diff --git a/CMakeLists.txt b/CMakeLists.txt index b4e0224f7..b2fc12c48 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -60,7 +60,7 @@ if (MSVC) # /bigobj (Increase Number of Sections in .Obj file) # error C3859: virtual memory range for PCH exceeded; please recompile with a command line option of '-Zm90' or greater # Generate symbols at every build target, even for the release. - add_compile_options(-bigobj -Zm316 /Zi) + add_compile_options(-bigobj -Zm520 /Zi) endif () # Display and check CMAKE_PREFIX_PATH diff --git a/src/PrusaSlicer.cpp b/src/PrusaSlicer.cpp index fef1f6e7f..2becb8071 100644 --- a/src/PrusaSlicer.cpp +++ b/src/PrusaSlicer.cpp @@ -7,10 +7,13 @@ #include #include #ifdef SLIC3R_GUI + extern "C" + { // Let the NVIDIA and AMD know we want to use their graphics card // on a dual graphics card system. __declspec(dllexport) DWORD NvOptimusEnablement = 0x00000001; __declspec(dllexport) int AmdPowerXpressRequestHighPerformance = 1; + } #endif /* SLIC3R_GUI */ #endif /* WIN32 */ @@ -241,8 +244,7 @@ int CLI::run(int argc, char **argv) } else if (opt_key == "cut" || opt_key == "cut_x" || opt_key == "cut_y") { std::vector new_models; for (auto &model : m_models) { - model.repair(); - model.translate(0, 0, -model.bounding_box().min.z()); // align to z = 0 + model.translate(0, 0, -model.bounding_box().min.z()); // align to z = 0 size_t num_objects = model.objects.size(); for (size_t i = 0; i < num_objects; ++ i) { @@ -301,8 +303,9 @@ int CLI::run(int argc, char **argv) } } } else if (opt_key == "repair") { - for (auto &model : m_models) - model.repair(); + // Models are repaired by default. + //for (auto &model : m_models) + // model.repair(); } else { boost::nowide::cerr << "error: option not implemented yet: " << opt_key << std::endl; return 1; diff --git a/src/PrusaSlicer_app_msvc.cpp b/src/PrusaSlicer_app_msvc.cpp index 5b01751b9..95dd4fb07 100644 --- a/src/PrusaSlicer_app_msvc.cpp +++ b/src/PrusaSlicer_app_msvc.cpp @@ -8,10 +8,13 @@ #include #ifdef SLIC3R_GUI +extern "C" +{ // Let the NVIDIA and AMD know we want to use their graphics card // on a dual graphics card system. __declspec(dllexport) DWORD NvOptimusEnablement = 0x00000001; __declspec(dllexport) int AmdPowerXpressRequestHighPerformance = 1; +} #endif /* SLIC3R_GUI */ #include diff --git a/src/admesh/connect.cpp b/src/admesh/connect.cpp index fb3213219..e729c8922 100644 --- a/src/admesh/connect.cpp +++ b/src/admesh/connect.cpp @@ -28,894 +28,729 @@ #include #include -#include +#include +#include +// Boost pool: Don't use mutexes to synchronize memory allocation. +#define BOOST_POOL_NO_MT +#include #include "stl.h" +struct HashEdge { + // Key of a hash edge: sorted vertices of the edge. + uint32_t key[6]; + // Compare two keys. + bool operator==(const HashEdge &rhs) const { return memcmp(key, rhs.key, sizeof(key)) == 0; } + bool operator!=(const HashEdge &rhs) const { return ! (*this == rhs); } + int hash(int M) const { return ((key[0] / 11 + key[1] / 7 + key[2] / 3) ^ (key[3] / 11 + key[4] / 7 + key[5] / 3)) % M; } -static void stl_match_neighbors_nearby(stl_file *stl, - stl_hash_edge *edge_a, stl_hash_edge *edge_b); -static void stl_record_neighbors(stl_file *stl, - stl_hash_edge *edge_a, stl_hash_edge *edge_b); -static void stl_initialize_facet_check_exact(stl_file *stl); -static void stl_initialize_facet_check_nearby(stl_file *stl); -static void stl_load_edge_exact(stl_file *stl, stl_hash_edge *edge, const stl_vertex *a, const stl_vertex *b); -static int stl_load_edge_nearby(stl_file *stl, stl_hash_edge *edge, - stl_vertex *a, stl_vertex *b, float tolerance); -static void insert_hash_edge(stl_file *stl, stl_hash_edge edge, - void (*match_neighbors)(stl_file *stl, - stl_hash_edge *edge_a, stl_hash_edge *edge_b)); -static int stl_compare_function(stl_hash_edge *edge_a, stl_hash_edge *edge_b); -static void stl_free_edges(stl_file *stl); -static void stl_remove_facet(stl_file *stl, int facet_number); -static void stl_change_vertices(stl_file *stl, int facet_num, int vnot, - stl_vertex new_vertex); -static void stl_which_vertices_to_change(stl_file *stl, stl_hash_edge *edge_a, - stl_hash_edge *edge_b, int *facet1, int *vertex1, - int *facet2, int *vertex2, - stl_vertex *new_vertex1, stl_vertex *new_vertex2); -static void stl_remove_degenerate(stl_file *stl, int facet); -extern int stl_check_normal_vector(stl_file *stl, - int facet_num, int normal_fix_flag); -static void stl_update_connects_remove_1(stl_file *stl, int facet_num); + // Index of a facet owning this edge. + int facet_number; + // Index of this edge inside the facet with an index of facet_number. + // If this edge is stored backwards, which_edge is increased by 3. + int which_edge; + HashEdge *next; + + void load_exact(stl_file *stl, const stl_vertex *a, const stl_vertex *b) + { + { + stl_vertex diff = (*a - *b).cwiseAbs(); + float max_diff = std::max(diff(0), std::max(diff(1), diff(2))); + stl->stats.shortest_edge = std::min(max_diff, stl->stats.shortest_edge); + } + + // Ensure identical vertex ordering of equal edges. + // This method is numerically robust. + if (vertex_lower(*a, *b)) { + } else { + // This edge is loaded backwards. + std::swap(a, b); + this->which_edge += 3; + } + memcpy(&this->key[0], a->data(), sizeof(stl_vertex)); + memcpy(&this->key[3], b->data(), sizeof(stl_vertex)); + // Switch negative zeros to positive zeros, so memcmp will consider them to be equal. + for (size_t i = 0; i < 6; ++ i) { + unsigned char *p = (unsigned char*)(this->key + i); + #if BOOST_ENDIAN_LITTLE_BYTE + if (p[0] == 0 && p[1] == 0 && p[2] == 0 && p[3] == 0x80) + // Negative zero, switch to positive zero. + p[3] = 0; + #else /* BOOST_ENDIAN_LITTLE_BYTE */ + if (p[0] == 0x80 && p[1] == 0 && p[2] == 0 && p[3] == 0) + // Negative zero, switch to positive zero. + p[0] = 0; + #endif /* BOOST_ENDIAN_LITTLE_BYTE */ + } + } + + bool load_nearby(const stl_file *stl, const stl_vertex &a, const stl_vertex &b, float tolerance) + { + // Index of a grid cell spaced by tolerance. + typedef Eigen::Matrix Vec3i; + Vec3i vertex1 = ((a - stl->stats.min) / tolerance).cast(); + Vec3i vertex2 = ((b - stl->stats.min) / tolerance).cast(); + static_assert(sizeof(Vec3i) == 12, "size of Vec3i incorrect"); + + if (vertex1 == vertex2) + // Both vertices hash to the same value + return false; + + // Ensure identical vertex ordering of edges, which vertices land into equal grid cells. + // This method is numerically robust. + if ((vertex1[0] != vertex2[0]) ? + (vertex1[0] < vertex2[0]) : + ((vertex1[1] != vertex2[1]) ? + (vertex1[1] < vertex2[1]) : + (vertex1[2] < vertex2[2]))) { + memcpy(&this->key[0], vertex1.data(), sizeof(stl_vertex)); + memcpy(&this->key[3], vertex2.data(), sizeof(stl_vertex)); + } else { + memcpy(&this->key[0], vertex2.data(), sizeof(stl_vertex)); + memcpy(&this->key[3], vertex1.data(), sizeof(stl_vertex)); + this->which_edge += 3; /* this edge is loaded backwards */ + } + return true; + } + +private: + inline bool vertex_lower(const stl_vertex &a, const stl_vertex &b) { + return (a(0) != b(0)) ? (a(0) < b(0)) : + ((a(1) != b(1)) ? (a(1) < b(1)) : (a(2) < b(2))); + } +}; + +struct HashTableEdges { + HashTableEdges(size_t number_of_faces) { + this->M = (int)hash_size_from_nr_faces(number_of_faces); + this->heads.assign(this->M, nullptr); + this->tail = pool.construct(); + this->tail->next = this->tail; + for (int i = 0; i < this->M; ++ i) + this->heads[i] = this->tail; + } + ~HashTableEdges() { +#ifndef NDEBUG + for (int i = 0; i < this->M; ++ i) + for (HashEdge *temp = this->heads[i]; this->heads[i] != this->tail; temp = this->heads[i]) + ++ this->freed; + this->tail = nullptr; +#endif /* NDEBUG */ + } + + void insert_edge_exact(stl_file *stl, const HashEdge &edge) + { + this->insert_edge(stl, edge, [stl](const HashEdge& edge1, const HashEdge& edge2) { record_neighbors(stl, edge1, edge2); }); + } + + void insert_edge_nearby(stl_file *stl, const HashEdge &edge) + { + this->insert_edge(stl, edge, [stl](const HashEdge& edge1, const HashEdge& edge2) { match_neighbors_nearby(stl, edge1, edge2); }); + } + + // Hash table on edges + std::vector heads; + HashEdge* tail; + int M; + boost::object_pool pool; + +#ifndef NDEBUG + size_t malloced = 0; + size_t freed = 0; + size_t collisions = 0; +#endif /* NDEBUG */ + +private: + static inline size_t hash_size_from_nr_faces(const size_t nr_faces) + { + // Good primes for addressing a cca. 30 bit space. + // https://planetmath.org/goodhashtableprimes + static std::vector primes{ 98317, 196613, 393241, 786433, 1572869, 3145739, 6291469, 12582917, 25165843, 50331653, 100663319, 201326611, 402653189, 805306457, 1610612741 }; + // Find a prime number for 50% filling of the shared triangle edges in the mesh. + auto it = std::upper_bound(primes.begin(), primes.end(), nr_faces * 3 * 2 - 1); + return (it == primes.end()) ? primes.back() : *it; + } + + + // MatchNeighbors(stl_file *stl, const HashEdge &edge_a, const HashEdge &edge_b) + template + void insert_edge(stl_file *stl, const HashEdge &edge, MatchNeighbors match_neighbors) + { + int chain_number = edge.hash(this->M); + HashEdge *link = this->heads[chain_number]; + if (link == this->tail) { + // This list doesn't have any edges currently in it. Add this one. + HashEdge *new_edge = pool.construct(edge); +#ifndef NDEBUG + ++ this->malloced; +#endif /* NDEBUG */ + new_edge->next = this->tail; + this->heads[chain_number] = new_edge; + } else if (edges_equal(edge, *link)) { + // This is a match. Record result in neighbors list. + match_neighbors(edge, *link); + // Delete the matched edge from the list. + this->heads[chain_number] = link->next; + // pool.destroy(link); +#ifndef NDEBUG + ++ this->freed; +#endif /* NDEBUG */ + } else { + // Continue through the rest of the list. + for (;;) { + if (link->next == this->tail) { + // This is the last item in the list. Insert a new edge. + HashEdge *new_edge = pool.construct(); +#ifndef NDEBUG + ++ this->malloced; +#endif /* NDEBUG */ + *new_edge = edge; + new_edge->next = this->tail; + link->next = new_edge; +#ifndef NDEBUG + ++ this->collisions; +#endif /* NDEBUG */ + break; + } + if (edges_equal(edge, *link->next)) { + // This is a match. Record result in neighbors list. + match_neighbors(edge, *link->next); + // Delete the matched edge from the list. + HashEdge *temp = link->next; + link->next = link->next->next; + // pool.destroy(temp); +#ifndef NDEBUG + ++ this->freed; +#endif /* NDEBUG */ + break; + } + // This is not a match. Go to the next link. + link = link->next; +#ifndef NDEBUG + ++ this->collisions; +#endif /* NDEBUG */ + } + } + } + + // Edges equal for hashing. Edgesof different facet are allowed to be matched. + static inline bool edges_equal(const HashEdge &edge_a, const HashEdge &edge_b) + { + return edge_a.facet_number != edge_b.facet_number && edge_a == edge_b; + } + + static void record_neighbors(stl_file *stl, const HashEdge &edge_a, const HashEdge &edge_b) + { + // Facet a's neighbor is facet b + stl->neighbors_start[edge_a.facet_number].neighbor[edge_a.which_edge % 3] = edge_b.facet_number; /* sets the .neighbor part */ + stl->neighbors_start[edge_a.facet_number].which_vertex_not[edge_a.which_edge % 3] = (edge_b.which_edge + 2) % 3; /* sets the .which_vertex_not part */ + + // Facet b's neighbor is facet a + stl->neighbors_start[edge_b.facet_number].neighbor[edge_b.which_edge % 3] = edge_a.facet_number; /* sets the .neighbor part */ + stl->neighbors_start[edge_b.facet_number].which_vertex_not[edge_b.which_edge % 3] = (edge_a.which_edge + 2) % 3; /* sets the .which_vertex_not part */ + + if (((edge_a.which_edge < 3) && (edge_b.which_edge < 3)) || ((edge_a.which_edge > 2) && (edge_b.which_edge > 2))) { + // These facets are oriented in opposite directions, their normals are probably messed up. + stl->neighbors_start[edge_a.facet_number].which_vertex_not[edge_a.which_edge % 3] += 3; + stl->neighbors_start[edge_b.facet_number].which_vertex_not[edge_b.which_edge % 3] += 3; + } + + // Count successful connects: + // Total connects: + stl->stats.connected_edges += 2; + // Count individual connects: + switch (stl->neighbors_start[edge_a.facet_number].num_neighbors()) { + case 1: ++ stl->stats.connected_facets_1_edge; break; + case 2: ++ stl->stats.connected_facets_2_edge; break; + case 3: ++ stl->stats.connected_facets_3_edge; break; + default: assert(false); + } + switch (stl->neighbors_start[edge_b.facet_number].num_neighbors()) { + case 1: ++ stl->stats.connected_facets_1_edge; break; + case 2: ++ stl->stats.connected_facets_2_edge; break; + case 3: ++ stl->stats.connected_facets_3_edge; break; + default: assert(false); + } + } + + static void match_neighbors_nearby(stl_file *stl, const HashEdge &edge_a, const HashEdge &edge_b) + { + record_neighbors(stl, edge_a, edge_b); + + // Which vertices to change + int facet1 = -1; + int facet2 = -1; + int vertex1, vertex2; + stl_vertex new_vertex1, new_vertex2; + { + int v1a; // pair 1, facet a + int v1b; // pair 1, facet b + int v2a; // pair 2, facet a + int v2b; // pair 2, facet b + // Find first pair. + if (edge_a.which_edge < 3) { + v1a = edge_a.which_edge; + v2a = (edge_a.which_edge + 1) % 3; + } else { + v2a = edge_a.which_edge % 3; + v1a = (edge_a.which_edge + 1) % 3; + } + if (edge_b.which_edge < 3) { + v1b = edge_b.which_edge; + v2b = (edge_b.which_edge + 1) % 3; + } else { + v2b = edge_b.which_edge % 3; + v1b = (edge_b.which_edge + 1) % 3; + } + + // Of the first pair, which vertex, if any, should be changed + if (stl->facet_start[edge_a.facet_number].vertex[v1a] != stl->facet_start[edge_b.facet_number].vertex[v1b]) { + // These facets are different. + if ( (stl->neighbors_start[edge_a.facet_number].neighbor[v1a] == -1) + && (stl->neighbors_start[edge_a.facet_number].neighbor[(v1a + 2) % 3] == -1)) { + // This vertex has no neighbors. This is a good one to change. + facet1 = edge_a.facet_number; + vertex1 = v1a; + new_vertex1 = stl->facet_start[edge_b.facet_number].vertex[v1b]; + } else { + facet1 = edge_b.facet_number; + vertex1 = v1b; + new_vertex1 = stl->facet_start[edge_a.facet_number].vertex[v1a]; + } + } + + // Of the second pair, which vertex, if any, should be changed. + if (stl->facet_start[edge_a.facet_number].vertex[v2a] == stl->facet_start[edge_b.facet_number].vertex[v2b]) { + // These facets are different. + if ( (stl->neighbors_start[edge_a.facet_number].neighbor[v2a] == -1) + && (stl->neighbors_start[edge_a.facet_number].neighbor[(v2a + 2) % 3] == -1)) { + // This vertex has no neighbors. This is a good one to change. + facet2 = edge_a.facet_number; + vertex2 = v2a; + new_vertex2 = stl->facet_start[edge_b.facet_number].vertex[v2b]; + } else { + facet2 = edge_b.facet_number; + vertex2 = v2b; + new_vertex2 = stl->facet_start[edge_a.facet_number].vertex[v2a]; + } + } + } + + auto change_vertices = [stl](int facet_num, int vnot, stl_vertex new_vertex) + { + int first_facet = facet_num; + bool direction = false; + + for (;;) { + int pivot_vertex; + int next_edge; + if (vnot > 2) { + if (direction) { + pivot_vertex = (vnot + 1) % 3; + next_edge = vnot % 3; + } + else { + pivot_vertex = (vnot + 2) % 3; + next_edge = pivot_vertex; + } + direction = !direction; + } + else { + if (direction) { + pivot_vertex = (vnot + 2) % 3; + next_edge = pivot_vertex; + } + else { + pivot_vertex = (vnot + 1) % 3; + next_edge = vnot; + } + } + #if 0 + if (stl->facet_start[facet_num].vertex[pivot_vertex](0) == new_vertex(0) && + stl->facet_start[facet_num].vertex[pivot_vertex](1) == new_vertex(1) && + stl->facet_start[facet_num].vertex[pivot_vertex](2) == new_vertex(2)) + printf("Changing vertex %f,%f,%f: Same !!!\r\n", new_vertex(0), new_vertex(1), new_vertex(2)); + else { + if (stl->facet_start[facet_num].vertex[pivot_vertex](0) != new_vertex(0)) + printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n", + stl->facet_start[facet_num].vertex[pivot_vertex](0), + *reinterpret_cast(&stl->facet_start[facet_num].vertex[pivot_vertex](0)), + new_vertex(0), + *reinterpret_cast(&new_vertex(0))); + if (stl->facet_start[facet_num].vertex[pivot_vertex](1) != new_vertex(1)) + printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n", + stl->facet_start[facet_num].vertex[pivot_vertex](1), + *reinterpret_cast(&stl->facet_start[facet_num].vertex[pivot_vertex](1)), + new_vertex(1), + *reinterpret_cast(&new_vertex(1))); + if (stl->facet_start[facet_num].vertex[pivot_vertex](2) != new_vertex(2)) + printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n", + stl->facet_start[facet_num].vertex[pivot_vertex](2), + *reinterpret_cast(&stl->facet_start[facet_num].vertex[pivot_vertex](2)), + new_vertex(2), + *reinterpret_cast(&new_vertex(2))); + } + #endif + stl->facet_start[facet_num].vertex[pivot_vertex] = new_vertex; + vnot = stl->neighbors_start[facet_num].which_vertex_not[next_edge]; + facet_num = stl->neighbors_start[facet_num].neighbor[next_edge]; + if (facet_num == -1) + break; + + if (facet_num == first_facet) { + // back to the beginning + BOOST_LOG_TRIVIAL(info) << "Back to the first facet changing vertices: probably a mobius part. Try using a smaller tolerance or don't do a nearby check."; + return; + } + } + }; + + if (facet1 != -1) { + int vnot1 = (facet1 == edge_a.facet_number) ? + (edge_a.which_edge + 2) % 3 : + (edge_b.which_edge + 2) % 3; + if (((vnot1 + 2) % 3) == vertex1) + vnot1 += 3; + change_vertices(facet1, vnot1, new_vertex1); + } + if (facet2 != -1) { + int vnot2 = (facet2 == edge_a.facet_number) ? + (edge_a.which_edge + 2) % 3 : + (edge_b.which_edge + 2) % 3; + if (((vnot2 + 2) % 3) == vertex2) + vnot2 += 3; + change_vertices(facet2, vnot2, new_vertex2); + } + stl->stats.edges_fixed += 2; + } +}; // This function builds the neighbors list. No modifications are made // to any of the facets. The edges are said to match only if all six // floats of the first edge matches all six floats of the second edge. void stl_check_facets_exact(stl_file *stl) { - if (stl->error) - return; + stl->stats.connected_edges = 0; + stl->stats.connected_facets_1_edge = 0; + stl->stats.connected_facets_2_edge = 0; + stl->stats.connected_facets_3_edge = 0; - stl->stats.connected_edges = 0; - stl->stats.connected_facets_1_edge = 0; - stl->stats.connected_facets_2_edge = 0; - stl->stats.connected_facets_3_edge = 0; + // If any two of the three vertices are found to be exactally the same, call them degenerate and remove the facet. + // Do it before the next step, as the next step stores references to the face indices in the hash tables and removing a facet + // will break the references. + for (uint32_t i = 0; i < stl->stats.number_of_facets;) { + stl_facet &facet = stl->facet_start[i]; + if (facet.vertex[0] == facet.vertex[1] || facet.vertex[1] == facet.vertex[2] || facet.vertex[0] == facet.vertex[2]) { + // Remove the degenerate facet. + facet = stl->facet_start[-- stl->stats.number_of_facets]; + stl->facet_start.pop_back(); + stl->neighbors_start.pop_back(); + stl->stats.facets_removed += 1; + stl->stats.degenerate_facets += 1; + } else + ++ i; + } - // If any two of the three vertices are found to be exactally the same, call them degenerate and remove the facet. - // Do it before the next step, as the next step stores references to the face indices in the hash tables and removing a facet - // will break the references. - for (int i = 0; i < stl->stats.number_of_facets;) { - stl_facet &facet = stl->facet_start[i]; - if (facet.vertex[0] == facet.vertex[1] || facet.vertex[1] == facet.vertex[2] || facet.vertex[0] == facet.vertex[2]) { - // Remove the degenerate facet. - facet = stl->facet_start[--stl->stats.number_of_facets]; - stl->stats.facets_removed += 1; - stl->stats.degenerate_facets += 1; - } else - ++ i; - } + // Initialize hash table. + HashTableEdges hash_table(stl->stats.number_of_facets); + for (auto &neighbor : stl->neighbors_start) + neighbor.reset(); - // Connect neighbor edges. - stl_initialize_facet_check_exact(stl); - for (int i = 0; i < stl->stats.number_of_facets; i++) { - const stl_facet &facet = stl->facet_start[i]; - for (int j = 0; j < 3; j++) { - stl_hash_edge edge; - edge.facet_number = i; - edge.which_edge = j; - stl_load_edge_exact(stl, &edge, &facet.vertex[j], &facet.vertex[(j + 1) % 3]); - insert_hash_edge(stl, edge, stl_record_neighbors); - } - } - stl_free_edges(stl); + // Connect neighbor edges. + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { + const stl_facet &facet = stl->facet_start[i]; + for (int j = 0; j < 3; ++ j) { + HashEdge edge; + edge.facet_number = i; + edge.which_edge = j; + edge.load_exact(stl, &facet.vertex[j], &facet.vertex[(j + 1) % 3]); + hash_table.insert_edge_exact(stl, edge); + } + } #if 0 - printf("Number of faces: %d, number of manifold edges: %d, number of connected edges: %d, number of unconnected edges: %d\r\n", - stl->stats.number_of_facets, stl->stats.number_of_facets * 3, - stl->stats.connected_edges, stl->stats.number_of_facets * 3 - stl->stats.connected_edges); + printf("Number of faces: %d, number of manifold edges: %d, number of connected edges: %d, number of unconnected edges: %d\r\n", + stl->stats.number_of_facets, stl->stats.number_of_facets * 3, + stl->stats.connected_edges, stl->stats.number_of_facets * 3 - stl->stats.connected_edges); #endif } -static void stl_load_edge_exact(stl_file *stl, stl_hash_edge *edge, const stl_vertex *a, const stl_vertex *b) { - - if (stl->error) return; - - { - stl_vertex diff = (*a - *b).cwiseAbs(); - float max_diff = std::max(diff(0), std::max(diff(1), diff(2))); - stl->stats.shortest_edge = std::min(max_diff, stl->stats.shortest_edge); - } - - // Ensure identical vertex ordering of equal edges. - // This method is numerically robust. - if (stl_vertex_lower(*a, *b)) { - } else { - std::swap(a, b); - edge->which_edge += 3; /* this edge is loaded backwards */ - } - memcpy(&edge->key[0], a->data(), sizeof(stl_vertex)); - memcpy(&edge->key[3], b->data(), sizeof(stl_vertex)); - // Switch negative zeros to positive zeros, so memcmp will consider them to be equal. - for (size_t i = 0; i < 6; ++ i) { - unsigned char *p = (unsigned char*)(edge->key + i); -#ifdef BOOST_LITTLE_ENDIAN - if (p[0] == 0 && p[1] == 0 && p[2] == 0 && p[3] == 0x80) - // Negative zero, switch to positive zero. - p[3] = 0; -#else /* BOOST_LITTLE_ENDIAN */ - if (p[0] == 0x80 && p[1] == 0 && p[2] == 0 && p[3] == 0) - // Negative zero, switch to positive zero. - p[0] = 0; -#endif /* BOOST_LITTLE_ENDIAN */ - } -} - -static inline size_t hash_size_from_nr_faces(const size_t nr_faces) -{ - // Good primes for addressing a cca. 30 bit space. - // https://planetmath.org/goodhashtableprimes - static std::vector primes{ 98317, 196613, 393241, 786433, 1572869, 3145739, 6291469, 12582917, 25165843, 50331653, 100663319, 201326611, 402653189, 805306457, 1610612741 }; - // Find a prime number for 50% filling of the shared triangle edges in the mesh. - auto it = std::upper_bound(primes.begin(), primes.end(), nr_faces * 3 * 2 - 1); - return (it == primes.end()) ? primes.back() : *it; -} - -static void -stl_initialize_facet_check_exact(stl_file *stl) { - int i; - - if (stl->error) return; - - stl->stats.malloced = 0; - stl->stats.freed = 0; - stl->stats.collisions = 0; - - stl->M = hash_size_from_nr_faces(stl->stats.number_of_facets); - - for (i = 0; i < stl->stats.number_of_facets ; i++) { - /* initialize neighbors list to -1 to mark unconnected edges */ - stl->neighbors_start[i].neighbor[0] = -1; - stl->neighbors_start[i].neighbor[1] = -1; - stl->neighbors_start[i].neighbor[2] = -1; - } - - stl->heads = (stl_hash_edge**)calloc(stl->M, sizeof(*stl->heads)); - if(stl->heads == NULL) perror("stl_initialize_facet_check_exact"); - - stl->tail = (stl_hash_edge*)malloc(sizeof(stl_hash_edge)); - if(stl->tail == NULL) perror("stl_initialize_facet_check_exact"); - - stl->tail->next = stl->tail; - - for(i = 0; i < stl->M; i++) { - stl->heads[i] = stl->tail; - } -} - -static void insert_hash_edge(stl_file *stl, stl_hash_edge edge, - void (*match_neighbors)(stl_file *stl, - stl_hash_edge *edge_a, stl_hash_edge *edge_b)) -{ - if (stl->error) return; - - int chain_number = edge.hash(stl->M); - stl_hash_edge *link = stl->heads[chain_number]; - - stl_hash_edge *new_edge; - stl_hash_edge *temp; - if(link == stl->tail) { - /* This list doesn't have any edges currently in it. Add this one. */ - new_edge = (stl_hash_edge*)malloc(sizeof(stl_hash_edge)); - if(new_edge == NULL) perror("insert_hash_edge"); - stl->stats.malloced++; - *new_edge = edge; - new_edge->next = stl->tail; - stl->heads[chain_number] = new_edge; - return; - } else if(!stl_compare_function(&edge, link)) { - /* This is a match. Record result in neighbors list. */ - match_neighbors(stl, &edge, link); - /* Delete the matched edge from the list. */ - stl->heads[chain_number] = link->next; - free(link); - stl->stats.freed++; - return; - } else { - /* Continue through the rest of the list */ - for(;;) { - if(link->next == stl->tail) { - /* This is the last item in the list. Insert a new edge. */ - new_edge = (stl_hash_edge*)malloc(sizeof(stl_hash_edge)); - if(new_edge == NULL) perror("insert_hash_edge"); - stl->stats.malloced++; - *new_edge = edge; - new_edge->next = stl->tail; - link->next = new_edge; - stl->stats.collisions++; - return; - } else if(!stl_compare_function(&edge, link->next)) { - /* This is a match. Record result in neighbors list. */ - match_neighbors(stl, &edge, link->next); - - /* Delete the matched edge from the list. */ - temp = link->next; - link->next = link->next->next; - free(temp); - stl->stats.freed++; - return; - } else { - /* This is not a match. Go to the next link */ - link = link->next; - stl->stats.collisions++; - } - } - } -} - -// Return 1 if the edges are not matched. -static inline int stl_compare_function(stl_hash_edge *edge_a, stl_hash_edge *edge_b) -{ - // Don't match edges of the same facet - return (edge_a->facet_number == edge_b->facet_number) || (*edge_a != *edge_b); -} - void stl_check_facets_nearby(stl_file *stl, float tolerance) { - if (stl->error) - return; + if ( (stl->stats.connected_facets_1_edge == stl->stats.number_of_facets) + && (stl->stats.connected_facets_2_edge == stl->stats.number_of_facets) + && (stl->stats.connected_facets_3_edge == stl->stats.number_of_facets)) { + // No need to check any further. All facets are connected. + return; + } - if( (stl->stats.connected_facets_1_edge == stl->stats.number_of_facets) - && (stl->stats.connected_facets_2_edge == stl->stats.number_of_facets) - && (stl->stats.connected_facets_3_edge == stl->stats.number_of_facets)) { - /* No need to check any further. All