coplanar;
void transform(const Transform3d& trafo);
static const AngleAndEdges Dummy;
};
struct MeasurementResult {
std::optional<AngleAndEdges> angle;
std::optional<DistAndPoints> distance_infinite;
std::optional<DistAndPoints> distance_strict;
std::optional<Vec3d> distance_xyz;
bool has_distance_data() const {
return distance_infinite.has_value() || distance_strict.has_value();
}
bool has_any_data() const {
return angle.has_value() || distance_infinite.has_value() || distance_strict.has_value() || distance_xyz.has_value();
}
void transform(const Transform3d& trafo) {
if (angle.has_value())
angle->transform(trafo);
if (distance_infinite.has_value())
distance_infinite->transform(trafo);
if (distance_strict.has_value()) {
distance_strict->transform(trafo);
distance_xyz = (distance_strict->to - distance_strict->from).cwiseAbs();
}
}
};
// Returns distance/angle between two SurfaceFeatures.
MeasurementResult get_measurement(const SurfaceFeature& a, const SurfaceFeature& b, const Measuring* measuring = nullptr);
inline Vec3d edge_direction(const Vec3d& from, const Vec3d& to) { return (to - from).normalized(); }
inline Vec3d edge_direction(const std::pair<Vec3d, Vec3d>& e) { return edge_direction(e.first, e.second); }
inline Vec3d edge_direction(const SurfaceFeature& edge) {
assert(edge.get_type() == SurfaceFeatureType::Edge);
return edge_direction(edge.get_edge());
}
inline Vec3d plane_normal(const SurfaceFeature& plane) {
assert(plane.get_type() == SurfaceFeatureType::Plane);
return std::get<1>(plane.get_plane());
}
inline bool are_parallel(const Vec3d& v1, const Vec3d& v2) { return std::abs(std::abs(v1.dot(v2)) - 1.0) < EPSILON; }
inline bool are_perpendicular(const Vec3d& v1, const Vec3d& v2) { return std::abs(v1.dot(v2)) < EPSILON; }
inline bool are_parallel(const std::pair<Vec3d, Vec3d>& e1, const std::pair<Vec3d, Vec3d>& e2) {
return are_parallel(e1.second - e1.first, e2.second - e2.first);
}
inline bool are_parallel(const SurfaceFeature& f1, const SurfaceFeature& f2) {
if (f1.get_type() == SurfaceFeatureType::Edge && f2.get_type() == SurfaceFeatureType::Edge)
return are_parallel(edge_direction(f1), edge_direction(f2));
else if (f1.get_type() == SurfaceFeatureType::Edge && f2.get_type() == SurfaceFeatureType::Plane)
return are_perpendicular(edge_direction(f1), plane_normal(f2));
else
return false;
}
inline bool are_perpendicular(const SurfaceFeature& f1, const SurfaceFeature& f2) {
if (f1.get_type() == SurfaceFeatureType::Edge && f2.get_type() == SurfaceFeatureType::Edge)
return are_perpendicular(edge_direction(f1), edge_direction(f2));
else if (f1.get_type() == SurfaceFeatureType::Edge && f2.get_type() == SurfaceFeatureType::Plane)
return are_parallel(edge_direction(f1), plane_normal(f2));
else
return false;
}
} // namespace Measure
} // namespace Slic3r
#endif // Slic3r_Measure_hpp_

View file

@ -0,0 +1,386 @@
#ifndef Slic3r_MeasureUtils_hpp_
#define Slic3r_MeasureUtils_hpp_
#include <initializer_list>
namespace Slic3r {
namespace Measure {
// Utility class used to calculate distance circle-circle
// Adaptation of code found in:
// https://github.com/davideberly/GeometricTools/blob/master/GTE/Mathematics/Polynomial1.h
class Polynomial1
{
public:
Polynomial1(std::initializer_list<double> values)
{
// C++ 11 will call the default constructor for
// Polynomial1<Real> p{}, so it is guaranteed that
// values.size() > 0.
