Merge branch 'tm_astar'
This commit is contained in:
commit
c78ccdbb74
182
src/libslic3r/AStar.hpp
Normal file
182
src/libslic3r/AStar.hpp
Normal file
@ -0,0 +1,182 @@
|
||||
#ifndef ASTAR_HPP
|
||||
#define ASTAR_HPP
|
||||
|
||||
#include "libslic3r/Point.hpp"
|
||||
#include "libslic3r/MutablePriorityQueue.hpp"
|
||||
|
||||
#include <unordered_map>
|
||||
|
||||
namespace Slic3r { namespace astar {
|
||||
|
||||
// Input interface for the Astar algorithm. Specialize this struct for a
|
||||
// particular type and implement all the 4 methods and specify the Node type
|
||||
// to register the new type for the astar implementation.
|
||||
template<class T> struct TracerTraits_
|
||||
{
|
||||
// The type of a node used by this tracer. Usually a point in space.
|
||||
using Node = typename T::Node;
|
||||
|
||||
// Call fn for every new node reachable from node 'src'. fn should have the
|
||||
// candidate node as its only argument.
|
||||
template<class Fn>
|
||||
static void foreach_reachable(const T &tracer, const Node &src, Fn &&fn)
|
||||
{
|
||||
tracer.foreach_reachable(src, fn);
|
||||
}
|
||||
|
||||
// Get the distance from node 'a' to node 'b'. This is sometimes referred
|
||||
// to as the g value of a node in AStar context.
|
||||
static float distance(const T &tracer, const Node &a, const Node &b)
|
||||
{
|
||||
return tracer.distance(a, b);
|
||||
}
|
||||
|
||||
// Get the estimated distance heuristic from node 'n' to the destination.
|
||||
// This is referred to as the h value in AStar context.
|
||||
// If node 'n' is the goal, this function should return a negative value.
|
||||
static float goal_heuristic(const T &tracer, const Node &n)
|
||||
{
|
||||
return tracer.goal_heuristic(n);
|
||||
}
|
||||
|
||||
// Return a unique identifier (hash) for node 'n'.
|
||||
static size_t unique_id(const T &tracer, const Node &n)
|
||||
{
|
||||
return tracer.unique_id(n);
|
||||
}
|
||||
};
|
||||
|
||||
// Helper definition to get the node type of a tracer
|
||||
template<class T>
|
||||
using TracerNodeT = typename TracerTraits_<remove_cvref_t<T>>::Node;
|
||||
|
||||
namespace detail {
|
||||
// Helper functions dispatching calls through the TracerTraits_ interface
|
||||
|
||||
template<class T> using TracerTraits = TracerTraits_<remove_cvref_t<T>>;
|
||||
|
||||
template<class T, class Fn>
|
||||
void foreach_reachable(const T &tracer, const TracerNodeT<T> &from, Fn &&fn)
|
||||
{
|
||||
TracerTraits<T>::foreach_reachable(tracer, from, fn);
|
||||
}
|
||||
|
||||
template<class T>
|
||||
float trace_distance(const T &tracer, const TracerNodeT<T> &a, const TracerNodeT<T> &b)
|
||||
{
|
||||
return TracerTraits<T>::distance(tracer, a, b);
|
||||
}
|
||||
|
||||
template<class T>
|
||||
float goal_heuristic(const T &tracer, const TracerNodeT<T> &n)
|
||||
{
|
||||
return TracerTraits<T>::goal_heuristic(tracer, n);
|
||||
}
|
||||
|
||||
template<class T>
|
||||
size_t unique_id(const T &tracer, const TracerNodeT<T> &n)
|
||||
{
|
||||
return TracerTraits<T>::unique_id(tracer, n);
|
||||
}
|
||||
|
||||
} // namespace astar_detail
|
||||
|
||||
// Run the AStar algorithm on a tracer implementation.
|
||||
// The 'tracer' argument encapsulates the domain (grid, point cloud, etc...)
|
||||
// The 'source' argument is the starting node.
|
||||
// The 'out' argument is the output iterator into which the output nodes are
|
||||
// written.
|
||||
// Note that no destination node is given. The tracer's goal_heuristic() method
|
||||
// should return a negative value if a node is a destination node.