facets are connected */ - return; - } - - stl_initialize_facet_check_nearby(stl); - - for (int i = 0; i < stl->stats.number_of_facets; ++ i) { - //FIXME is the copy necessary? - stl_facet facet = stl->facet_start[i]; - for (int j = 0; j < 3; j++) { - if(stl->neighbors_start[i].neighbor[j] == -1) { - stl_hash_edge edge; - edge.facet_number = i; - edge.which_edge = j; - if(stl_load_edge_nearby(stl, &edge, &facet.vertex[j], - &facet.vertex[(j + 1) % 3], - tolerance)) { - /* only insert edges that have different keys */ - insert_hash_edge(stl, edge, stl_match_neighbors_nearby); - } - } - } - } - - stl_free_edges(stl); -} - -static int stl_load_edge_nearby(stl_file *stl, stl_hash_edge *edge, stl_vertex *a, stl_vertex *b, float tolerance) -{ - // Index of a grid cell spaced by tolerance. - typedef Eigen::Matrix Vec3i; - Vec3i vertex1 = ((*a - stl->stats.min) / tolerance).cast(); - Vec3i vertex2 = ((*b - stl->stats.min) / tolerance).cast(); - static_assert(sizeof(Vec3i) == 12, "size of Vec3i incorrect"); - - if (vertex1 == vertex2) - // Both vertices hash to the same value - return 0; - - // Ensure identical vertex ordering of edges, which vertices land into equal grid cells. - // This method is numerically robust. - if ((vertex1[0] != vertex2[0]) ? - (vertex1[0] < vertex2[0]) : - ((vertex1[1] != vertex2[1]) ? - (vertex1[1] < vertex2[1]) : - (vertex1[2] < vertex2[2]))) { - memcpy(&edge->key[0], vertex1.data(), sizeof(stl_vertex)); - memcpy(&edge->key[3], vertex2.data(), sizeof(stl_vertex)); - } else { - memcpy(&edge->key[0], vertex2.data(), sizeof(stl_vertex)); - memcpy(&edge->key[3], vertex1.data(), sizeof(stl_vertex)); - edge->which_edge += 3; /* this edge is loaded backwards */ - } - return 1; -} - -static void stl_free_edges(stl_file *stl) -{ - if (stl->error) - return; - - if(stl->stats.malloced != stl->stats.freed) { - for (int i = 0; i < stl->M; i++) { - for (stl_hash_edge *temp = stl->heads[i]; stl->heads[i] != stl->tail; temp = stl->heads[i]) { - stl->heads[i] = stl->heads[i]->next; - free(temp); - ++ stl->stats.freed; - } - } - } - free(stl->heads); - stl->heads = nullptr; - free(stl->tail); - stl->tail = nullptr; -} - -static void stl_initialize_facet_check_nearby(stl_file *stl) -{ - int i; - - if (stl->error) return; - - stl->stats.malloced = 0; - stl->stats.freed = 0; - stl->stats.collisions = 0; - - /* tolerance = STL_MAX(stl->stats.shortest_edge, tolerance);*/ - /* tolerance = STL_MAX((stl->stats.bounding_diameter / 500000.0), tolerance);*/ - /* tolerance *= 0.5;*/ - - stl->M = hash_size_from_nr_faces(stl->stats.number_of_facets); - - stl->heads = (stl_hash_edge**)calloc(stl->M, sizeof(*stl->heads)); - if(stl->heads == NULL) perror("stl_initialize_facet_check_nearby"); - - stl->tail = (stl_hash_edge*)malloc(sizeof(stl_hash_edge)); - if(stl->tail == NULL) perror("stl_initialize_facet_check_nearby"); - - stl->tail->next = stl->tail; - - for(i = 0; i < stl->M; i++) { - stl->heads[i] = stl->tail; - } -} - - - -static void -stl_record_neighbors(stl_file *stl, - stl_hash_edge *edge_a, stl_hash_edge *edge_b) { - int i; - int j; - - if (stl->error) return; - - /* Facet a's neighbor is facet b */ - stl->neighbors_start[edge_a->facet_number].neighbor[edge_a->which_edge % 3] = - edge_b->facet_number; /* sets the .neighbor part */ - - stl->neighbors_start[edge_a->facet_number]. - which_vertex_not[edge_a->which_edge % 3] = - (edge_b->which_edge + 2) % 3; /* sets the .which_vertex_not part */ - - /* Facet b's neighbor is facet a */ - stl->neighbors_start[edge_b->facet_number].neighbor[edge_b->which_edge % 3] = - edge_a->facet_number; /* sets the .neighbor part */ - - stl->neighbors_start[edge_b->facet_number]. - which_vertex_not[edge_b->which_edge % 3] = - (edge_a->which_edge + 2) % 3; /* sets the .which_vertex_not part */ - - if( ((edge_a->which_edge < 3) && (edge_b->which_edge < 3)) - || ((edge_a->which_edge > 2) && (edge_b->which_edge > 2))) { - /* these facets are oriented in opposite directions. */ - /* their normals are probably messed up. */ - stl->neighbors_start[edge_a->facet_number]. - which_vertex_not[edge_a->which_edge % 3] += 3; - stl->neighbors_start[edge_b->facet_number]. - which_vertex_not[edge_b->which_edge % 3] += 3; - } - - - /* Count successful connects */ - /* Total connects */ - stl->stats.connected_edges += 2; - /* Count individual connects */ - i = ((stl->neighbors_start[edge_a->facet_number].neighbor[0] == -1) + - (stl->neighbors_start[edge_a->facet_number].neighbor[1] == -1) + - (stl->neighbors_start[edge_a->facet_number].neighbor[2] == -1)); - j = ((stl->neighbors_start[edge_b->facet_number].neighbor[0] == -1) + - (stl->neighbors_start[edge_b->facet_number].neighbor[1] == -1) + - (stl->neighbors_start[edge_b->facet_number].neighbor[2] == -1)); - if(i == 2) { - stl->stats.connected_facets_1_edge +=1; - } else if(i == 1) { - stl->stats.connected_facets_2_edge +=1; - } else { - stl->stats.connected_facets_3_edge +=1; - } - if(j == 2) { - stl->stats.connected_facets_1_edge +=1; - } else if(j == 1) { - stl->stats.connected_facets_2_edge +=1; - } else { - stl->stats.connected_facets_3_edge +=1; - } -} - -static void stl_match_neighbors_nearby(stl_file *stl, stl_hash_edge *edge_a, stl_hash_edge *edge_b) -{ - int facet1; - int facet2; - int vertex1; - int vertex2; - int vnot1; - int vnot2; - stl_vertex new_vertex1; - stl_vertex new_vertex2; - - if (stl->error) return; - - stl_record_neighbors(stl, edge_a, edge_b); - stl_which_vertices_to_change(stl, edge_a, edge_b, &facet1, &vertex1, - &facet2, &vertex2, &new_vertex1, &new_vertex2); - if(facet1 != -1) { - if(facet1 == edge_a->facet_number) { - vnot1 = (edge_a->which_edge + 2) % 3; - } else { - vnot1 = (edge_b->which_edge + 2) % 3; - } - if(((vnot1 + 2) % 3) == vertex1) { - vnot1 += 3; - } - stl_change_vertices(stl, facet1, vnot1, new_vertex1); - } - if(facet2 != -1) { - if(facet2 == edge_a->facet_number) { - vnot2 = (edge_a->which_edge + 2) % 3; - } else { - vnot2 = (edge_b->which_edge + 2) % 3; - } - if(((vnot2 + 2) % 3) == vertex2) { - vnot2 += 3; - } - stl_change_vertices(stl, facet2, vnot2, new_vertex2); - } - stl->stats.edges_fixed += 2; -} - - -static void stl_change_vertices(stl_file *stl, int facet_num, int vnot, stl_vertex new_vertex) { - int first_facet; - int direction; - int next_edge; - int pivot_vertex; - - if (stl->error) return; - - first_facet = facet_num; - direction = 0; - - for(;;) { - if(vnot > 2) { - if(direction == 0) { - pivot_vertex = (vnot + 2) % 3; - next_edge = pivot_vertex; - direction = 1; - } else { - pivot_vertex = (vnot + 1) % 3; - next_edge = vnot % 3; - direction = 0; - } - } else { - if(direction == 0) { - pivot_vertex = (vnot + 1) % 3; - next_edge = vnot; - } else { - pivot_vertex = (vnot + 2) % 3; - next_edge = pivot_vertex; - } - } -#if 0 - if (stl->facet_start[facet_num].vertex[pivot_vertex](0) == new_vertex(0) && - stl->facet_start[facet_num].vertex[pivot_vertex](1) == new_vertex(1) && - stl->facet_start[facet_num].vertex[pivot_vertex](2) == new_vertex(2)) - printf("Changing vertex %f,%f,%f: Same !!!\r\n", - new_vertex(0), new_vertex(1), new_vertex(2)); - else { - if (stl->facet_start[facet_num].vertex[pivot_vertex](0) != new_vertex(0)) - printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n", - stl->facet_start[facet_num].vertex[pivot_vertex](0), - *reinterpret_cast(&stl->facet_start[facet_num].vertex[pivot_vertex](0)), - new_vertex(0), - *reinterpret_cast(&new_vertex(0))); - if (stl->facet_start[facet_num].vertex[pivot_vertex](1) != new_vertex(1)) - printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n", - stl->facet_start[facet_num].vertex[pivot_vertex](1), - *reinterpret_cast(&stl->facet_start[facet_num].vertex[pivot_vertex](1)), - new_vertex(1), - *reinterpret_cast(&new_vertex(1))); - if (stl->facet_start[facet_num].vertex[pivot_vertex](2) != new_vertex(2)) - printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n", - stl->facet_start[facet_num].vertex[pivot_vertex](2), - *reinterpret_cast(&stl->facet_start[facet_num].vertex[pivot_vertex](2)), - new_vertex(2), - *reinterpret_cast(&new_vertex(2))); - } -#endif - stl->facet_start[facet_num].vertex[pivot_vertex] = new_vertex; - vnot = stl->neighbors_start[facet_num].which_vertex_not[next_edge]; - facet_num = stl->neighbors_start[facet_num].neighbor[next_edge]; - - if(facet_num == -1) { - break; - } - - if(facet_num == first_facet) { - /* back to the beginning */ - printf("\ -Back to the first facet changing vertices: probably a mobius part.\n\ -Try using a smaller tolerance or don't do a nearby check\n"); - return; - } - } -} - -static void -stl_which_vertices_to_change(stl_file *stl, stl_hash_edge *edge_a, - stl_hash_edge *edge_b, int *facet1, int *vertex1, - int *facet2, int *vertex2, - stl_vertex *new_vertex1, stl_vertex *new_vertex2) { - int v1a; /* pair 1, facet a */ - int v1b; /* pair 1, facet b */ - int v2a; /* pair 2, facet a */ - int v2b; /* pair 2, facet b */ - - /* Find first pair */ - if(edge_a->which_edge < 3) { - v1a = edge_a->which_edge; - v2a = (edge_a->which_edge + 1) % 3; - } else { - v2a = edge_a->which_edge % 3; - v1a = (edge_a->which_edge + 1) % 3; - } - if(edge_b->which_edge < 3) { - v1b = edge_b->which_edge; - v2b = (edge_b->which_edge + 1) % 3; - } else { - v2b = edge_b->which_edge % 3; - v1b = (edge_b->which_edge + 1) % 3; - } - - // Of the first pair, which vertex, if any, should be changed - if(stl->facet_start[edge_a->facet_number].vertex[v1a] == - stl->facet_start[edge_b->facet_number].vertex[v1b]) { - // These facets are already equal. No need to change. - *facet1 = -1; - } else { - if( (stl->neighbors_start[edge_a->facet_number].neighbor[v1a] == -1) - && (stl->neighbors_start[edge_a->facet_number]. - neighbor[(v1a + 2) % 3] == -1)) { - /* This vertex has no neighbors. This is a good one to change */ - *facet1 = edge_a->facet_number; - *vertex1 = v1a; - *new_vertex1 = stl->facet_start[edge_b->facet_number].vertex[v1b]; - } else { - *facet1 = edge_b->facet_number; - *vertex1 = v1b; - *new_vertex1 = stl->facet_start[edge_a->facet_number].vertex[v1a]; - } - } - - /* Of the second pair, which vertex, if any, should be changed */ - if(stl->facet_start[edge_a->facet_number].vertex[v2a] == - stl->facet_start[edge_b->facet_number].vertex[v2b]) { - // These facets are already equal. No need to change. - *facet2 = -1; - } else { - if( (stl->neighbors_start[edge_a->facet_number].neighbor[v2a] == -1) - && (stl->neighbors_start[edge_a->facet_number]. - neighbor[(v2a + 2) % 3] == -1)) { - /* This vertex has no neighbors. This is a good one to change */ - *facet2 = edge_a->facet_number; - *vertex2 = v2a; - *new_vertex2 = stl->facet_start[edge_b->facet_number].vertex[v2b]; - } else { - *facet2 = edge_b->facet_number; - *vertex2 = v2b; - *new_vertex2 = stl->facet_start[edge_a->facet_number].vertex[v2a]; - } - } -} - -static void -stl_remove_facet(stl_file *stl, int facet_number) { - int neighbor[3]; - int vnot[3]; - int i; - int j; - - if (stl->error) return; - - stl->stats.facets_removed += 1; - /* Update list of connected edges */ - j = ((stl->neighbors_start[facet_number].neighbor[0] == -1) + - (stl->neighbors_start[facet_number].neighbor[1] == -1) + - (stl->neighbors_start[facet_number].neighbor[2] == -1)); - if(j == 2) { - stl->stats.connected_facets_1_edge -= 1; - } else if(j == 1) { - stl->stats.connected_facets_2_edge -= 1; - stl->stats.connected_facets_1_edge -= 1; - } else if(j == 0) { - stl->stats.connected_facets_3_edge -= 1; - stl->stats.connected_facets_2_edge -= 1; - stl->stats.connected_facets_1_edge -= 1; - } - - stl->facet_start[facet_number] = - stl->facet_start[stl->stats.number_of_facets - 1]; - /* I could reallocate at this point, but it is not really necessary. */ - stl->neighbors_start[facet_number] = - stl->neighbors_start[stl->stats.number_of_facets - 1]; - stl->stats.number_of_facets -= 1; - - for(i = 0; i < 3; i++) { - neighbor[i] = stl->neighbors_start[facet_number].neighbor[i]; - vnot[i] = stl->neighbors_start[facet_number].which_vertex_not[i]; - } - - for(i = 0; i < 3; i++) { - if(neighbor[i] != -1) { - if(stl->neighbors_start[neighbor[i]].neighbor[(vnot[i] + 1)% 3] != - stl->stats.number_of_facets) { - printf("\ -in stl_remove_facet: neighbor = %d numfacets = %d this is wrong\n", - stl->neighbors_start[neighbor[i]].neighbor[(vnot[i] + 1)% 3], - stl->stats.number_of_facets); - return; - } - stl->neighbors_start[neighbor[i]].neighbor[(vnot[i] + 1)% 3] - = facet_number; - } - } + HashTableEdges hash_table(stl->stats.number_of_facets); + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { + //FIXME is the copy necessary? + stl_facet facet = stl->facet_start[i]; + for (int j = 0; j < 3; j++) { + if (stl->neighbors_start[i].neighbor[j] == -1) { + HashEdge edge; + edge.facet_number = i; + edge.which_edge = j; + if (edge.load_nearby(stl, facet.vertex[j], facet.vertex[(j + 1) % 3], tolerance)) + // Only insert edges that have different keys. + hash_table.insert_edge_nearby(stl, edge); + } + } + } } void stl_remove_unconnected_facets(stl_file *stl) { - /* A couple of things need to be done here. One is to remove any */ - /* completely unconnected facets (0 edges connected) since these are */ - /* useless and could be completely wrong. The second thing that needs to */ - /* be done is to remove any degenerate