m_coefficient.resize(values.size());
std::copy(values.begin(), values.end(), m_coefficient.begin());
EliminateLeadingZeros();
}
// Construction and destruction. The first constructor creates a
// polynomial of the specified degree but sets all coefficients to
// zero (to ensure initialization). You are responsible for setting
// the coefficients, presumably with the degree-term set to a nonzero
// number. In the second constructor, the degree is the number of
// initializers plus 1, but then adjusted so that coefficient[degree]
// is not zero (unless all initializer values are zero).
explicit Polynomial1(uint32_t degree)
: m_coefficient(static_cast<size_t>(degree) + 1, 0.0)
{}
// Eliminate any leading zeros in the polynomial, except in the case
// the degree is 0 and the coefficient is 0. The elimination is
// necessary when arithmetic operations cause a decrease in the degree
// of the result. For example, (1 + x + x^2) + (1 + 2*x - x^2) =
// (2 + 3*x). The inputs both have degree 2, so the result is created
// with degree 2. After the addition we find that the degree is in
// fact 1 and resize the array of coefficients. This function is
// called internally by the arithmetic operators, but it is exposed in
// the public interface in case you need it for your own purposes.
void EliminateLeadingZeros()
{
const size_t size = m_coefficient.size();
if (size > 1) {
const double zero = 0.0;
int32_t leading;
for (leading = static_cast<int32_t>(size) - 1; leading > 0; --leading) {
if (m_coefficient[leading] != zero)
break;
}
m_coefficient.resize(++leading);
}
}
// Set all coefficients to the specified value.
void SetCoefficients(double value)
{
std::fill(m_coefficient.begin(), m_coefficient.end(), value);
}
inline uint32_t GetDegree() const
{
// By design, m_coefficient.size() > 0.
return static_cast<uint32_t>(m_coefficient.size() - 1);
}
inline const double& operator[](uint32_t i) const { return m_coefficient[i]; }
inline double& operator[](uint32_t i) { return m_coefficient[i]; }
// Evaluate the polynomial. If the polynomial is invalid, the
// function returns zero.
double operator()(double t) const
{
int32_t i = static_cast<int32_t>(m_coefficient.size());
double result = m_coefficient[--i];
for (--i; i >= 0; --i) {
result *= t;
result += m_coefficient[i];
}
return result;
}
protected:
// The class is designed so that m_coefficient.size() >= 1.
std::vector<double> m_coefficient;
};
inline Polynomial1 operator * (const Polynomial1& p0, const Polynomial1& p1)
{
const uint32_t p0Degree = p0.GetDegree();
const uint32_t p1Degree = p1.GetDegree();
Polynomial1 result(p0Degree + p1Degree);
result.SetCoefficients(0.0);
for (uint32_t i0 = 0; i0 <= p0Degree; ++i0) {
for (uint32_t i1 = 0; i1 <= p1Degree; ++i1) {
result[i0 + i1] += p0[i0] * p1[i1];
}
}
return result;
}
inline Polynomial1 operator + (const Polynomial1& p0, const Polynomial1& p1)
{
const uint32_t p0Degree = p0.GetDegree();
const uint32_t p1Degree = p1.GetDegree();
uint32_t i;
if (p0Degree >= p1Degree) {
Polynomial1 result(p0Degree);
for (i = 0; i <= p1Degree; ++i) {
result[i] = p0[i] + p1[i];
}
for (/**/; i <= p0Degree; ++i) {
result[i] = p0[i];
}
result.EliminateLeadingZeros();
return result;
}
else {
Polynomial1 result(p1Degree);
for (i = 0; i <= p0Degree; ++i) {
result[i] = p0[i] + p1[i];
}
for (/**/; i <= p1Degree; ++i) {
result[i] = p1[i];
}
result.EliminateLeadingZeros();
return result;
}
}
inline Polynomial1 operator - (const Polynomial1& p0, const Polynomial1& p1)
{
const uint32_t p0Degree = p0.GetDegree();