|
||||
template<class Tracer, class It>
|
||||
bool search_route(const Tracer &tracer, const TracerNodeT<Tracer> &source, It out)
|
||||
{
|
||||
using namespace detail;
|
||||
|
||||
using Node = TracerNodeT<Tracer>;
|
||||
enum class QueueType { Open, Closed, None };
|
||||
|
||||
struct QNode // Queue node. Keeps track of scores g, and h
|
||||
{
|
||||
Node node; // The actual node itself
|
||||
QueueType qtype = QueueType::None; // Which queue holds this node
|
||||
|
||||
float g = 0.f, h = 0.f;
|
||||
float f() const { return g + h; }
|
||||
};
|
||||
|
||||
// TODO: apply a linear memory allocator
|
||||
using QMap = std::unordered_map<size_t, QNode>;
|
||||
|
||||
// The traversed nodes are stored here encapsulated in QNodes
|
||||
QMap cached_nodes;
|
||||
|
||||
struct LessPred { // Comparison functor needed by MutablePriorityQueue
|
||||
QMap &m;
|
||||
bool operator ()(size_t node_a, size_t node_b) {
|
||||
auto ait = m.find(node_a);
|
||||
auto bit = m.find(node_b);
|
||||
assert (ait != m.end() && bit != m.end());
|
||||
|
||||
return ait->second.f() < bit->second.f();
|
||||
}
|
||||
};
|
||||
|
||||
auto qopen =
|
||||
make_mutable_priority_queue<size_t, false>([](size_t, size_t){},
|
||||
LessPred{cached_nodes});
|
||||
|
||||
auto qclosed =
|
||||
make_mutable_priority_queue<size_t, false>([](size_t, size_t){},
|
||||
LessPred{cached_nodes});
|
||||
|
||||
QNode initial{source, QueueType::Open};
|
||||
cached_nodes.insert({unique_id(tracer, source), initial});
|
||||
qopen.push(unique_id(tracer, source));
|
||||
|
||||
bool goal_reached = false;
|
||||
|
||||
while (!goal_reached && !qopen.empty()) {
|
||||
size_t q_id = qopen.top();
|
||||
qopen.pop();
|
||||
QNode q = cached_nodes.at(q_id);
|
||||
|
||||
foreach_reachable(tracer, q.node, [&](const Node &nd) {
|
||||
if (goal_reached) return goal_reached;
|
||||
|
||||
float h = goal_heuristic(tracer, nd);
|
||||
if (h < 0.f) {
|
||||
goal_reached = true;
|
||||
} else {
|
||||
float dst = trace_distance(tracer, q.node, nd);
|
||||
QNode qnd{nd, QueueType::None, q.g + dst, h};
|
||||
size_t qnd_id = unique_id(tracer, nd);
|
||||
|
||||
auto it = cached_nodes.find(qnd_id);
|
||||
|
||||
if (it == cached_nodes.end() ||
|
||||
(it->second.qtype != QueueType::None && qnd.f() < it->second.f())) {
|
||||
qnd.qtype = QueueType::Open;
|
||||
cached_nodes.insert_or_assign(qnd_id, qnd);
|
||||
qopen.push(qnd_id);
|
||||
}
|
||||
}
|
||||
|
||||
return goal_reached;
|
||||
});
|
||||
|
||||
q.qtype = QueueType::Closed;
|
||||
cached_nodes.insert_or_assign(q_id, q);
|
||||
qclosed.push(q_id);
|
||||
|
||||
// write the output
|
||||
*out = q.node;
|
||||
++out;
|
||||
}
|
||||
|
||||
return goal_reached;
|
||||
}
|
||||
|
||||
}} // namespace Slic3r::astar
|
||||
|
||||
#endif // ASTAR_HPP
|
@ -17,6 +17,7 @@ endif()
|
||||
set(SLIC3R_SOURCES
|
||||
pchheader.cpp
|
||||
pchheader.hpp
|
||||
AStar.hpp
|
||||
BoundingBox.cpp
|
||||
BoundingBox.hpp
|
||||
BridgeDetector.cpp
|
||||
|
@ -32,9 +32,9 @@ public:
|
||||
}
|
||||
|
||||
Vec3i get_coord(size_t idx) const {
|
||||
size_t iz = idx / XY;
|
||||
size_t iy = (idx / m_size.x()) % m_size.y();
|
||||
size_t ix = idx % m_size.x();
|
||||
int iz = idx / XY;
|
||||
int iy = (idx / m_size.x()) % m_size.y();
|
||||
int ix = idx % m_size.x();
|
||||
|
||||
return {ix, iy, iz};
|
||||
}
|
||||
@ -59,9 +59,9 @@ PointGrid<CoordT> point_grid(Ex policy,
|
||||
size_t XY = numpts[X] * numpts[Y];
|
||||
|
||||
execution::for_each(policy, size_t(0), out.size(), [&](size_t i) {
|
||||
size_t iz = i / XY;
|
||||
size_t iy = (i / numpts[X]) % numpts[Y];
|
||||
size_t ix = i % numpts[X];
|
||||
int iz = i / XY;
|
||||
int iy = (i / numpts[X]) % numpts[Y];
|