facets that were created during */ - /* stl_check_facets_nearby(). */ - if (stl->error) - return; + // A couple of things need to be done here. One is to remove any completely unconnected facets (0 edges connected) since these are + // useless and could be completely wrong. The second thing that needs to be done is to remove any degenerate facets that were created during + // stl_check_facets_nearby(). + auto remove_facet = [stl](int facet_number) + { + ++ stl->stats.facets_removed; + /* Update list of connected edges */ + stl_neighbors &neighbors = stl->neighbors_start[facet_number]; + // Update statistics on unconnected triangle edges. + switch ((neighbors.neighbor[0] == -1) + (neighbors.neighbor[1] == -1) + (neighbors.neighbor[2] == -1)) { + case 0: // Facet has 3 neighbors + -- stl->stats.connected_facets_3_edge; + -- stl->stats.connected_facets_2_edge; + -- stl->stats.connected_facets_1_edge; + break; + case 1: // Facet has 2 neighbors + -- stl->stats.connected_facets_2_edge; + -- stl->stats.connected_facets_1_edge; + break; + case 2: // Facet has 1 neighbor + -- stl->stats.connected_facets_1_edge; + case 3: // Facet has 0 neighbors + break; + default: + assert(false); + } - // remove degenerate facets - for (int i = 0; i < stl->stats.number_of_facets; ++ i) { - if(stl->facet_start[i].vertex[0] == stl->facet_start[i].vertex[1] || - stl->facet_start[i].vertex[0] == stl->facet_start[i].vertex[2] || - stl->facet_start[i].vertex[1] == stl->facet_start[i].vertex[2]) { - stl_remove_degenerate(stl, i); - i--; - } - } + if (facet_number < -- stl->stats.number_of_facets) { + // Removing a face, which was not the last one. + // Copy the face and neighborship from the last face to facet_number. + stl->facet_start[facet_number] = stl->facet_start[stl->stats.number_of_facets]; + neighbors = stl->neighbors_start[stl->stats.number_of_facets]; + // Update neighborship of faces, which used to point to the last face, now moved to facet_number. + for (int i = 0; i < 3; ++ i) + if (neighbors.neighbor[i] != -1) { + int &other_face_idx = stl->neighbors_start[neighbors.neighbor[i]].neighbor[(neighbors.which_vertex_not[i] + 1) % 3]; + if (other_face_idx != stl->stats.number_of_facets) { + BOOST_LOG_TRIVIAL(info) << "in remove_facet: neighbor = " << other_face_idx << " numfacets = " << stl->stats.number_of_facets << " this is wrong"; + return; + } + other_face_idx = facet_number; + } + } - if(stl->stats.connected_facets_1_edge < stl->stats.number_of_facets) { - // remove completely unconnected facets - for (int i = 0; i < stl->stats.number_of_facets; i++) { - if (stl->neighbors_start[i].neighbor[0] == -1 && - stl->neighbors_start[i].neighbor[1] == -1 && - stl->neighbors_start[i].neighbor[2] == -1) { - // This facet is completely unconnected. Remove it. - stl_remove_facet(stl, i); - -- i; - } - } - } + stl->facet_start.pop_back(); + stl->neighbors_start.pop_back(); + }; + + auto remove_degenerate = [stl, remove_facet](int facet) + { + // Update statistics on face connectivity. + auto stl_update_connects_remove_1 = [stl](int facet_num) { + //FIXME when decreasing 3_edge, should I increase 2_edge etc? + switch ((stl->neighbors_start[facet_num].neighbor[0] == -1) + (stl->neighbors_start[facet_num].neighbor[1] == -1) + (stl->neighbors_start[facet_num].neighbor[2] == -1)) { + case 0: // Facet has 3 neighbors + -- stl->stats.connected_facets_3_edge; break; + case 1: // Facet has 2 neighbors + -- stl->stats.connected_facets_2_edge; break; + case 2: // Facet has 1 neighbor + -- stl->stats.connected_facets_1_edge; break; + case 3: // Facet has 0 neighbors + break; + default: + assert(false); + } + }; + + int edge_to_collapse = 0; + if (stl->facet_start[facet].vertex[0] == stl->facet_start[facet].vertex[1]) { + if (stl->facet_start[facet].vertex[1] == stl->facet_start[facet].vertex[2]) { + // All 3 vertices are equal. Collapse the edge with no neighbor if it exists. + const int *nbr = stl->neighbors_start[facet].neighbor; + edge_to_collapse = (nbr[0] == -1) ? 0 : (nbr[1] == -1) ? 1 : 2; + } else { + edge_to_collapse = 0; + } + } else if (stl->facet_start[facet].vertex[1] == stl->facet_start[facet].vertex[2]) { + edge_to_collapse = 1; + } else if (stl->facet_start[facet].vertex[2] == stl->facet_start[facet].vertex[0]) { + edge_to_collapse = 2; + } else { + // No degenerate. Function shouldn't have been called. + return; + } + + int edge[3] = { (edge_to_collapse + 1) % 3, (edge_to_collapse + 2) % 3, edge_to_collapse }; + int neighbor[] = { + stl->neighbors_start[facet].neighbor[edge[0]], + stl->neighbors_start[facet].neighbor[edge[1]], + stl->neighbors_start[facet].neighbor[edge[2]] + }; + int vnot[] = { + stl->neighbors_start[facet].which_vertex_not[edge[0]], + stl->neighbors_start[facet].which_vertex_not[edge[1]], + stl->neighbors_start[facet].which_vertex_not[edge[2]] + }; + // Update statistics on edge connectivity. + if (neighbor[0] == -1) + stl_update_connects_remove_1(neighbor[1]); + if (neighbor[1] == -1) + stl_update_connects_remove_1(neighbor[0]); + + if (neighbor[0] >= 0) { + if (neighbor[1] >= 0) { + // Adjust the "flip" flag for the which_vertex_not values. + if (vnot[0] > 2) { + if (vnot[1] > 2) { + // The face to be removed has its normal flipped compared to the left & right neighbors, therefore after removing this face + // the two remaining neighbors will be oriented correctly. + vnot[0] -= 3; + vnot[1] -= 3; + } else + // One neighbor has its normal inverted compared to the face to be removed, the other is oriented equally. + // After removal, the two neighbors will have their normals flipped. + vnot[1] += 3; + } else if (vnot[1] > 2) + // One neighbor has its normal inverted compared to the face to be removed, the other is oriented equally. + // After removal, the two neighbors will have their normals flipped. + vnot[0] += 3; + } + stl->neighbors_start[neighbor[0]].neighbor[(vnot[0] + 1) % 3] = (neighbor[0] == neighbor[1]) ? -1 : neighbor[1]; + stl->neighbors_start[neighbor[0]].which_vertex_not[(vnot[0] + 1) % 3] = vnot[1]; + } + if (neighbor[1] >= 0) { + stl->neighbors_start[neighbor[1]].neighbor[(vnot[1] + 1) % 3] = (neighbor[0] == neighbor[1]) ? -1 : neighbor[0]; + stl->neighbors_start[neighbor[1]].which_vertex_not[(vnot[1] + 1) % 3] = vnot[0]; + } + if (neighbor[2] >= 0) { + stl_update_connects_remove_1(neighbor[2]); + stl->neighbors_start[neighbor[2]].neighbor[(vnot[2] + 1) % 3] = -1; + } + + remove_facet(facet); + }; + + // remove degenerate facets + for (uint32_t i = 0; i < stl->stats.number_of_facets;) + if (stl->facet_start[i].vertex[0] == stl->facet_start[i].vertex[1] || + stl->facet_start[i].vertex[0] == stl->facet_start[i].vertex[2] || + stl->facet_start[i].vertex[1] == stl->facet_start[i].vertex[2]) { + remove_degenerate(i); +// assert(stl_validate(stl)); + } else + ++ i; + + if (stl->stats.connected_facets_1_edge < (int)stl->stats.number_of_facets) { + // remove completely unconnected facets + for (uint32_t i = 0; i < stl->stats.number_of_facets;) + if (stl->neighbors_start[i].neighbor[0] == -1 && + stl->neighbors_start[i].neighbor[1] == -1 && + stl->neighbors_start[i].neighbor[2] == -1) { + // This facet is completely unconnected. Remove it. + remove_facet(i); + assert(stl_validate(stl)); + } else + ++ i; + } } -static void -stl_remove_degenerate(stl_file *stl, int facet) { - int edge1; - int edge2; - int edge3; - int neighbor1; - int neighbor2; - int neighbor3; - int vnot1; - int vnot2; - int vnot3; +void stl_fill_holes(stl_file *stl) +{ + // Insert all unconnected edges into hash list. + HashTableEdges hash_table(stl->stats.number_of_facets); + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { + stl_facet facet = stl->facet_start[i]; + for (int j = 0; j < 3; ++ j) { + if(stl->neighbors_start[i].neighbor[j] != -1) + continue; + HashEdge edge; + edge.facet_number = i; + edge.which_edge = j; + edge.load_exact(stl, &facet.vertex[j], &facet.vertex[(j + 1) % 3]); + hash_table.insert_edge_exact(stl, edge); + } + } - if (stl->error) return; + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { + stl_facet facet = stl->facet_start[i]; + int neighbors_initial[3] = { stl->neighbors_start[i].neighbor[0], stl->neighbors_start[i].neighbor[1], stl->neighbors_start[i].neighbor[2] }; + int first_facet = i; + for (int j = 0; j < 3; ++ j) { + if (stl->neighbors_start[i].neighbor[j] != -1) + continue; - if (stl->facet_start[facet].vertex[0] == stl->facet_start[facet].vertex[1] && - stl->facet_start[facet].vertex[1] == stl->facet_start[facet].vertex[2]) { - /* all 3 vertices are equal. Just remove the facet. I don't think*/ - /* this is really possible, but just in case... */ - printf("removing a facet in stl_remove_degenerate\n"); - stl_remove_facet(stl, facet); - return; - } + stl_facet new_facet; + new_facet.vertex[0] = facet.vertex[j]; + new_facet.vertex[1] = facet.vertex[(j + 1) % 3]; + bool direction = neighbors_initial[(j + 2) % 3] == -1; + int facet_num = i; + int vnot = (j + 2) % 3; - if (stl->facet_start[facet].vertex[0] == stl->facet_start[facet].vertex[1]) { - edge1 = 1; - edge2 = 2; - edge3 = 0; - } else if (stl->facet_start[facet].vertex[1] == stl->facet_start[facet].vertex[2]) { - edge1 = 0; - edge2 = 2; - edge3 = 1; - } else if (stl->facet_start[facet].vertex[2] == stl->facet_start[facet].vertex[0]) { - edge1 = 0; - edge2 = 1; - edge3 = 2; - } else { - /* No degenerate. Function shouldn't have been called. */ - return; - } - neighbor1 = stl->neighbors_start[facet].neighbor[edge1]; - neighbor2 = stl->neighbors_start[facet].neighbor[edge2]; + for (;;) { + int pivot_vertex = 0; + int next_edge = 0; + if (vnot > 2) { + if (direction) { + pivot_vertex = (vnot + 1) % 3; + next_edge = vnot % 3; + } else { + pivot_vertex = (vnot + 2) % 3; + next_edge = pivot_vertex; + } + direction = ! direction; + } else { + if(direction == 0) { + pivot_vertex = (vnot + 1) % 3; + next_edge = vnot; + } else { + pivot_vertex = (vnot + 2) % 3; + next_edge = pivot_vertex; + } + } - if(neighbor1 == -1) { - stl_update_connects_remove_1(stl, neighbor2); - } - if(neighbor2 == -1) { - stl_update_connects_remove_1(stl, neighbor1); - } + int next_facet = stl->neighbors_start[facet_num].neighbor[next_edge]; + if (next_facet == -1) { + new_facet.vertex[2] = stl->facet_start[facet_num].vertex[vnot % 3]; + stl_add_facet(stl, &new_facet); + for (int k = 0; k < 3; ++ k) { + HashEdge edge; + edge.facet_number = stl->stats.number_of_facets - 1; + edge.which_edge = k; + edge.load_exact(stl, &new_facet.vertex[k], &new_facet.vertex[(k + 1) % 3]); + hash_table.insert_edge_exact(stl, edge); + } + break; + } + vnot = stl->neighbors_start[facet_num].which_vertex_not[next_edge]; + facet_num = next_facet; - neighbor3 = stl->neighbors_start[facet].neighbor[edge3]; - vnot1 = stl->neighbors_start[facet].which_vertex_not[edge1]; - vnot2 = stl->neighbors_start[facet].which_vertex_not[edge2]; - vnot3 = stl->neighbors_start[facet].which_vertex_not[edge3]; - - if(neighbor1 >= 0){ - stl->neighbors_start[neighbor1].neighbor[(vnot1 + 1) % 3] = neighbor2; - stl->neighbors_start[neighbor1].which_vertex_not[(vnot1 + 1) % 3] = vnot2; - } - if(neighbor2 >= 0){ - stl->neighbors_start[neighbor2].neighbor[(vnot2 + 1) % 3] = neighbor1; - stl->neighbors_start[neighbor2].which_vertex_not[(vnot2 + 1) % 3] = vnot1; - } - - stl_remove_facet(stl, facet); - - if(neighbor3 >= 0) { - stl_update_connects_remove_1(stl, neighbor3); - stl->neighbors_start[neighbor3].neighbor[(vnot3 + 1) % 3] = -1; - } + if (facet_num == first_facet) { + // back to the beginning + BOOST_LOG_TRIVIAL(info) << "Back to the first facet filling holes: probably a mobius part. Try using a smaller tolerance or don't do a nearby check."; + return; + } + } + } + } } -void -stl_update_connects_remove_1(stl_file *stl, int facet_num) { - int j; - - if (stl->error) return; - /* Update list of connected edges */ - j = ((stl->neighbors_start[facet_num].neighbor[0] == -1) + - (stl->neighbors_start[facet_num].neighbor[1] == -1) + - (stl->neighbors_start[facet_num].neighbor[2] == -1)); - if(j == 0) { /* Facet has 3 neighbors */ - stl->stats.connected_facets_3_edge -= 1; - } else if(j == 1) { /* Facet has 2 neighbors */ - stl->stats.connected_facets_2_edge -= 1; - } else if(j == 2) { /* Facet has 1 neighbor */ - stl->stats.connected_facets_1_edge -= 1; - } -} - -void -stl_fill_holes(stl_file *stl) { - stl_facet facet; - stl_facet new_facet; - int neighbors_initial[3]; - stl_hash_edge edge; - int first_facet; - int direction; - int facet_num; - int vnot; - int next_edge; - int pivot_vertex; - int next_facet; - int i; - int j; - int k; - - if (stl->error) return; - - /* Insert all unconnected edges into hash list */ - stl_initialize_facet_check_nearby(stl); - for(i = 0; i < stl->stats.number_of_facets; i++) { - facet = stl->facet_start[i]; - for(j = 0; j < 3; j++) { - if(stl->neighbors_start[i].neighbor[j] != -1) continue; - edge.facet_number = i; - edge.which_edge = j; - stl_load_edge_exact(stl, &edge, &facet.vertex[j], - &facet.vertex[(j + 1) % 3]); - - insert_hash_edge(stl, edge, stl_record_neighbors); - } - } - - for(i = 0; i < stl->stats.number_of_facets; i++) { - facet = stl->facet_start[i]; - neighbors_initial[0] = stl->neighbors_start[i].neighbor[0]; - neighbors_initial[1] = stl->neighbors_start[i].neighbor[1]; - neighbors_initial[2] = stl->neighbors_start[i].neighbor[2]; - first_facet = i; - for(j = 0; j < 3; j++) { - if(stl->neighbors_start[i].neighbor[j] != -1) continue; - - new_facet.vertex[0] = facet.vertex[j]; - new_facet.vertex[1] = facet.vertex[(j + 1) % 3]; - if(neighbors_initial[(j + 2) % 3] == -1) { - direction = 1; - } else { - direction = 0; - } - - facet_num = i; - vnot = (j + 2) % 3; - - for(;;) { - if(vnot > 2) { - if(direction == 0) { - pivot_vertex = (vnot + 2) % 3; - next_edge = pivot_vertex; - direction = 1; - } else { - pivot_vertex = (vnot + 1) % 3; - next_edge = vnot % 3; - direction = 0; - } - } else { - if(direction == 0) { - pivot_vertex = (vnot + 1) % 3; - next_edge = vnot; - } else { - pivot_vertex = (vnot + 2) % 3; - next_edge = pivot_vertex; - } - } - next_facet = stl->neighbors_start[facet_num].neighbor[next_edge]; - - if(next_facet == -1) { - new_facet.vertex[2] = stl->facet_start[facet_num]. - vertex[vnot % 3]; - stl_add_facet(stl, &new_facet); - for(k = 0; k < 3; k++) { - edge.facet_number = stl->stats.number_of_facets - 1; - edge.which_edge = k; - stl_load_edge_exact(stl, &edge, &new_facet.vertex[k], - &new_facet.vertex[(k + 1) % 3]); - - insert_hash_edge(stl, edge, stl_record_neighbors); - } - break; - } else { - vnot = stl->neighbors_start[facet_num]. - which_vertex_not[next_edge]; - facet_num = next_facet; - } - - if(facet_num == first_facet) { - /* back to the beginning */ - printf("\ -Back to the first facet filling holes: probably a mobius part.