This commit is contained in:
Filip Sykala - NTB T15p 2022-12-08 15:20:48 +01:00
commit c80f2f14ef
2 changed files with 117 additions and 48 deletions

View File

@ -1013,58 +1013,121 @@ indexed_triangle_set its_make_pyramid(float base, float height)
// Generates mesh for a sphere centered about the origin, using the generated angle
// to determine the granularity.
// Default angle is 1 degree.
//FIXME better to discretize an Icosahedron recursively http://www.songho.ca/opengl/gl_sphere.html
indexed_triangle_set its_make_sphere(double radius, double fa)
{
int sectorCount = int(ceil(2. * M_PI / fa));
int stackCount = int(ceil(M_PI / fa));
float sectorStep = float(2. * M_PI / sectorCount);
float stackStep = float(M_PI / stackCount);
// First build an icosahedron (taken from http://www.songho.ca/opengl/gl_sphere.html)
indexed_triangle_set mesh;
const float PI = 3.1415926f;
const float H_ANGLE = PI / 180 * 72; // 72 degree = 360 / 5
const float V_ANGLE = atanf(1.0f / 2); // elevation = 26.565 degree
auto& vertices = mesh.vertices;
vertices.reserve((stackCount - 1) * sectorCount + 2);
for (int i = 0; i <= stackCount; ++ i) {
// from pi/2 to -pi/2
double stackAngle = 0.5 * M_PI - stackStep * i;
double xy = radius * cos(stackAngle);
double z = radius * sin(stackAngle);
if (i == 0 || i == stackCount)
vertices.emplace_back(Vec3f(float(xy), 0.f, float(z)));
else
for (int j = 0; j < sectorCount; ++ j) {
// from 0 to 2pi
double sectorAngle = sectorStep * j;
vertices.emplace_back(Vec3d(xy * std::cos(sectorAngle), xy * std::sin(sectorAngle), z).cast<float>());
auto& indices = mesh.indices;
vertices.resize(12);
indices.reserve(20);
float z, xy;
float hAngle1 = -PI / 2 - H_ANGLE / 2;
vertices[0] = stl_vertex(0, 0, radius); // the first top vertex at (0, 0, r)
for (int i = 1; i <= 5; ++i) {
z = radius * sinf(V_ANGLE);
xy = radius * cosf(V_ANGLE);
vertices[i] = stl_vertex(xy * cosf(hAngle1), xy * sinf(hAngle1), z);
vertices[i+5] = stl_vertex(xy * cosf(hAngle1 + H_ANGLE / 2), xy * sinf(hAngle1 + H_ANGLE / 2), -z);
hAngle1 += H_ANGLE;
indices.emplace_back(stl_triangle_vertex_indices(i, i < 5 ? i+1 : 1, 0));
indices.emplace_back(stl_triangle_vertex_indices(i, i+5, i < 5 ? i+1 : 1));
indices.emplace_back(stl_triangle_vertex_indices(i+5, i+6 < 11 ? i+6 : 6, i+6 < 11 ? i+1 : 1));
indices.emplace_back(stl_triangle_vertex_indices(i+5, 11, i+6 < 11 ? i+6 : 6));
}
vertices[11] = stl_vertex(0, 0, -radius); // the last bottom vertex at (0, 0, -r)
// We have a beautiful icosahedron. Now subdivide the triangles.
std::vector<Vec3i> neighbors = its_face_neighbors(mesh); // This is cheap, the mesh is small.
const double side_len_limit = radius * fa;
const double side_len = (vertices[1] - vertices[0]).norm();
const int iterations = std::ceil(std::log2(side_len / side_len_limit));
indices.reserve(indices.size() * std::pow(4, iterations));
vertices.reserve(vertices.size() * std::pow(2, iterations));
struct DividedEdge {
int neighbor = -1;
int middle_vertex_idx;
std::pair<int, int> children_idxs;
};
for (int iter=0; iter<iterations; ++iter) {
std::vector<std::array<DividedEdge, 3>> divided_triangles(indices.size());
std::vector<Vec3i> new_neighbors(4*indices.size());
size_t orig_indices_size = indices.size();
for (int i=0; i<orig_indices_size; ++i) { // iterate over all old triangles
// We are going to split this triangle. Let's foresee what will be the indices
// of the new internal triangles along individual edges.
int last_triangle_idx = indices.size()-1;
std::array<std::pair<int, int>, 3> edge_children = { std::make_pair(i,last_triangle_idx + 2),
std::make_pair(last_triangle_idx + 2,last_triangle_idx + 3),
std::make_pair(last_triangle_idx + 3,i) };
std::array<int, 3> middle_vertices_idxs;
std::array<std::pair<int, int>, 3> new_neighbors_per_edge;
for (int n=0; n<3; ++n) { // for all three edges
const int edge_neighbor = neighbors[i][n];
if (divided_triangles[edge_neighbor][0].neighbor == -1) {
// This n-th edge is not yet divided. Divide it now.
vertices.emplace_back(0.5 * (vertices[indices[i][n]] + vertices[indices[i][n == 2 ? 0 : n+1]]));
vertices.back() *= radius / vertices.back().norm();
middle_vertices_idxs[n] = vertices.size()-1;
// Save information about what we did.
int j = -1;
while (divided_triangles[i][++j].neighbor != -1);
divided_triangles[i][j] = { edge_neighbor, int(vertices.size()-1), edge_children[n] };
new_neighbors_per_edge[n] = std::make_pair(-1,-1);
} else {
// This edge is already divided. Get the index of the middle point.
int j = -1;
while (divided_triangles[edge_neighbor][++j].neighbor != i);
middle_vertices_idxs[n] = divided_triangles[edge_neighbor][j].middle_vertex_idx;
new_neighbors_per_edge[n] = divided_triangles[edge_neighbor][j].children_idxs;
std::swap(new_neighbors_per_edge[n].first, new_neighbors_per_edge[n].second);
// We have saved the middle-point. We are looking for edges leading to/from it.
int idx = -1; while (indices[new_neighbors_per_edge[n].first][++idx] != middle_vertices_idxs[n]);
new_neighbors[new_neighbors_per_edge[n].first][idx] = edge_children[n].first;
new_neighbors[new_neighbors_per_edge[n].second][idx] = edge_children[n].second;
}
}
auto& facets = mesh.indices;
facets.reserve(2 * (stackCount - 1) * sectorCount);
for (int i = 0; i < stackCount; ++ i) {
// Beginning of current stack.
int k1 = (i == 0) ? 0 : (1 + (i - 1) * sectorCount);
int k1_first = k1;
// Beginning of next stack.
int k2 = (i == 0) ? 1 : (k1 + sectorCount);
int k2_first = k2;
for (int j = 0; j < sectorCount; ++ j) {
// 2 triangles per sector excluding first and last stacks
int k1_next = k1;
int k2_next = k2;
if (i != 0) {
k1_next = (j + 1 == sectorCount) ? k1_first : (k1 + 1);
facets.emplace_back(k1, k2, k1_next);
}
if (i + 1 != stackCount) {
k2_next = (j + 1 == sectorCount) ? k2_first : (k2 + 1);
facets.emplace_back(k1_next, k2, k2_next);
}
k1 = k1_next;
k2 = k2_next;
}
}
// Add three new triangles, reindex the old one.
const int last_index = indices.size() - 1;
indices.emplace_back(stl_triangle_vertex_indices(middle_vertices_idxs[0], middle_vertices_idxs[1], middle_vertices_idxs[2]));
new_neighbors[indices.size()-1] = Vec3i(last_index+2, last_index+3, i);
indices.emplace_back(stl_triangle_vertex_indices(middle_vertices_idxs[0], indices[i][1], middle_vertices_idxs[1]));
new_neighbors[indices.size()-1] = Vec3i(new_neighbors_per_edge[0].second, new_neighbors_per_edge[1].first, last_index+1);
indices.emplace_back(stl_triangle_vertex_indices(middle_vertices_idxs[2], middle_vertices_idxs[1], indices[i][2]));
new_neighbors[indices.size()-1] = Vec3i(last_index+1, new_neighbors_per_edge[1].second, new_neighbors_per_edge[2].first);
indices[i][1] = middle_vertices_idxs[0];
indices[i][2] = middle_vertices_idxs[2];
new_neighbors[i] = Vec3i(new_neighbors_per_edge[0].first, last_index+1, new_neighbors_per_edge[2].second);
}
neighbors = std::move(new_neighbors);
}
return mesh;
}