||||
int ix = i % numpts[X];
|
||||
|
||||
out[i] = Vec<3, CoordT>(ix * stride.x(), iy * stride.y(), iz * stride.z());
|
||||
});
|
||||
|
@ -26,6 +26,7 @@ add_executable(${_TEST_NAME}_tests
|
||||
test_png_io.cpp
|
||||
test_timeutils.cpp
|
||||
test_indexed_triangle_set.cpp
|
||||
test_astar.cpp
|
||||
../libnest2d/printer_parts.cpp
|
||||
)
|
||||
|
||||
|
71
tests/libslic3r/test_astar.cpp
Normal file
71
tests/libslic3r/test_astar.cpp
Normal file
@ -0,0 +1,71 @@
|
||||
#include <catch2/catch.hpp>
|
||||
|
||||
#include "libslic3r/BoundingBox.hpp"
|
||||
#include "libslic3r/AStar.hpp"
|
||||
#include "libslic3r/Execution/ExecutionSeq.hpp"
|
||||
#include "libslic3r/PointGrid.hpp"
|
||||
|
||||
using namespace Slic3r;
|
||||
|
||||
struct PointGridTracer {
|
||||
using Node = size_t;
|
||||
const PointGrid<float> &grid;
|
||||
size_t final;
|
||||
|
||||
PointGridTracer(const PointGrid<float> &g, size_t goal) :
|
||||
grid{g}, final{goal} {}
|
||||
|
||||
template<class Fn>
|
||||
void foreach_reachable(size_t from, Fn &&fn) const
|
||||
{
|
||||
Vec3i from_crd = grid.get_coord(from);
|
||||
REQUIRE(grid.get_idx(from_crd) == from);
|
||||
|
||||
if (size_t i = grid.get_idx(from_crd + Vec3i{ 1, 0, 0}); i < grid.point_count()) fn(i);
|
||||
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 1, 0}); i < grid.point_count()) fn(i);
|
||||
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 0, 1}); i < grid.point_count()) fn(i);
|
||||
if (size_t i = grid.get_idx(from_crd + Vec3i{ 1, 1, 0}); i < grid.point_count()) fn(i);
|
||||
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 1, 1}); i < grid.point_count()) fn(i);
|
||||
if (size_t i = grid.get_idx(from_crd + Vec3i{ 1, 1, 1}); i < grid.point_count()) fn(i);
|
||||
if (size_t i = grid.get_idx(from_crd + Vec3i{-1, 0, 0}); from_crd.x() > 0 && i < grid.point_count()) fn(i);
|
||||
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, -1, 0}); from_crd.y() > 0 && i < grid.point_count()) fn(i);
|
||||
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, 0, -1}); from_crd.z() > 0 && i < grid.point_count()) fn(i);
|
||||
if (size_t i = grid.get_idx(from_crd + Vec3i{-1, -1, 0}); from_crd.x() > 0 && from_crd.y() > 0 && i < grid.point_count()) fn(i);
|
||||
if (size_t i = grid.get_idx(from_crd + Vec3i{ 0, -1, -1}); from_crd.y() > 0 && from_crd.z() && i < grid.point_count()) fn(i);
|
||||
if (size_t i = grid.get_idx(from_crd + Vec3i{-1, -1, -1}); from_crd.x() > 0 && from_crd.y() > 0 && from_crd.z() && i < grid.point_count()) fn(i);
|
||||
|
||||
}
|
||||
|
||||
float distance(size_t a, size_t b) const
|
||||
{
|
||||
return (grid.get(a) - grid.get(b)).squaredNorm();
|
||||
}
|
||||
|
||||
float goal_heuristic(size_t n) const
|
||||
{
|
||||
return n == final ? -1.f : (grid.get(n) - grid.get(final)).squaredNorm();
|
||||
}
|
||||
|
||||
size_t unique_id(size_t n) const { return n; }
|
||||
};
|
||||
|
||||
TEST_CASE("astar algorithm test over 3D point grid", "[AStar]") {
|
||||
auto vol = BoundingBox3Base<Vec3f>{{0.f, 0.f, 0.f}, {1.f, 1.f, 1.f}};
|
||||
|
||||
auto pgrid = point_grid(ex_seq, vol, {0.1f, 0.1f, 0.1f});
|
||||
|
||||
size_t target = pgrid.point_count() - 1;
|
||||
|
||||
std::cout << "Tracing route to " << pgrid.get_coord(target).transpose() << std::endl;
|
||||
PointGridTracer pgt{pgrid, pgrid.point_count() - 1};
|
||||
std::vector<size_t> out;
|
||||
bool found = astar::search_route(pgt, size_t(0), std::back_inserter(out));
|
||||
|
||||
std::cout << "Route taken: ";
|
||||
for (size_t i : out) {
|
||||
std::cout << "(" << pgrid.get_coord(i).transpose() << ") ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
REQUIRE(found);
|
||||
}
|
Loading…
Reference in New Issue
Block a user