\n\ -Try using a smaller tolerance or don't do a nearby check\n"); - return; - } - } - } - } -} - -void -stl_add_facet(stl_file *stl, stl_facet *new_facet) { - if (stl->error) return; - - stl->stats.facets_added += 1; - if(stl->stats.facets_malloced < stl->stats.number_of_facets + 1) { - stl->facet_start = (stl_facet*)realloc(stl->facet_start, - (sizeof(stl_facet) * (stl->stats.facets_malloced + 256))); - if(stl->facet_start == NULL) perror("stl_add_facet"); - stl->neighbors_start = (stl_neighbors*)realloc(stl->neighbors_start, - (sizeof(stl_neighbors) * (stl->stats.facets_malloced + 256))); - if(stl->neighbors_start == NULL) perror("stl_add_facet"); - stl->stats.facets_malloced += 256; - } - stl->facet_start[stl->stats.number_of_facets] = *new_facet; - - /* note that the normal vector is not set here, just initialized to 0 */ - stl->facet_start[stl->stats.number_of_facets].normal = stl_normal::Zero(); - - stl->neighbors_start[stl->stats.number_of_facets].neighbor[0] = -1; - stl->neighbors_start[stl->stats.number_of_facets].neighbor[1] = -1; - stl->neighbors_start[stl->stats.number_of_facets].neighbor[2] = -1; - stl->stats.number_of_facets += 1; +void stl_add_facet(stl_file *stl, const stl_facet *new_facet) +{ + assert(stl->facet_start.size() == stl->stats.number_of_facets); + assert(stl->neighbors_start.size() == stl->stats.number_of_facets); + stl->facet_start.emplace_back(*new_facet); + // note that the normal vector is not set here, just initialized to 0. + stl->facet_start[stl->stats.number_of_facets].normal = stl_normal::Zero(); + stl->neighbors_start.emplace_back(); + ++ stl->stats.facets_added; + ++ stl->stats.number_of_facets; } diff --git a/src/admesh/normals.cpp b/src/admesh/normals.cpp index ecf08b59c..16bb3daab 100644 --- a/src/admesh/normals.cpp +++ b/src/admesh/normals.cpp @@ -25,271 +25,214 @@ #include #include +// Boost pool: Don't use mutexes to synchronize memory allocation. +#define BOOST_POOL_NO_MT +#include + #include "stl.h" -static int stl_check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag); +static void reverse_facet(stl_file *stl, int facet_num) +{ + ++ stl->stats.facets_reversed; -static void -stl_reverse_facet(stl_file *stl, int facet_num) { - stl_vertex tmp_vertex; - /* int tmp_neighbor;*/ - int neighbor[3]; - int vnot[3]; + int neighbor[3] = { stl->neighbors_start[facet_num].neighbor[0], stl->neighbors_start[facet_num].neighbor[1], stl->neighbors_start[facet_num].neighbor[2] }; + int vnot[3] = { stl->neighbors_start[facet_num].which_vertex_not[0], stl->neighbors_start[facet_num].which_vertex_not[1], stl->neighbors_start[facet_num].which_vertex_not[2] }; - stl->stats.facets_reversed += 1; + // reverse the facet + stl_vertex tmp_vertex = stl->facet_start[facet_num].vertex[0]; + stl->facet_start[facet_num].vertex[0] = stl->facet_start[facet_num].vertex[1]; + stl->facet_start[facet_num].vertex[1] = tmp_vertex; - neighbor[0] = stl->neighbors_start[facet_num].neighbor[0]; - neighbor[1] = stl->neighbors_start[facet_num].neighbor[1]; - neighbor[2] = stl->neighbors_start[facet_num].neighbor[2]; - vnot[0] = stl->neighbors_start[facet_num].which_vertex_not[0]; - vnot[1] = stl->neighbors_start[facet_num].which_vertex_not[1]; - vnot[2] = stl->neighbors_start[facet_num].which_vertex_not[2]; + // fix the vnots of the neighboring facets + if (neighbor[0] != -1) + stl->neighbors_start[neighbor[0]].which_vertex_not[(vnot[0] + 1) % 3] = (stl->neighbors_start[neighbor[0]].which_vertex_not[(vnot[0] + 1) % 3] + 3) % 6; + if (neighbor[1] != -1) + stl->neighbors_start[neighbor[1]].which_vertex_not[(vnot[1] + 1) % 3] = (stl->neighbors_start[neighbor[1]].which_vertex_not[(vnot[1] + 1) % 3] + 4) % 6; + if (neighbor[2] != -1) + stl->neighbors_start[neighbor[2]].which_vertex_not[(vnot[2] + 1) % 3] = (stl->neighbors_start[neighbor[2]].which_vertex_not[(vnot[2] + 1) % 3] + 2) % 6; - /* reverse the facet */ - tmp_vertex = stl->facet_start[facet_num].vertex[0]; - stl->facet_start[facet_num].vertex[0] = - stl->facet_start[facet_num].vertex[1]; - stl->facet_start[facet_num].vertex[1] = tmp_vertex; + // swap the neighbors of the facet that is being reversed + stl->neighbors_start[facet_num].neighbor[1] = neighbor[2]; + stl->neighbors_start[facet_num].neighbor[2] = neighbor[1]; - /* fix the vnots of the neighboring facets */ - if(neighbor[0] != -1) - stl->neighbors_start[neighbor[0]].which_vertex_not[(vnot[0] + 1) % 3] = - (stl->neighbors_start[neighbor[0]]. - which_vertex_not[(vnot[0] + 1) % 3] + 3) % 6; - if(neighbor[1] != -1) - stl->neighbors_start[neighbor[1]].which_vertex_not[(vnot[1] + 1) % 3] = - (stl->neighbors_start[neighbor[1]]. - which_vertex_not[(vnot[1] + 1) % 3] + 4) % 6; - if(neighbor[2] != -1) - stl->neighbors_start[neighbor[2]].which_vertex_not[(vnot[2] + 1) % 3] = - (stl->neighbors_start[neighbor[2]]. - which_vertex_not[(vnot[2] + 1) % 3] + 2) % 6; + // swap the vnots of the facet that is being reversed + stl->neighbors_start[facet_num].which_vertex_not[1] = vnot[2]; + stl->neighbors_start[facet_num].which_vertex_not[2] = vnot[1]; - /* swap the neighbors of the facet that is being reversed */ - stl->neighbors_start[facet_num].neighbor[1] = neighbor[2]; - stl->neighbors_start[facet_num].neighbor[2] = neighbor[1]; - - /* swap the vnots of the facet that is being reversed */ - stl->neighbors_start[facet_num].which_vertex_not[1] = vnot[2]; - stl->neighbors_start[facet_num].which_vertex_not[2] = vnot[1]; - - /* reverse the values of the vnots of the facet that is being reversed */ - stl->neighbors_start[facet_num].which_vertex_not[0] = - (stl->neighbors_start[facet_num].which_vertex_not[0] + 3) % 6; - stl->neighbors_start[facet_num].which_vertex_not[1] = - (stl->neighbors_start[facet_num].which_vertex_not[1] + 3) % 6; - stl->neighbors_start[facet_num].which_vertex_not[2] = - (stl->neighbors_start[facet_num].which_vertex_not[2] + 3) % 6; + // reverse the values of the vnots of the facet that is being reversed + stl->neighbors_start[facet_num].which_vertex_not[0] = (stl->neighbors_start[facet_num].which_vertex_not[0] + 3) % 6; + stl->neighbors_start[facet_num].which_vertex_not[1] = (stl->neighbors_start[facet_num].which_vertex_not[1] + 3) % 6; + stl->neighbors_start[facet_num].which_vertex_not[2] = (stl->neighbors_start[facet_num].which_vertex_not[2] + 3) % 6; } -void -stl_fix_normal_directions(stl_file *stl) { - char *norm_sw; - /* int edge_num;*/ - /* int vnot;*/ - int checked = 0; - int facet_num; - /* int next_facet;*/ - int i; - int j; - struct stl_normal { - int facet_num; - struct stl_normal *next; - }; - struct stl_normal *head; - struct stl_normal *tail; - struct stl_normal *newn; - struct stl_normal *temp; +// Returns true if the normal was flipped. +static bool check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag) +{ + stl_facet *facet = &stl->facet_start[facet_num]; - int* reversed_ids; - int reversed_count = 0; - int id; - int force_exit = 0; + stl_normal normal; + stl_calculate_normal(normal, facet); + stl_normalize_vector(normal); + stl_normal normal_dif = (normal - facet->normal).cwiseAbs(); - if (stl->error) return; + const float eps = 0.001f; + if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) { + // Normal is within tolerance. It is not really necessary to change the values here, but just for consistency, I will. + facet->normal = normal; + return false; + } - // this may happen for malformed models, see: https://github.com/prusa3d/PrusaSlicer/issues/2209 - if (stl->stats.number_of_facets == 0) return; + stl_normal test_norm = facet->normal; + stl_normalize_vector(test_norm); + normal_dif = (normal - test_norm).cwiseAbs(); + if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) { + // The normal is not within tolerance, but direction is OK. + if (normal_fix_flag) { + facet->normal = normal; + ++ stl->stats.normals_fixed; + } + return false; + } - /* Initialize linked list. */ - head = (struct stl_normal*)malloc(sizeof(struct stl_normal)); - if(head == NULL) perror("stl_fix_normal_directions"); - tail = (struct stl_normal*)malloc(sizeof(struct stl_normal)); - if(tail == NULL) perror("stl_fix_normal_directions"); - head->next = tail; - tail->next = tail; - - /* Initialize list that keeps track of already fixed facets. */ - norm_sw = (char*)calloc(stl->stats.number_of_facets, sizeof(char)); - if(norm_sw == NULL) perror("stl_fix_normal_directions"); - - /* Initialize list that keeps track of reversed facets. */ - reversed_ids = (int*)calloc(stl->stats.number_of_facets, sizeof(int)); - if (reversed_ids == NULL) perror("stl_fix_normal_directions reversed_ids"); - - facet_num = 0; - /* If normal vector is not within tolerance and backwards: - Arbitrarily starts at face 0. If this one is wrong, we're screwed. Thankfully, the chances - of it being wrong randomly are low if most of the triangles are right: */ - if (stl_check_normal_vector(stl, 0, 0) == 2) { - stl_reverse_facet(stl, 0); - reversed_ids[reversed_count++] = 0; - } - - /* Say that we've fixed this facet: */ - norm_sw[facet_num] = 1; - checked++; - - for(;;) { - /* Add neighbors_to_list. - Add unconnected neighbors to the list:a */ - for(j = 0; j < 3; j++) { - /* Reverse the neighboring facets if necessary. */ - if(stl->neighbors_start[facet_num].which_vertex_not[j] > 2) { - /* If the facet has a neighbor that is -1, it means that edge isn't shared by another facet */ - if(stl->neighbors_start[facet_num].neighbor[j] != -1) { - if (norm_sw[stl->neighbors_start[facet_num].neighbor[j]] == 1) { - /* trying to modify a facet already marked as fixed, revert all changes made until now and exit (fixes: #716, #574, #413, #269, #262, #259, #230, #228, #206) */ - for (id = reversed_count - 1; id >= 0; --id) { - stl_reverse_facet(stl, reversed_ids[id]); - } - force_exit = 1; - break; - } else { - stl_reverse_facet(stl, stl->neighbors_start[facet_num].neighbor[j]); - reversed_ids[reversed_count++] = stl->neighbors_start[facet_num].neighbor[j]; - } - } - } - /* If this edge of the facet is connected: */ - if(stl->neighbors_start[facet_num].neighbor[j] != -1) { - /* If we haven't fixed this facet yet, add it to the list: */ - if(norm_sw[stl->neighbors_start[facet_num].neighbor[j]] != 1) { - /* Add node to beginning of list. */ - newn = (struct stl_normal*)malloc(sizeof(struct stl_normal)); - if(newn == NULL) perror("stl_fix_normal_directions"); - newn->facet_num = stl->neighbors_start[facet_num].neighbor[j]; - newn->next = head->next; - head->next = newn; - } - } - } - - /* an error occourred, quit the for loop and exit */ - if (force_exit) break; - - /* Get next facet to fix from top of list. */ - if(head->next != tail) { - facet_num = head->next->facet_num; - if(norm_sw[facet_num] != 1) { /* If facet is in list mutiple times */ - norm_sw[facet_num] = 1; /* Record this one as being fixed. */ - checked++; - } - temp = head->next; /* Delete this facet from the list. */ - head->next = head->next->next; - free(temp); - } else { /* if we ran out of facets to fix: */ - /* All of the facets in this part have been fixed. */ - stl->stats.number_of_parts += 1; - if(checked >= stl->stats.number_of_facets) { - /* All of the facets have been checked. Bail out. */ - break; - } else { - /* There is another part here. Find it and continue. */ - for(i = 0; i < stl->stats.number_of_facets; i++) { - if(norm_sw[i] == 0) { - /* This is the first facet of the next part. */ - facet_num = i; - if(stl_check_normal_vector(stl, i, 0) == 2) { - stl_reverse_facet(stl, i); - reversed_ids[reversed_count++] = i; - } - - norm_sw[facet_num] = 1; - checked++; - break; - } - } - } - } - } - free(head); - free(tail); - free(reversed_ids); - free(norm_sw); + test_norm *= -1.f; + normal_dif = (normal - test_norm).cwiseAbs(); + if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) { + // The normal is not within