View File

@ -220,10 +220,16 @@ SCENARIO( "make_xxx functions produce meshes.") {
GIVEN("make_sphere() function") {
WHEN("make_sphere() is called with arguments 10, PI / 3") {
TriangleMesh sph = make_sphere(10, PI / 243.0);
THEN("Resulting mesh has one point at 0,0,-10 and one at 0,0,10") {
const std::vector<stl_vertex> &verts = sph.its.vertices;
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return is_approx(t, Vec3f(0.f, 0.f, 10.f)); } ) == 1);
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return is_approx(t, Vec3f(0.f, 0.f, -10.f)); } ) == 1);
THEN( "Edge length is smaller than limit but not smaller than half of it") {
double len = (sph.its.vertices[sph.its.indices[0][0]] - sph.its.vertices[sph.its.indices[0][1]]).norm();
double limit = 10*PI/243.;
REQUIRE(len <= limit);
REQUIRE(len >= limit/2.);
}
THEN( "Vertices are about the correct distance from the origin") {
bool all_vertices_ok = std::all_of(sph.its.vertices.begin(), sph.its.vertices.end(),
[](const stl_vertex& pt) { return is_approx(pt.squaredNorm(), 100.f); });
REQUIRE(all_vertices_ok);
}
THEN( "The mesh volume is approximately 4/3 * pi * 10^3") {
REQUIRE(abs(sph.volume() - (4.0/3.0 * M_PI * std::pow(10,3))) < 1); // 1% tolerance?