const uint32_t p1Degree = p1.GetDegree();
uint32_t i;
if (p0Degree >= p1Degree) {
Polynomial1 result(p0Degree);
for (i = 0; i <= p1Degree; ++i) {
result[i] = p0[i] - p1[i];
}
for (/**/; i <= p0Degree; ++i) {
result[i] = p0[i];
}
result.EliminateLeadingZeros();
return result;
}
else {
Polynomial1 result(p1Degree);
for (i = 0; i <= p0Degree; ++i) {
result[i] = p0[i] - p1[i];
}
for (/**/; i <= p1Degree; ++i) {
result[i] = -p1[i];
}
result.EliminateLeadingZeros();
return result;
}
}
inline Polynomial1 operator * (double scalar, const Polynomial1& p)
{
const uint32_t degree = p.GetDegree();
Polynomial1 result(degree);
for (uint32_t i = 0; i <= degree; ++i) {
result[i] = scalar * p[i];
}
return result;
}
// Utility class used to calculate distance circle-circle
// Adaptation of code found in:
// https://github.com/davideberly/GeometricTools/blob/master/GTE/Mathematics/RootsPolynomial.h
class RootsPolynomial
{
public:
// General equations: sum_{i=0}^{d} c(i)*t^i = 0. The input array 'c'
// must have at least d+1 elements and the output array 'root' must
// have at least d elements.
// Find the roots on (-infinity,+infinity).
static int32_t Find(int32_t degree, const double* c, uint32_t maxIterations, double* roots)
{
if (degree >= 0 && c != nullptr) {
const double zero = 0.0;
while (degree >= 0 && c[degree] == zero) {
--degree;
}
if (degree > 0) {
// Compute the Cauchy bound.
const double one = 1.0;
const double invLeading = one / c[degree];
double maxValue = zero;
for (int32_t i = 0; i < degree; ++i) {
const double value = std::fabs(c[i] * invLeading);
if (value > maxValue)
maxValue = value;
}
const double bound = one + maxValue;
return FindRecursive(degree, c, -bound, bound, maxIterations, roots);
}
else if (degree == 0)
// The polynomial is a nonzero constant.
return 0;
else {
// The polynomial is identically zero.
roots[0] = zero;
return 1;
}
}
else
// Invalid degree or c.
return 0;
}
// If you know that p(tmin) * p(tmax) <= 0, then there must be at
// least one root in [tmin, tmax]. Compute it using bisection.
static bool Find(int32_t degree, const double* c, double tmin, double tmax, uint32_t maxIterations, double& root)
{
const double zero = 0.0;
double pmin = Evaluate(degree, c, tmin);
if (pmin == zero) {
root = tmin;
return true;
}
double pmax = Evaluate(degree, c, tmax);
if (pmax == zero) {
root = tmax;
return true;
}
if (pmin * pmax > zero)
// It is not known whether the interval bounds a root.
return false;
if (tmin >= tmax)
// Invalid ordering of interval endpoitns.
return false;
for (uint32_t i = 1; i <= maxIterations; ++i) {
root = 0.5 * (tmin + tmax);
// This test is designed for 'float' or 'double' when tmin
// and tmax are consecutive floating-point numbers.
if (root == tmin || root == tmax)
break;
const double p = Evaluate(degree, c, root);
const double product = p * pmin;
if (product < zero) {
tmax = root;
pmax = p;
}
else if (product > zero) {
tmin = root;
pmin = p;
}
else
break;
}
return true;
}
// Support for the Find functions.
static int32_t FindRecursive(int32_t degree, double const* c, double tmin, double tmax, uint32_t maxIterations, double* roots)
{
// The base of the recursion.
const double zero = 0.0;
double root = zero;
if (degree == 1) {
int32_t numRoots;
if (c[1] != zero) {
root = -c[0] / c[1];
numRoots = 1;
}
else if (c[0] == zero) {
root = zero;
numRoots = 1;
}
else
numRoots = 0;
if (numRoots > 0 && tmin <= root && root <= tmax) {
roots[0] = root;
return 1;
}
return 0;
}
// Find the roots of the derivative polynomial scaled by 1/degree.