tolerance and backwards. + if (normal_fix_flag) { + facet->normal = normal; + ++ stl->stats.normals_fixed; + } + return true; + } + if (normal_fix_flag) { + facet->normal = normal; + ++ stl->stats.normals_fixed; + } + // Status is unknown. + return false; } -static int stl_check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag) { - /* Returns 0 if the normal is within tolerance */ - /* Returns 1 if the normal is not within tolerance, but direction is OK */ - /* Returns 2 if the normal is not within tolerance and backwards */ - /* Returns 4 if the status is unknown. */ +void stl_fix_normal_directions(stl_file *stl) +{ + // This may happen for malformed models, see: https://github.com/prusa3d/PrusaSlicer/issues/2209 + if (stl->stats.number_of_facets == 0) + return; - stl_facet *facet; + struct stl_normal { + int facet_num; + stl_normal *next; + }; - facet = &stl->facet_start[facet_num]; + // Initialize linked list. + boost::object_pool pool; + stl_normal *head = pool.construct(); + stl_normal *tail = pool.construct(); + head->next = tail; + tail->next = tail; - stl_normal normal; - stl_calculate_normal(normal, facet); - stl_normalize_vector(normal); - stl_normal normal_dif = (normal - facet->normal).cwiseAbs(); + // Initialize list that keeps track of already fixed facets. + std::vector norm_sw(stl->stats.number_of_facets, 0); + // Initialize list that keeps track of reversed facets. + std::vector reversed_ids(stl->stats.number_of_facets, 0); - const float eps = 0.001f; - if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) { - /* It is not really necessary to change the values here */ - /* but just for consistency, I will. */ - facet->normal = normal; - return 0; - } + int facet_num = 0; + int reversed_count = 0; + // If normal vector is not within tolerance and backwards: + // Arbitrarily starts at face 0. If this one is wrong, we're screwed. Thankfully, the chances + // of it being wrong randomly are low if most of the triangles are right: + if (check_normal_vector(stl, 0, 0)) { + reverse_facet(stl, 0); + reversed_ids[reversed_count ++] = 0; + } - stl_normal test_norm = facet->normal; - stl_normalize_vector(test_norm); - normal_dif = (normal - test_norm).cwiseAbs(); - if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) { - if(normal_fix_flag) { - facet->normal = normal; - stl->stats.normals_fixed += 1; - } - return 1; - } + // Say that we've fixed this facet: + norm_sw[facet_num] = 1; + int checked = 1; - test_norm *= -1.f; - normal_dif = (normal - test_norm).cwiseAbs(); - if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) { - // Facet is backwards. - if(normal_fix_flag) { - facet->normal = normal; - stl->stats.normals_fixed += 1; - } - return 2; - } - if(normal_fix_flag) { - facet->normal = normal; - stl->stats.normals_fixed += 1; - } - return 4; + for (;;) { + // Add neighbors_to_list. Add unconnected neighbors to the list. + bool force_exit = false; + for (int j = 0; j < 3; ++ j) { + // Reverse the neighboring facets if necessary. + if (stl->neighbors_start[facet_num].which_vertex_not[j] > 2) { + // If the facet has a neighbor that is -1, it means that edge isn't shared by another facet + if (stl->neighbors_start[facet_num].neighbor[j] != -1) { + if (norm_sw[stl->neighbors_start[facet_num].neighbor[j]] == 1) { + // trying to modify a facet already marked as fixed, revert all changes made until now and exit (fixes: #716, #574, #413, #269, #262, #259, #230, #228, #206) + for (int id = reversed_count - 1; id >= 0; -- id) + reverse_facet(stl, reversed_ids[id]); + force_exit = true; + break; + } + reverse_facet(stl, stl->neighbors_start[facet_num].neighbor[j]); + reversed_ids[reversed_count ++] = stl->neighbors_start[facet_num].neighbor[j]; + } + } + // If this edge of the facet is connected: + if (stl->neighbors_start[facet_num].neighbor[j] != -1) { + // If we haven't fixed this facet yet, add it to the list: + if (norm_sw[stl->neighbors_start[facet_num].neighbor[j]] != 1) { + // Add node to beginning of list. + stl_normal *newn = pool.construct(); + newn->facet_num = stl->neighbors_start[facet_num].neighbor[j]; + newn->next = head->next; + head->next = newn; + } + } + } + + // an error occourred, quit the for loop and exit + if (force_exit) + break; + + // Get next facet to fix from top of list. + if (head->next != tail) { + facet_num = head->next->facet_num; + if (norm_sw[facet_num] != 1) { // If facet is in list mutiple times + norm_sw[facet_num] = 1; // Record this one as being fixed. + ++ checked; + } + stl_normal *temp = head->next; // Delete this facet from the list. + head->next = head->next->next; + // pool.destroy(temp); + } else { // If we ran out of facets to fix: All of the facets in this part have been fixed. + ++ stl->stats.number_of_parts; + if (checked >= stl->stats.number_of_facets) + // All of the facets have been checked. Bail out. + break; + // There is another part here. Find it and continue. + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) + if (norm_sw[i] == 0) { + // This is the first facet of the next part. + facet_num = i; + if (check_normal_vector(stl, i, 0)) { + reverse_facet(stl, i); + reversed_ids[reversed_count++] = i; + } + norm_sw[facet_num] = 1; + ++ checked; + break; + } + } + } + + // pool.destroy(head); + // pool.destroy(tail); } -void stl_fix_normal_values(stl_file *stl) { - int i; - - if (stl->error) return; - - for(i = 0; i < stl->stats.number_of_facets; i++) { - stl_check_normal_vector(stl, i, 1); - } +void stl_fix_normal_values(stl_file *stl) +{ + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) + check_normal_vector(stl, i, 1); } void stl_reverse_all_facets(stl_file *stl) { - if (stl->error) - return; - - stl_normal normal; - for(int i = 0; i < stl->stats.number_of_facets; i++) { - stl_reverse_facet(stl, i); - stl_calculate_normal(normal, &stl->facet_start[i]); - stl_normalize_vector(normal); - stl->facet_start[i].normal = normal; - } + stl_normal normal; + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { + reverse_facet(stl, i); + stl_calculate_normal(normal, &stl->facet_start[i]); + stl_normalize_vector(normal); + stl->facet_start[i].normal = normal; + } } diff --git a/src/admesh/shared.cpp b/src/admesh/shared.cpp index c8c17ccd5..902bbfc9b 100644 --- a/src/admesh/shared.cpp +++ b/src/admesh/shared.cpp @@ -23,242 +23,237 @@ #include #include +#include + +#include #include #include "stl.h" -void -stl_invalidate_shared_vertices(stl_file *stl) { - if (stl->error) return; +void stl_generate_shared_vertices(stl_file *stl, indexed_triangle_set &its) +{ + // 3 indices to vertex per face + its.indices.assign(stl->stats.number_of_facets, stl_triangle_vertex_indices(-1, -1, -1)); + // Shared vertices (3D coordinates) + its.vertices.clear(); + its.vertices.reserve(stl->stats.number_of_facets / 2); - if (stl->v_indices != NULL) { - free(stl->v_indices); - stl->v_indices = NULL; - } - if (stl->v_shared != NULL) { - free(stl->v_shared); - stl->v_shared = NULL; - } + // A degenerate mesh may contain loops: Traversing a fan will end up in an endless loop + // while never reaching the starting face. To avoid these endless loops, traversed faces at each fan traversal + // are marked with a unique fan_traversal_stamp. + unsigned int fan_traversal_stamp = 0; + std::vector fan_traversal_facet_visited(stl->stats.number_of_facets, 0); + + for (uint32_t facet_idx = 0; facet_idx < stl->stats.number_of_facets; ++ facet_idx) { + for (int j = 0; j < 3; ++ j) { + if (its.indices[facet_idx][j] != -1) + // Shared vertex was already assigned. + continue; + // Create a new shared vertex. + its.vertices.emplace_back(stl->facet_start[facet_idx].vertex[j]); + // Traverse the fan around the j-th vertex of the i-th face, assign the newly created shared vertex index to all the neighboring triangles in the triangle fan. + int facet_in_fan_idx = facet_idx; + bool edge_direction = false; + bool traversal_reversed = false; + int vnot = (j + 2) % 3; + // Increase the + ++ fan_traversal_stamp; + for (;;) { + // Next edge on facet_in_fan_idx to be traversed. The edge is indexed by its starting vertex index. + int next_edge = 0; + // Vertex index in facet_in_fan_idx, which is being pivoted around, and which is being assigned a new shared vertex. + int pivot_vertex = 0; + if (vnot > 2) { + // The edge of facet_in_fan_idx opposite to vnot is equally oriented, therefore + // the neighboring facet is flipped. + if (! edge_direction) { + pivot_vertex = (vnot + 2) % 3; + next_edge = pivot_vertex; + } else { + pivot_vertex = (vnot + 1) % 3; + next_edge = vnot % 3; + } + edge_direction = ! edge_direction; + } else { + // The neighboring facet is correctly oriented. + if (! edge_direction) { + pivot_vertex = (vnot + 1) % 3; + next_edge = vnot; + } else { + pivot_vertex = (vnot + 2) % 3; + next_edge = pivot_vertex; + } + } + its.indices[facet_in_fan_idx][pivot_vertex] = its.vertices.size() - 1; + fan_traversal_facet_visited[facet_in_fan_idx] = fan_traversal_stamp; + + // next_edge is an index of the starting vertex of the edge, not an index of the opposite vertex to the edge! + int next_facet = stl->neighbors_start[facet_in_fan_idx].neighbor[next_edge]; + if (next_facet == -1) { + // No neighbor going in the current direction. + if (traversal_reversed) { + // Went to one limit, then turned back and reached the other limit. Quit the fan traversal. + break; + } else { + // Reached the first limit. Now try to reverse and traverse up to the other limit. + edge_direction = true; + vnot = (j + 1) % 3; + traversal_reversed = true; + facet_in_fan_idx = facet_idx; + } + } else if (next_facet == facet_idx) { + // Traversed a closed fan all around. +// assert(! traversal_reversed); + break; + } else if (next_facet >= (int)stl->stats.number_of_facets) { + // The mesh is not valid! + // assert(false); + break; + } else if (fan_traversal_facet_visited[next_facet] == fan_traversal_stamp) { + // Traversed a closed fan all around, but did not reach the starting face. + // This indicates an invalid geometry (non-manifold). + //assert(false); + break; + } else { + // Continue traversal. + // next_edge is an index of the starting vertex of the edge, not an index of the opposite vertex to the edge! + vnot = stl->neighbors_start[facet_in_fan_idx].which_vertex_not[next_edge]; + facet_in_fan_idx = next_facet; + } + } + } + } } -void -stl_generate_shared_vertices(stl_file *stl) { - int i; - int j; - int first_facet; - int direction; - int facet_num; - int vnot; - int next_edge; - int pivot_vertex; - int next_facet; - int reversed; +bool its_write_off(const indexed_triangle_set &its, const char *file) +{ + /* Open the file */ + FILE *fp = boost::nowide::fopen(file, "w"); + if (fp == nullptr) { + BOOST_LOG_TRIVIAL(error) << "stl_write_ascii: Couldn't open " << file << " for writing"; + return false; + } - if (stl->error) return; + fprintf(fp, "OFF\n"); + fprintf(fp, "%d %d 0\n", (int)its.vertices.size(), (int)its.indices.size()); + for (int i = 0; i < its.vertices.size(); ++ i) + fprintf(fp, "\t%f %f %f\n", its.vertices[i](0), its.vertices[i](1), its.vertices[i](2)); + for (uint32_t i = 0; i < its.indices.size(); ++ i) + fprintf(fp, "\t3 %d %d %d\n", its.indices[i][0], its.indices[i][1], its.indices[i][2]); + fclose(fp); + return true; +} - /* make sure this function is idempotent and does not leak memory */ - stl_invalidate_shared_vertices(stl); +bool its_write_vrml(const indexed_triangle_set &its, const char *file) +{ + /* Open the file */ + FILE *fp = boost::nowide::fopen(file, "w"); + if (fp == nullptr) { + BOOST_LOG_TRIVIAL(error) << "stl_write_vrml: Couldn't open " << file << " for writing"; + return false; + } - stl->v_indices = (v_indices_struct*) - calloc(stl->stats.number_of_facets, sizeof(v_indices_struct)); - if(stl->v_indices == NULL) perror("stl_generate_shared_vertices"); - stl->v_shared = (stl_vertex*) - calloc((stl->stats.number_of_facets / 2), sizeof(stl_vertex)); - if(stl->v_shared == NULL) perror("stl_generate_shared_vertices"); - stl->stats.shared_malloced = stl->stats.number_of_facets / 2; - stl->stats.shared_vertices = 0; + fprintf(fp, "#VRML V1.0 ascii\n\n"); + fprintf(fp, "Separator {\n"); + fprintf(fp, "\tDEF STLShape ShapeHints {\n"); + fprintf(fp, "\t\tvertexOrdering COUNTERCLOCKWISE\n"); + fprintf(fp, "\t\tfaceType CONVEX\n"); + fprintf(fp, "\t\tshapeType SOLID\n"); + fprintf(fp, "\t\tcreaseAngle 0.0\n"); + fprintf(fp, "\t}\n"); + fprintf(fp, "\tDEF STLModel Separator {\n"); + fprintf(fp, "\t\tDEF STLColor Material {\n"); + fprintf(fp, "\t\t\temissiveColor 0.700000 0.700000 0.000000\n"); + fprintf(fp, "\t\t}\n"); + fprintf(fp, "\t\tDEF STLVertices Coordinate3 {\n"); + fprintf(fp, "\t\t\tpoint [\n"); - for(i = 0; i < stl->stats.number_of_facets; i++) { - stl->v_indices[i].vertex[0] = -1; - stl->v_indices[i].vertex[1] = -1; - stl->v_indices[i].vertex[2] = -1; - } + int i = 0; + for (; i + 1 < its.vertices.size(); ++ i) + fprintf(fp, "\t\t\t\t%f %f %f,\n", its.vertices[i](0), its.vertices[i](1), its.vertices[i](2)); + fprintf(fp, "\t\t\t\t%f %f %f]\n", its.vertices[i](0), its.vertices[i](1), its.vertices[i](2)); + fprintf(fp, "\t\t}\n"); + fprintf(fp, "\t\tDEF STLTriangles IndexedFaceSet {\n"); + fprintf(fp, "\t\t\tcoordIndex [\n"); + + for (size_t i = 0; i + 1 < its.indices.size(); ++ i) + fprintf(fp, "\t\t\t\t%d, %d, %d, -1,\n", its.indices[i][0], its.indices[i][1], its.indices[i][2]); + fprintf(fp, "\t\t\t\t%d, %d, %d, -1]\n", its.indices[i][0], its.indices[i][1], its.indices[i][2]); + fprintf(fp, "\t\t}\n"); + fprintf(fp, "\t}\n"); + fprintf(fp, "}\n"); + fclose(fp); + return true; +} + +bool its_write_obj(const indexed_triangle_set &its, const char *file) +{ + + FILE *fp = boost::nowide::fopen(file, "w"); + if (fp == nullptr) { + BOOST_LOG_TRIVIAL(error) << "stl_write_obj: Couldn't open " << file << " for writing"; + return false; + } + + for (size_t i = 0; i < its.vertices.size(); ++ i) + fprintf(fp, "v %f %f %f\n", its.vertices[i](0), its.vertices[i](1), its.vertices[i](2)); + for (size_t i = 0; i < its.indices.size(); ++ i) + fprintf(fp, "f %d %d %d\n", its.indices[i][0]+1, its.indices[i][1]+1, its.indices[i][2]+1); + fclose(fp); + return true; +} - for(i = 0; i < stl->stats.number_of_facets; i++) { - first_facet = i; - for(j = 0; j < 3; j++) { - if(stl->v_indices[i].vertex[j] != -1) { - continue; - } - if(stl->stats.shared_vertices == stl->stats.shared_malloced) { - stl->stats.shared_malloced += 1024; - stl->v_shared = (stl_vertex*)realloc(stl->v_shared, - stl->stats.shared_malloced * sizeof(stl_vertex)); - if(stl->v_shared == NULL) perror("stl_generate_shared_vertices"); - } +// Check validity of the mesh, assert on error. +bool stl_validate(const stl_file *stl, const indexed_triangle_set &its) +{ + assert(! stl->facet_start.empty()); + assert(stl->facet_start.size() == stl->stats.number_of_facets); + assert(stl->neighbors_start.size() == stl->stats.number_of_facets); + assert(stl->facet_start.size() == stl->neighbors_start.size()); + assert(! stl->neighbors_start.empty()); + assert((its.indices.empty()) == (its.vertices.empty())); + assert(stl->stats.number_of_facets > 0); + assert(its.vertices.empty() || its.indices.size() == stl->stats.number_of_facets); - stl->v_shared[stl->stats.shared_vertices] = - stl->facet_start[i].vertex[j]; - - direction = 0; - reversed = 0; - facet_num = i; - vnot = (j + 2) % 3; - - for(;;) { - if(vnot > 2) { - if(direction == 0) { - pivot_vertex = (vnot + 2) % 3; - next_edge = pivot_vertex; - direction = 1; - } else { - pivot_vertex = (vnot + 1) % 3; - next_edge = vnot % 3; - direction = 0; - } - } else { - if(direction == 0) { - pivot_vertex = (vnot + 1) % 3; - next_edge = vnot; - } else { - pivot_vertex = (vnot + 2) % 3; - next_edge = pivot_vertex; - } +#ifdef _DEBUG + // Verify validity of neighborship data. + for (int facet_idx = 0; facet_idx < (int)stl->stats.number_of_facets; ++ facet_idx) { + const stl_neighbors &nbr = stl->neighbors_start[facet_idx]; + const int *vertices = its.indices.empty() ? nullptr : its.indices[facet_idx].data(); + for (int nbr_idx = 0; nbr_idx < 3; ++ nbr_idx) { + int nbr_face = stl->neighbors_start[facet_idx].neighbor[nbr_idx]; + assert(nbr_face < (int)stl->stats.number_of_facets); + if (nbr_face != -1) { + int nbr_vnot = nbr.which_vertex_not[nbr_idx]; + assert(nbr_vnot >= 0 && nbr_vnot < 6); + // Neighbor of the neighbor is the original face. + assert(stl->neighbors_start[nbr_face].neighbor[(nbr_vnot + 1) % 3] == facet_idx); + int vnot_back = stl->neighbors_start[nbr_face].which_vertex_not[(nbr_vnot + 1) % 3]; + assert(vnot_back >= 0 && vnot_back < 6); + assert((nbr_vnot < 3) == (vnot_back < 3)); + assert(vnot_back % 3 == (nbr_idx + 2) % 3); + if (vertices != nullptr) { + // Has shared vertices. + if (nbr_vnot < 3) { + // Faces facet_idx and nbr_face share two vertices accross the common edge. Faces are correctly oriented. + assert((its.indices[nbr_face][(nbr_vnot + 1) % 3] == vertices[(nbr_idx + 1) % 3] && its.indices[nbr_face][(nbr_vnot + 2) % 3] == vertices[nbr_idx])); + } else { + // Faces facet_idx and nbr_face share two vertices accross the common edge. Faces are incorrectly oriented, one of them is flipped. + assert((its.indices[nbr_face][(nbr_vnot + 2) % 3] == vertices[(nbr_idx + 1) % 3] && its.indices[nbr_face][(nbr_vnot + 1) % 3] == vertices[nbr_idx])); + } + } + } } - stl->v_indices[facet_num].vertex[pivot_vertex] = - stl->stats.shared_vertices; - - next_facet = stl->neighbors_start[facet_num].neighbor[next_edge]; - if(next_facet == -1) { - if(reversed) { - break; - } else { - direction = 1; - vnot = (j + 1) % 3; - reversed = 1; - facet_num = first_facet; - } - } else if(next_facet != first_facet) { - vnot = stl->neighbors_start[facet_num]. - which_vertex_not[next_edge]; - facet_num = next_facet; - } else { - break; - } - } - stl->stats.shared_vertices += 1; } - } +#endif /* _DEBUG */ + + return true; } -void -stl_write_off(stl_file *stl, const char *file) { - int i; - FILE *fp; - char *error_msg; - - if (stl->error) return; - - /* Open the file */ - fp = boost::nowide::fopen(file, "w"); - if(fp == NULL) { - error_msg = (char*) - malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */ - sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing", - file); - perror(error_msg); - free(error_msg); - stl->error = 1; - return; - } - - fprintf(fp, "OFF\n"); - fprintf(fp, "%d %d 0\n", - stl->stats.shared_vertices, stl->stats.number_of_facets); - - for(i = 0; i < stl->stats.shared_vertices; i++) { - fprintf(fp, "\t%f %f %f\n", - stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2)); - } - for(i = 0; i < stl->stats.number_of_facets; i++) { - fprintf(fp, "\t3 %d %d %d\n", stl->v_indices[i].vertex[0], - stl->v_indices[i].vertex[1], stl->v_indices[i].vertex[2]); - } - fclose(fp); -} - -void -stl_write_vrml(stl_file *stl, const char *file) { - int i; - FILE *fp; - char *error_msg; - - if (stl->error) return; - - /* Open the file */ - fp = boost::nowide::fopen(file, "w"); - if(fp == NULL) { - error_msg = (char*) - malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */ - sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing", - file); - perror(error_msg); - free(error_msg); - stl->error = 1; - return; - } - - fprintf(fp, "#VRML V1.0 ascii\n\n"); - fprintf(fp, "Separator {\n"); - fprintf(fp, "\tDEF STLShape ShapeHints {\n"); - fprintf(fp, "\t\tvertexOrdering COUNTERCLOCKWISE\n"); - fprintf(fp, "\t\tfaceType CONVEX\n"); - fprintf(fp, "\t\tshapeType SOLID\n"); - fprintf(fp, "\t\tcreaseAngle 0.0\n"); - fprintf(fp, "\t}\n"); - fprintf(fp, "\tDEF STLModel Separator {\n"); - fprintf(fp, "\t\tDEF STLColor Material {\n"); - fprintf(fp, "\t\t\temissiveColor 0.700000 0.700000 0.000000\n"); - fprintf(fp, "\t\t}\n"); - fprintf(fp, "\t\tDEF STLVertices Coordinate3 {\n"); - fprintf(fp, "\t\t\tpoint [\n"); - - for(i = 0; i < (stl->stats.shared_vertices - 1); i++) { - fprintf(fp, "\t\t\t\t%f %f %f,\n", - stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2)); - } - fprintf(fp, "\t\t\t\t%f %f %f]\n", - stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2)); - fprintf(fp, "\t\t}\n"); - fprintf(fp, "\t\tDEF STLTriangles IndexedFaceSet {\n"); - fprintf(fp, "\t\t\tcoordIndex [\n"); - - for(i = 0; i < (stl->stats.number_of_facets - 1); i++) { - fprintf(fp, "\t\t\t\t%d, %d, %d, -1,\n", stl->v_indices[i].vertex[0], - stl->v_indices[i].vertex[1], stl->v_indices[i].vertex[2]); - } - fprintf(fp, "\t\t\t\t%d, %d, %d, -1]\n", stl->v_indices[i].vertex[0], - stl->v_indices[i].vertex[1], stl->v_indices[i].vertex[2]); - fprintf(fp, "\t\t}\n"); - fprintf(fp, "\t}\n"); - fprintf(fp, "}\n"); - fclose(fp); -} - -void stl_write_obj (stl_file *stl, const char *file) { - int i; - FILE* fp; - - if (stl->error) return; - - /* Open the file */ - fp = boost::nowide::fopen(file, "w"); - if (fp == NULL) { - char* error_msg = (char*)malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */ - sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing", file); - perror(error_msg); - free(error_msg); - stl->error = 1; - return; - } - - for (i = 0; i < stl->stats.shared_vertices; i++) { - fprintf(fp, "v %f %f %f\n", stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2)); - } - for (i = 0; i < stl->stats.number_of_facets; i++) { - fprintf(fp, "f %d %d %d\n", stl->v_indices[i].vertex[0]+1, stl->v_indices[i].vertex[1]+1, stl->v_indices[i].vertex[2]+1); - } - - fclose(fp); +// Check validity of the mesh, assert on error. +bool stl_validate(const stl_file *stl) +{ + indexed_triangle_set its; + return stl_validate(stl, its); } diff --git a/src/admesh/stl.h b/src/admesh/stl.h index f867e197b..2ac6c7fd2 100644 --- a/src/admesh/stl.h +++ b/src/admesh/stl.h @@ -27,6 +27,7 @@ #include #include +#include #include // Size of the binary STL header, free form. @@ -40,22 +41,23 @@ typedef Eigen::Matrix stl_vertex; typedef Eigen::Matrix stl_normal; +typedef Eigen::Matrix stl_triangle_vertex_indices; static_assert(sizeof(stl_vertex) == 12, "size of stl_vertex incorrect"); static_assert(sizeof(stl_normal) == 12, "size of stl_normal incorrect"); struct stl_facet { - stl_normal normal; - stl_vertex vertex[3]; - char extra[2]; + stl_normal normal; + stl_vertex vertex[3]; + char extra[2]; - stl_facet rotated(const Eigen::Quaternion &rot) { - stl_facet out; - out.normal = rot * this->normal; - out.vertex[0] = rot * this->vertex[0]; - out.vertex[1] = rot * this->vertex[1]; - out.vertex[2] = rot * this->vertex[2]; - return out; - } + stl_facet rotated(const Eigen::Quaternion &rot) const { + stl_facet out; + out.normal = rot * this->normal; + out.vertex[0] = rot * this->vertex[0]; + out.vertex[1] = rot * this->vertex[1]; + out.vertex[2] = rot * this->vertex[2]; + return out; + } }; #define SIZEOF_STL_FACET 50 @@ -67,104 +69,94 @@ static_assert(sizeof(stl_facet) >= SIZEOF_STL_FACET, "size of stl_facet incorrec typedef enum {binary, ascii, inmemory} stl_type; -typedef struct { - stl_vertex p1; - stl_vertex p2; - int facet_number; -} stl_edge; +struct stl_neighbors { + stl_neighbors() { reset(); } + void reset() { + neighbor[0] = -1; + neighbor[1] = -1; + neighbor[2] = -1; + which_vertex_not[0] = -1; + which_vertex_not[1] = -1; + which_vertex_not[2] = -1; + } + int num_neighbors_missing() const { return (this->neighbor[0] == -1) + (this->neighbor[1] == -1) + (this->neighbor[2] == -1); } + int num_neighbors() const { return 3 - this->num_neighbors_missing(); } -typedef struct stl_hash_edge { - // Key of a hash edge: sorted vertices of the edge. - uint32_t key[6]; - // Compare two keys. - bool operator==(const stl_hash_edge &rhs) { return memcmp(key, rhs.key, sizeof(key)) == 0; } - bool operator!=(const stl_hash_edge &rhs) { return ! (*this == rhs); } - int hash(int M) const { return ((key[0] / 11 + key[1] / 7 + key[2] / 3) ^ (key[3] / 11 + key[4] / 7 + key[5] / 3)) % M; } - // Index of a facet owning this edge. - int facet_number; - // Index of this edge inside the facet with an index of facet_number. - // If this edge is stored backwards, which_edge is increased by 3. - int which_edge; - struct stl_hash_edge *next; -} stl_hash_edge; + // Index of a neighbor facet. + int neighbor[3]; + // Index of an opposite vertex at the neighbor face. + char which_vertex_not[3]; +}; -typedef struct { - // Index of a neighbor facet. - int neighbor[3]; - // Index of an opposite vertex at the neighbor face. - char which_vertex_not[3]; -} stl_neighbors; +struct stl_stats { + stl_stats() { this->reset(); } + void reset() { memset(this, 0, sizeof(stl_stats)); this->volume = -1.0; } + char header[81]; + stl_type type; + uint32_t number_of_facets; + stl_vertex max; + stl_vertex min; + stl_vertex size; + float bounding_diameter; + float shortest_edge; + float volume; + int connected_edges; + int connected_facets_1_edge; + int connected_facets_2_edge; + int connected_facets_3_edge; + int facets_w_1_bad_edge; + int facets_w_2_bad_edge; + int facets_w_3_bad_edge; + int original_num_facets; + int edges_fixed; + int degenerate_facets; + int facets_removed; + int facets_added; + int facets_reversed; + int backwards_edges; + int normals_fixed; + int number_of_parts; +}; -typedef struct { - int vertex[3]; -} v_indices_struct; +struct stl_file { + stl_file() {} -typedef struct { - char header[81]; - stl_type type; - uint32_t number_of_facets; - stl_vertex max; - stl_vertex min; - stl_vertex size; - float bounding_diameter; - float shortest_edge; - float volume; - unsigned number_of_blocks; - int connected_edges; - int connected_facets_1_edge; - int connected_facets_2_edge; - int connected_facets_3_edge; - int facets_w_1_bad_edge; - int facets_w_2_bad_edge; - int facets_w_3_bad_edge; - int original_num_facets; - int edges_fixed; - int degenerate_facets; - int facets_removed; - int facets_added; - int facets_reversed; - int backwards_edges; - int normals_fixed; - int number_of_parts; - int malloced; - int freed; - int facets_malloced; - int collisions; - int shared_vertices; - int shared_malloced; -} stl_stats; + void clear() { + this->facet_start.clear(); + this->neighbors_start.clear(); + this->stats.reset(); + } -typedef struct { - FILE *fp; - stl_facet *facet_start; - stl_hash_edge **heads; - stl_hash_edge *tail; - int M; - stl_neighbors *neighbors_start; - v_indices_struct *v_indices; - stl_vertex *v_shared; - stl_stats stats; - char error; -} stl_file; + std::vector facet_start; + std::vector neighbors_start; + // Statistics + stl_stats stats; +}; +struct indexed_triangle_set +{ + indexed_triangle_set() {} -extern void stl_open(stl_file *stl, const char *file); -extern void stl_close(stl_file *stl); + void