Merge branch 'tm_astar'

This commit is contained in:
tamasmeszaros 2022-05-11 12:06:26 +02:00
commit c78ccdbb74
5 changed files with 261 additions and 6 deletions

182
src/libslic3r/AStar.hpp Normal file
View File

@ -0,0 +1,182 @@
#ifndef ASTAR_HPP
#define ASTAR_HPP
#include "libslic3r/Point.hpp"
#include "libslic3r/MutablePriorityQueue.hpp"
#include <unordered_map>
namespace Slic3r { namespace astar {
// Input interface for the Astar algorithm. Specialize this struct for a
// particular type and implement all the 4 methods and specify the Node type
// to register the new type for the astar implementation.
template<class T> struct TracerTraits_
{
// The type of a node used by this tracer. Usually a point in space.
using Node = typename T::Node;
// Call fn for every new node reachable from node 'src'. fn should have the
// candidate node as its only argument.
template<class Fn>
static void foreach_reachable(const T &tracer, const Node &src, Fn &&fn)
{
tracer.foreach_reachable(src, fn);
}
// Get the distance from node 'a' to node 'b'. This is sometimes referred
// to as the g value of a node in AStar context.
static float distance(const T &tracer, const Node &a, const Node &b)
{
return tracer.distance(a, b);
}
// Get the estimated distance heuristic from node 'n' to the destination.
// This is referred to as the h value in AStar context.
// If node 'n' is the goal, this function should return a negative value.
static float goal_heuristic(const T &tracer, const Node &n)
{
return tracer.goal_heuristic(n);
}
// Return a unique identifier (hash) for node 'n'.
static size_t unique_id(const T &tracer, const Node &n)
{
return tracer.unique_id(n);
}
};
// Helper definition to get the node type of a tracer
template<class T>
using TracerNodeT = typename TracerTraits_<remove_cvref_t<T>>::Node;
namespace detail {
// Helper functions dispatching calls through the TracerTraits_ interface
template<class T> using TracerTraits = TracerTraits_<remove_cvref_t<T>>;
template<class T, class Fn>
void foreach_reachable(const T &tracer, const TracerNodeT<T> &from, Fn &&fn)
{
TracerTraits<T>::foreach_reachable(tracer, from, fn);
}
template<class T>
float trace_distance(const T &tracer, const TracerNodeT<T> &a, const TracerNodeT<T> &b)
{
return TracerTraits<T>::distance(tracer, a, b);
}
template<class T>
float goal_heuristic(const T &tracer, const TracerNodeT<T> &n)
{
return TracerTraits<T>::goal_heuristic(tracer, n);
}
template<class T>
size_t unique_id(const T &tracer, const TracerNodeT<T> &n)
{
return TracerTraits<T>::unique_id(tracer, n);
}
} // namespace astar_detail
// Run the AStar algorithm on a tracer implementation.
// The 'tracer' argument encapsulates the domain (grid, point cloud, etc...)
// The 'source' argument is the starting node.
// The 'out' argument is the output iterator into which the output nodes are
// written.
// Note that no destination node is given. The tracer's goal_heuristic() method
// should return a negative value if a node is a destination node.
template<class Tracer, class It>
bool search_route(const Tracer &tracer, const TracerNodeT<Tracer> &source, It out)
{
using namespace detail;
using Node = TracerNodeT<Tracer>;
enum class QueueType { Open, Closed, None };
struct QNode // Queue node. Keeps track of scores g, and h
{
Node node; // The actual node itself
QueueType qtype = QueueType::None; // Which queue holds this node
float g = 0.f, h = 0.f;
float f() const { return g + h; }
};
// TODO: apply a linear memory allocator
using QMap = std::unordered_map<size_t, QNode>;
// The traversed nodes are stored here encapsulated in QNodes
QMap cached_nodes;
struct LessPred { // Comparison functor needed by MutablePriorityQueue
QMap &m;
bool operator ()(size_t node_a, size_t node_b) {
auto ait = m.find(node_a);
auto bit = m.find(node_b);
assert (ait != m.end() && bit != m.end());
return ait->second.f() < bit->second.f();
}
};
auto qopen =
make_mutable_priority_queue<size_t, false>([](size_t, size_t){},
LessPred{cached_nodes});
auto qclosed =
make_mutable_priority_queue<size_t, false>([](size_t, size_t){},
LessPred{cached_nodes});
QNode initial{source, QueueType::Open};
cached_nodes.insert({unique_id(tracer, source), initial});
qopen.push(unique_id(tracer, source));
bool goal_reached = false;
while (!goal_reached && !qopen.empty()) {
size_t q_id = qopen.top();
qopen.pop();
QNode q = cached_nodes.at(q_id);
foreach_reachable(tracer, q.node, [&](const Node &nd) {
if (goal_reached) return goal_reached;
float h = goal_heuristic(tracer, nd);
if (h < 0.f) {
goal_reached = true;
} else {
float dst = trace_distance(tracer, q.node, nd);
QNode qnd{nd, QueueType::None, q.g + dst, h};
size_t qnd_id = unique_id(tracer, nd);
auto it = cached_nodes.find(qnd_id);
if (it == cached_nodes.end() ||
(it->second.qtype != QueueType::None && qnd.f() < it->second.f())) {
qnd.qtype = QueueType::Open;
cached_nodes.insert_or_assign(qnd_id, qnd);
qopen.push(qnd_id);
}
}
return goal_reached;
});
q.qtype = QueueType::Closed;
cached_nodes.insert_or_assign(q_id, q);
qclosed.push(q_id);
// write the output
*out = q.node;
++out;
}
return goal_reached;
}
}} // namespace Slic3r::astar
#endif // ASTAR_HPP