// The scaling avoids the factorial growth in the coefficients;
// for example, without the scaling, the high-order term x^d
// becomes (d!)*x through multiple differentiations. With the
// scaling we instead get x. This leads to better numerical
// behavior of the root finder.
const int32_t derivDegree = degree - 1;
std::vector<double> derivCoeff(static_cast<size_t>(derivDegree) + 1);
std::vector<double> derivRoots(derivDegree);
for (int32_t i = 0, ip1 = 1; i <= derivDegree; ++i, ++ip1) {
derivCoeff[i] = c[ip1] * (double)(ip1) / (double)degree;
}
const int32_t numDerivRoots = FindRecursive(degree - 1, &derivCoeff[0], tmin, tmax, maxIterations, &derivRoots[0]);
int32_t numRoots = 0;
if (numDerivRoots > 0) {
// Find root on [tmin,derivRoots[0]].
if (Find(degree, c, tmin, derivRoots[0], maxIterations, root))
roots[numRoots++] = root;
// Find root on [derivRoots[i],derivRoots[i+1]].
for (int32_t i = 0, ip1 = 1; i <= numDerivRoots - 2; ++i, ++ip1) {
if (Find(degree, c, derivRoots[i], derivRoots[ip1], maxIterations, root))
roots[numRoots++] = root;
}
// Find root on [derivRoots[numDerivRoots-1],tmax].
if (Find(degree, c, derivRoots[static_cast<size_t>(numDerivRoots) - 1], tmax, maxIterations, root))
roots[numRoots++] = root;
}
else {
// The polynomial is monotone on [tmin,tmax], so has at most one root.
if (Find(degree, c, tmin, tmax, maxIterations, root))
roots[numRoots++] = root;
}
return numRoots;
}
static double Evaluate(int32_t degree, const double* c, double t)
{
int32_t i = degree;
double result = c[i];
while (--i >= 0) {
result = t * result + c[i];
}
return result;
}
};
// Adaptation of code found in:
// https://github.com/davideberly/GeometricTools/blob/master/GTE/Mathematics/Vector.h
// Construct a single vector orthogonal to the nonzero input vector. If
// the maximum absolute component occurs at index i, then the orthogonal
// vector U has u[i] = v[i+1], u[i+1] = -v[i], and all other components
// zero. The index addition i+1 is computed modulo N.
inline Vec3d get_orthogonal(const Vec3d& v, bool unitLength)
{
double cmax = std::fabs(v[0]);
int32_t imax = 0;
for (int32_t i = 1; i < 3; ++i) {
double c = std::fabs(v[i]);
if (c > cmax) {
cmax = c;
imax = i;
}
}
Vec3d result = Vec3d::Zero();
int32_t inext = imax + 1;
if (inext == 3)
inext = 0;
result[imax] = v[inext];
result[inext] = -v[imax];
if (unitLength) {
const double sqrDistance = result[imax] * result[imax] + result[inext] * result[inext];
const double invLength = 1.0 / std::sqrt(sqrDistance);
result[imax] *= invLength;
result[inext] *= invLength;
}
return result;
}
} // namespace Slic3r
} // namespace Measure
#endif // Slic3r_MeasureUtils_hpp_

View file

@ -1661,6 +1661,12 @@ void ModelObject::split(ModelObjectPtrs* new_objects)
new_object->add_instance(*model_instance);
ModelVolume* new_vol = new_object->add_volume(*volume, std::move(mesh));
// Invalidate extruder value in volume's config,
// otherwise there will no way to change extruder for object after splitting,
// because volume's extruder value overrides object's extruder value.
if (new_vol->config.has("extruder"))
new_vol->config.set_key_value("extruder", new ConfigOptionInt(0));
for (ModelInstance* model_instance : new_object->instances) {
#if ENABLE_WORLD_COORDINATE
Vec3d shift = model_instance->get_transformation().get_matrix_no_offset() * new_vol->get_offset();

View file

@ -988,6 +988,11 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_
DynamicPrintConfig filament_overrides;
t_config_option_keys print_diff = print_config_diffs(m_config, new_full_config, filament_overrides);
t_config_option_keys full_config_diff = full_print_config_diffs(m_full_print_config, new_full_config);
// If just a physical printer was changed, but printer preset is the same, then there is no need to apply whole print
// see https://github.com/prusa3d/PrusaSlicer/issues/8800
if (full_config_diff.size() == 1 && full_config_diff[0] == "physical_printer_settings_id")
full_config_diff.clear();
// Collect changes to object and region configs.
t_config_option_keys object_diff = m_default_object_config.diff(new_full_config);
t_config_option_keys region_diff = m_default_region_config.diff(new_full_config);

View file

@ -0,0 +1,154 @@
#ifndef slic3r_SurfaceMesh_hpp_
#define slic3r_SurfaceMesh_hpp_
#include <admesh/stl.h>
#include <libslic3r/TriangleMesh.hpp>
namespace Slic3r {
class TriangleMesh;
enum Face_index : int;
class Halfedge_index {
friend class SurfaceMesh;
public:
Halfedge_index() : m_face(Face_index(-1)), m_side(0) {}
Face_index face() const { return m_face; }
unsigned char side() const { return m_side; }
bool is_invalid() const { return int(m_face) < 0; }
bool operator!=(const Halfedge_index& rhs) const { return ! ((*this) == rhs); }
bool operator==(const Halfedge_index& rhs) const { return m_face == rhs.m_face && m_side == rhs.m_side; }
private:
Halfedge_index(int face_idx, unsigned char side_idx) : m_face(Face_index(face_idx)), m_side(side_idx) {}
Face_index m_face;
unsigned char m_side;
};
class Vertex_index {
friend class SurfaceMesh;
public:
Vertex_index() : m_face(Face_index(-1)), m_vertex_idx(0) {}
bool is_invalid() const { return int(m_face) < 0; }
bool operator==(const Vertex_index& rhs) const = delete; // Use SurfaceMesh::is_same_vertex.
private:
Vertex_index(int face_idx, unsigned char vertex_idx) : m_face(Face_index(face_idx)), m_vertex_idx(vertex_idx) {}
Face_index m_face;
unsigned char m_vertex_idx;
};
class SurfaceMesh {
public:
explicit SurfaceMesh(const indexed_triangle_set& its)
: m_its(its),
m_face_neighbors(its_face_neighbors_par(its))
{}
SurfaceMesh(const SurfaceMesh&) = delete;
SurfaceMesh& operator=(const SurfaceMesh&) = delete;
Vertex_index source(Halfedge_index h) const { assert(! h.is_invalid()); return Vertex_index(h.m_face, h.m_side); }
Vertex_index target(Halfedge_index h) const { assert(! h.is_invalid()); return Vertex_index(h.m_face, h.m_side == 2 ? 0 : h.m_side + 1); }
Face_index face(Halfedge_index h) const { assert(! h.is_invalid()); return h.m_face; }
Halfedge_index next(Halfedge_index h) const { assert(! h.is_invalid()); h.m_side = (h.m_side + 1) % 3; return h; }
Halfedge_index prev(Halfedge_index h) const { assert(! h.is_invalid()); h.m_side = (h.m_side == 0 ? 2 : h.m_side - 1); return h; }
Halfedge_index halfedge(Vertex_index v) const { return Halfedge_index(v.m_face, (v.m_vertex_idx == 0 ? 2 : v.m_vertex_idx - 1)); }
Halfedge_index halfedge(Face_index f) const { return Halfedge_index(f, 0); }
Halfedge_index opposite(Halfedge_index h) const {
if (h.is_invalid())
return h;
int face_idx = m_face_neighbors[h.m_face][h.m_side];
Halfedge_index h_candidate = halfedge(Face_index(face_idx));
if (h_candidate.is_invalid())
return Halfedge_index(); // invalid
for (int i=0; i<3; ++i) {
if (is_same_vertex(source(h_candidate), target(h))) {
// Meshes in PrusaSlicer should be fixed enough for the following not to happen.