View File

@ -17,6 +17,7 @@ endif()
set(SLIC3R_SOURCES set(SLIC3R_SOURCES
pchheader.cpp pchheader.cpp
pchheader.hpp pchheader.hpp
AStar.hpp
BoundingBox.cpp BoundingBox.cpp
BoundingBox.hpp BoundingBox.hpp
BridgeDetector.cpp BridgeDetector.cpp

View File

@ -32,9 +32,9 @@ public:
} }
Vec3i get_coord(size_t idx) const { Vec3i get_coord(size_t idx) const {
size_t iz = idx / XY; int iz = idx / XY;
size_t iy = (idx / m_size.x()) % m_size.y(); int iy = (idx / m_size.x()) % m_size.y();
size_t ix = idx % m_size.x(); int ix = idx % m_size.x();
return {ix, iy, iz}; return {ix, iy, iz};
} }
@ -59,9 +59,9 @@ PointGrid<CoordT> point_grid(Ex policy,
size_t XY = numpts[X] * numpts[Y]; size_t XY = numpts[X] * numpts[Y];
execution::for_each(policy, size_t(0), out.size(), [&](size_t i) { execution::for_each(policy, size_t(0), out.size(), [&](size_t i) {
size_t iz = i / XY; int iz = i / XY;
size_t iy = (i / numpts[X]) % numpts[Y]; int iy = (i / numpts[X]) % numpts[Y];
size_t ix = i % numpts[X]; int ix = i % numpts[X];
out[i] = Vec<3, CoordT>(ix * stride.x(), iy * stride.y(), iz * stride.z()); out[i] = Vec<3, CoordT>(ix * stride.x(), iy * stride.y(), iz * stride.z());
}); });

View File

@ -26,6 +26,7 @@ add_executable(${_TEST_NAME}_tests
test_png_io.cpp test_png_io.cpp
test_timeutils.cpp test_timeutils.cpp
test_indexed_triangle_set.cpp test_indexed_triangle_set.cpp
test_astar.cpp
../libnest2d/printer_parts.cpp ../libnest2d/printer_parts.cpp
) )

View File

@ -0,0 +1,71 @@
#include <catch2/catch.hpp>
#include "libslic3r/BoundingBox.hpp"
#include "libslic3r/AStar.hpp"
#include "libslic3r/Execution/ExecutionSeq.hpp"
#include "libslic3r/PointGrid.hpp"
using namespace Slic3r;
struct PointGridTracer {
using Node = size_t;
const PointGrid<float> &grid;
size_t final;
PointGridTracer(const PointGrid<float> &g, size_t goal) :
grid{g}, final{goal} {}
template<class Fn>
void foreach_reachable(size_t from, Fn &&fn) const
{
Vec3i from_crd = grid.get_coord(from);
REQUIRE(grid.get_idx(from_crd) == from);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 1, 0, 0}); i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 1, 0}); i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 0, 1}); i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 1, 1, 0}); i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 1, 1}); i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 1, 1, 1}); i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{-1, 0, 0}); from_crd.x() > 0 && i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, -1, 0}); from_crd.y() > 0 && i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 0, -1}); from_crd.z() > 0 && i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{-1, -1, 0}); from_crd.x() > 0 && from_crd.y() > 0 && i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, -1, -1}); from_crd.y() > 0 && from_crd.z() && i < grid.point_count()) fn(i);
if (size_t i = grid.get_idx(from_crd + Vec3i{-1, -1, -1}); from_crd.x() > 0 && from_crd.y() > 0 && from_crd.z() && i < grid.point_count()) fn(i);
}
float distance(size_t a, size_t b) const
{
return (grid.get(a) - grid.get(b)).squaredNorm();
}
float goal_heuristic(size_t n) const
{
return n == final ? -1.f : (grid.get(n) - grid.get(final)).squaredNorm();
}
size_t unique_id(size_t n) const { return n; }
};
TEST_CASE("astar algorithm test over 3D point grid", "[AStar]") {
auto vol = BoundingBox3Base<Vec3f>{{0.f, 0.f, 0.f}, {1.f, 1.f, 1.f}};
auto pgrid = point_grid(ex_seq, vol, {0.1f, 0.1f, 0.1f});
size_t target = pgrid.point_count() - 1;
std::cout << "Tracing route to " << pgrid.get_coord(target).transpose() << std::endl;
PointGridTracer pgt{pgrid, pgrid.point_count() - 1};
std::vector<size_t> out;
bool found = astar::search_route(pgt, size_t(0), std::back_inserter(out));
std::cout << "Route taken: ";
for (size_t i : out) {
std::cout << "(" << pgrid.get_coord(i).transpose() << ") ";
}
std::cout << std::endl;
REQUIRE(found);
}