assert(is_same_vertex(target(h_candidate), source(h)));
return h_candidate;
}
h_candidate = next(h_candidate);
}
return Halfedge_index(); // invalid
}
Halfedge_index next_around_target(Halfedge_index h) const { return opposite(next(h)); }
Halfedge_index prev_around_target(Halfedge_index h) const { Halfedge_index op = opposite(h); return (op.is_invalid() ? Halfedge_index() : prev(op)); }
Halfedge_index next_around_source(Halfedge_index h) const { Halfedge_index op = opposite(h); return (op.is_invalid() ? Halfedge_index() : next(op)); }
Halfedge_index prev_around_source(Halfedge_index h) const { return opposite(prev(h)); }
Halfedge_index halfedge(Vertex_index source, Vertex_index target) const
{
Halfedge_index hi(source.m_face, source.m_vertex_idx);
assert(! hi.is_invalid());
const Vertex_index orig_target = this->target(hi);
Vertex_index current_target = orig_target;
while (! is_same_vertex(current_target, target)) {
hi = next_around_source(hi);
if (hi.is_invalid())
break;
current_target = this->target(hi);
if (is_same_vertex(current_target, orig_target))
return Halfedge_index(); // invalid
}
return hi;
}
const stl_vertex& point(Vertex_index v) const { return m_its.vertices[m_its.indices[v.m_face][v.m_vertex_idx]]; }
size_t degree(Vertex_index v) const
{
Halfedge_index h_first = halfedge(v);
Halfedge_index h = next_around_target(h_first);
size_t degree = 2;
while (! h.is_invalid() && h != h_first) {
h = next_around_target(h);
++degree;
}
return h.is_invalid() ? 0 : degree - 1;
}
size_t degree(Face_index f) const {
size_t total = 0;
for (unsigned char i=0; i<3; ++i) {
size_t d = degree(Vertex_index(f, i));
if (d == 0)
return 0;
total += d;
}
assert(total - 6 >= 0);
return total - 6; // we counted 3 halfedges from f, and one more for each neighbor
}
bool is_border(Halfedge_index h) const { return m_face_neighbors[h.m_face][h.m_side] == -1; }
bool is_same_vertex(const Vertex_index& a, const Vertex_index& b) const { return m_its.indices[a.m_face][a.m_vertex_idx] == m_its.indices[b.m_face][b.m_vertex_idx]; }
Vec3i get_face_neighbors(Face_index face_id) const { assert(int(face_id) < int(m_face_neighbors.size())); return m_face_neighbors[face_id]; }
private:
const std::vector<Vec3i> m_face_neighbors;
const indexed_triangle_set& m_its;
};
} //namespace Slic3r
#endif // slic3r_SurfaceMesh_hpp_

View file

@ -26,6 +26,8 @@
#define ENABLE_PROJECT_DIRTY_STATE_DEBUG_WINDOW 0
// Disable using instanced models to render options in gcode preview
#define DISABLE_GCODEVIEWER_INSTANCED_MODELS 1
// Enable Measure Gizmo debug window
#define ENABLE_MEASURE_GIZMO_DEBUG 0
// Enable rendering of objects using environment map