clear() { indices.clear(); vertices.clear(); } + + std::vector indices; + std::vector vertices; + //FIXME add normals once we get rid of the stl_file from TriangleMesh completely. + //std::vector normals +}; + +extern bool stl_open(stl_file *stl, const char *file); extern void stl_stats_out(stl_file *stl, FILE *file, char *input_file); -extern void stl_print_neighbors(stl_file *stl, char *file); -extern void stl_put_little_int(FILE *fp, int value_in); -extern void stl_put_little_float(FILE *fp, float value_in); -extern void stl_write_ascii(stl_file *stl, const char *file, const char *label); -extern void stl_write_binary(stl_file *stl, const char *file, const char *label); -extern void stl_write_binary_block(stl_file *stl, FILE *fp); +extern bool stl_print_neighbors(stl_file *stl, char *file); +extern bool stl_write_ascii(stl_file *stl, const char *file, const char *label); +extern bool stl_write_binary(stl_file *stl, const char *file, const char *label); extern void stl_check_facets_exact(stl_file *stl); extern void stl_check_facets_nearby(stl_file *stl, float tolerance); extern void stl_remove_unconnected_facets(stl_file *stl); extern void stl_write_vertex(stl_file *stl, int facet, int vertex); extern void stl_write_facet(stl_file *stl, char *label, int facet); -extern void stl_write_edge(stl_file *stl, char *label, stl_hash_edge edge); extern void stl_write_neighbor(stl_file *stl, int facet); -extern void stl_write_quad_object(stl_file *stl, char *file); +extern bool stl_write_quad_object(stl_file *stl, char *file); extern void stl_verify_neighbors(stl_file *stl); extern void stl_fill_holes(stl_file *stl); extern void stl_fix_normal_directions(stl_file *stl); @@ -186,36 +178,30 @@ extern void stl_get_size(stl_file *stl); template extern void stl_transform(stl_file *stl, T *trafo3x4) { - if (stl->error) - return; + for (uint32_t i_face = 0; i_face < stl->stats.number_of_facets; ++ i_face) { + stl_facet &face = stl->facet_start[i_face]; + for (int i_vertex = 0; i_vertex < 3; ++ i_vertex) { + stl_vertex &v_dst = face.vertex[i_vertex]; + stl_vertex v_src = v_dst; + v_dst(0) = T(trafo3x4[0] * v_src(0) + trafo3x4[1] * v_src(1) + trafo3x4[2] * v_src(2) + trafo3x4[3]); + v_dst(1) = T(trafo3x4[4] * v_src(0) + trafo3x4[5] * v_src(1) + trafo3x4[6] * v_src(2) + trafo3x4[7]); + v_dst(2) = T(trafo3x4[8] * v_src(0) + trafo3x4[9] * v_src(1) + trafo3x4[10] * v_src(2) + trafo3x4[11]); + } + stl_vertex &v_dst = face.normal; + stl_vertex v_src = v_dst; + v_dst(0) = T(trafo3x4[0] * v_src(0) + trafo3x4[1] * v_src(1) + trafo3x4[2] * v_src(2)); + v_dst(1) = T(trafo3x4[4] * v_src(0) + trafo3x4[5] * v_src(1) + trafo3x4[6] * v_src(2)); + v_dst(2) = T(trafo3x4[8] * v_src(0) + trafo3x4[9] * v_src(1) + trafo3x4[10] * v_src(2)); + } - for (uint32_t i_face = 0; i_face < stl->stats.number_of_facets; ++ i_face) { - stl_facet &face = stl->facet_start[i_face]; - for (int i_vertex = 0; i_vertex < 3; ++ i_vertex) { - stl_vertex &v_dst = face.vertex[i_vertex]; - stl_vertex v_src = v_dst; - v_dst(0) = T(trafo3x4[0] * v_src(0) + trafo3x4[1] * v_src(1) + trafo3x4[2] * v_src(2) + trafo3x4[3]); - v_dst(1) = T(trafo3x4[4] * v_src(0) + trafo3x4[5] * v_src(1) + trafo3x4[6] * v_src(2) + trafo3x4[7]); - v_dst(2) = T(trafo3x4[8] * v_src(0) + trafo3x4[9] * v_src(1) + trafo3x4[10] * v_src(2) + trafo3x4[11]); - } - stl_vertex &v_dst = face.normal; - stl_vertex v_src = v_dst; - v_dst(0) = T(trafo3x4[0] * v_src(0) + trafo3x4[1] * v_src(1) + trafo3x4[2] * v_src(2)); - v_dst(1) = T(trafo3x4[4] * v_src(0) + trafo3x4[5] * v_src(1) + trafo3x4[6] * v_src(2)); - v_dst(2) = T(trafo3x4[8] * v_src(0) + trafo3x4[9] * v_src(1) + trafo3x4[10] * v_src(2)); - } - - stl_get_size(stl); + stl_get_size(stl); } template inline void stl_transform(stl_file *stl, const Eigen::Transform& t) { - if (stl->error) - return; - const Eigen::Matrix r = t.matrix().template block<3, 3>(0, 0); - for (size_t i = 0; i < stl->stats.number_of_facets; ++i) { + for (size_t i = 0; i < stl->stats.number_of_facets; ++ i) { stl_facet &f = stl->facet_start[i]; for (size_t j = 0; j < 3; ++j) f.vertex[j] = (t * f.vertex[j].template cast()).template cast().eval(); @@ -228,10 +214,7 @@ inline void stl_transform(stl_file *stl, const Eigen::Transform inline void stl_transform(stl_file *stl, const Eigen::Matrix& m) { - if (stl->error) - return; - - for (size_t i = 0; i < stl->stats.number_of_facets; ++i) { + for (size_t i = 0; i < stl->stats.number_of_facets; ++ i) { stl_facet &f = stl->facet_start[i]; for (size_t j = 0; j < 3; ++j) f.vertex[j] = (m * f.vertex[j].template cast()).template cast().eval(); @@ -241,13 +224,43 @@ inline void stl_transform(stl_file *stl, const Eigen::Matrix +extern void its_transform(indexed_triangle_set &its, T *trafo3x4) +{ + for (stl_vertex &v_dst : its.vertices) { + stl_vertex v_src = v_dst; + v_dst(0) = T(trafo3x4[0] * v_src(0) + trafo3x4[1] * v_src(1) + trafo3x4[2] * v_src(2) + trafo3x4[3]); + v_dst(1) = T(trafo3x4[4] * v_src(0) + trafo3x4[5] * v_src(1) + trafo3x4[6] * v_src(2) + trafo3x4[7]); + v_dst(2) = T(trafo3x4[8] * v_src(0) + trafo3x4[9] * v_src(1) + trafo3x4[10] * v_src(2) + trafo3x4[11]); + } +} + +template +inline void its_transform(indexed_triangle_set &its, const Eigen::Transform& t) +{ + const Eigen::Matrix r = t.matrix().template block<3, 3>(0, 0); + for (stl_vertex &v : its.vertices) + v = (t * v.template cast()).template cast().eval(); +} + +template +inline void its_transform(indexed_triangle_set &its, const Eigen::Matrix& m) +{ + for (stl_vertex &v : its.vertices) + v = (m * v.template cast()).template cast().eval(); +} + +extern void its_rotate_x(indexed_triangle_set &its, float angle); +extern void its_rotate_y(indexed_triangle_set &its, float angle); +extern void its_rotate_z(indexed_triangle_set &its, float angle); + +extern void stl_generate_shared_vertices(stl_file *stl, indexed_triangle_set &its); +extern bool its_write_obj(const indexed_triangle_set &its, const char *file); +extern bool its_write_off(const indexed_triangle_set &its, const char *file); +extern bool its_write_vrml(const indexed_triangle_set &its, const char *file); + +extern bool stl_write_dxf(stl_file *stl, const char *file, char *label); inline void stl_calculate_normal(stl_normal &normal, stl_facet *facet) { normal = (facet->vertex[1] - facet->vertex[0]).cross(facet->vertex[2] - facet->vertex[0]); } @@ -258,24 +271,18 @@ inline void stl_normalize_vector(stl_normal &normal) { else normal *= float(1.0 / length); } -inline bool stl_vertex_lower(const stl_vertex &a, const stl_vertex &b) { - return (a(0) != b(0)) ? (a(0) < b(0)) : - ((a(1) != b(1)) ? (a(1) < b(1)) : (a(2) < b(2))); -} extern void stl_calculate_volume(stl_file *stl); -extern void stl_repair(stl_file *stl, int fixall_flag, int exact_flag, int tolerance_flag, float tolerance, int increment_flag, float increment, int nearby_flag, int iterations, int remove_unconnected_flag, int fill_holes_flag, int normal_directions_flag, int normal_values_flag, int reverse_all_flag, int verbose_flag); +extern void stl_repair(stl_file *stl, bool fixall_flag, bool exact_flag, bool tolerance_flag, float tolerance, bool increment_flag, float increment, bool nearby_flag, int iterations, bool remove_unconnected_flag, bool fill_holes_flag, bool normal_directions_flag, bool normal_values_flag, bool reverse_all_flag, bool verbose_flag); -extern void stl_initialize(stl_file *stl); -extern void stl_count_facets(stl_file *stl, const char *file); extern void stl_allocate(stl_file *stl); extern void stl_read(stl_file *stl, int first_facet, bool first); extern void stl_facet_stats(stl_file *stl, stl_facet facet, bool &first); extern void stl_reallocate(stl_file *stl); -extern void stl_add_facet(stl_file *stl, stl_facet *new_facet); +extern void stl_add_facet(stl_file *stl, const stl_facet *new_facet); -extern void stl_clear_error(stl_file *stl); -extern int stl_get_error(stl_file *stl); -extern void stl_exit_on_error(stl_file *stl); +// Validate the mesh, assert on error. +extern bool stl_validate(const stl_file *stl); +extern bool stl_validate(const stl_file *stl, const indexed_triangle_set &its); #endif diff --git a/src/admesh/stl_io.cpp b/src/admesh/stl_io.cpp index 85f66785b..464c98907 100644 --- a/src/admesh/stl_io.cpp +++ b/src/admesh/stl_io.cpp @@ -22,159 +22,86 @@ #include #include + +#include +#include +#include + #include "stl.h" -#include -#include - -#if !defined(SEEK_SET) -#define SEEK_SET 0 -#define SEEK_CUR 1 -#define SEEK_END 2 -#endif - -void -stl_stats_out(stl_file *stl, FILE *file, char *input_file) { - if (stl->error) return; - - /* this is here for Slic3r, without our config.h - it won't use this part of the code anyway */ +void stl_stats_out(stl_file *stl, FILE *file, char *input_file) +{ + // This is here for Slic3r, without our config.h it won't use this part of the code anyway. #ifndef VERSION #define VERSION "unknown" #endif - fprintf(file, "\n\ -================= Results produced by ADMesh version " VERSION " ================\n"); - fprintf(file, "\ -Input file : %s\n", input_file); - if(stl->stats.type == binary) { - fprintf(file, "\ -File type : Binary STL file\n"); - } else { - fprintf(file, "\ -File type : ASCII STL file\n"); - } - fprintf(file, "\ -Header : %s\n", stl->stats.header); - fprintf(file, "============== Size ==============\n"); - fprintf(file, "Min X = % f, Max X = % f\n", - stl->stats.min(0), stl->stats.max(0)); - fprintf(file, "Min Y = % f, Max Y = % f\n", - stl->stats.min(1), stl->stats.max(1)); - fprintf(file, "Min Z = % f, Max Z = % f\n", - stl->stats.min(2), stl->stats.max(2)); - - fprintf(file, "\ -========= Facet Status ========== Original ============ Final ====\n"); - fprintf(file, "\ -Number of facets : %5d %5d\n", - stl->stats.original_num_facets, stl->stats.number_of_facets); - fprintf(file, "\ -Facets with 1 disconnected edge : %5d %5d\n", - stl->stats.facets_w_1_bad_edge, stl->stats.connected_facets_2_edge - - stl->stats.connected_facets_3_edge); - fprintf(file, "\ -Facets with 2 disconnected edges : %5d %5d\n", - stl->stats.facets_w_2_bad_edge, stl->stats.connected_facets_1_edge - - stl->stats.connected_facets_2_edge); - fprintf(file, "\ -Facets with 3 disconnected edges : %5d %5d\n", - stl->stats.facets_w_3_bad_edge, stl->stats.number_of_facets - - stl->stats.connected_facets_1_edge); - fprintf(file, "\ -Total disconnected facets : %5d %5d\n", - stl->stats.facets_w_1_bad_edge + stl->stats.facets_w_2_bad_edge + - stl->stats.facets_w_3_bad_edge, stl->stats.number_of_facets - - stl->stats.connected_facets_3_edge); - - fprintf(file, - "=== Processing Statistics === ===== Other Statistics =====\n"); - fprintf(file, "\ -Number of parts : %5d Volume : % f\n", - stl->stats.number_of_parts, stl->stats.volume); - fprintf(file, "\ -Degenerate facets : %5d\n", stl->stats.degenerate_facets); - fprintf(file, "\ -Edges fixed : %5d\n", stl->stats.edges_fixed); - fprintf(file, "\ -Facets removed : %5d\n", stl->stats.facets_removed); - fprintf(file, "\ -Facets added : %5d\n", stl->stats.facets_added); - fprintf(file, "\ -Facets reversed : %5d\n", stl->stats.facets_reversed); - fprintf(file, "\ -Backwards edges : %5d\n", stl->stats.backwards_edges); - fprintf(file, "\ -Normals fixed : %5d\n", stl->stats.normals_fixed); + fprintf(file, "\n================= Results produced by ADMesh version " VERSION " ================\n"); + fprintf(file, "Input file : %s\n", input_file); + if (stl->stats.type == binary) + fprintf(file, "File type : Binary STL file\n"); + else + fprintf(file, "File type : ASCII STL file\n"); + fprintf(file, "Header : %s\n", stl->stats.header); + fprintf(file, "============== Size ==============\n"); + fprintf(file, "Min X = % f, Max X = % f\n", stl->stats.min(0), stl->stats.max(0)); + fprintf(file, "Min Y = % f, Max Y = % f\n", stl->stats.min(1), stl->stats.max(1)); + fprintf(file, "Min Z = % f, Max Z = % f\n", stl->stats.min(2), stl->stats.max(2)); + fprintf(file, "========= Facet Status ========== Original ============ Final ====\n"); + fprintf(file, "Number of facets : %5d %5d\n", stl->stats.original_num_facets, stl->stats.number_of_facets); + fprintf(file, "Facets with 1 disconnected edge : %5d %5d\n", + stl->stats.facets_w_1_bad_edge, stl->stats.connected_facets_2_edge - stl->stats.connected_facets_3_edge); + fprintf(file, "Facets with 2 disconnected edges : %5d %5d\n", + stl->stats.facets_w_2_bad_edge, stl->stats.connected_facets_1_edge - stl->stats.connected_facets_2_edge); + fprintf(file, "Facets with 3 disconnected edges : %5d %5d\n", + stl->stats.facets_w_3_bad_edge, stl->stats.number_of_facets - stl->stats.connected_facets_1_edge); + fprintf(file, "Total disconnected facets : %5d %5d\n", + stl->stats.facets_w_1_bad_edge + stl->stats.facets_w_2_bad_edge + stl->stats.facets_w_3_bad_edge, stl->stats.number_of_facets - stl->stats.connected_facets_3_edge); + fprintf(file, "=== Processing Statistics === ===== Other Statistics =====\n"); + fprintf(file, "Number of parts : %5d Volume : %f\n", stl->stats.number_of_parts, stl->stats.volume); + fprintf(file, "Degenerate facets : %5d\n", stl->stats.degenerate_facets); + fprintf(file, "Edges fixed : %5d\n", stl->stats.edges_fixed); + fprintf(file, "Facets removed : %5d\n", stl->stats.facets_removed); + fprintf(file, "Facets added : %5d\n", stl->stats.facets_added); + fprintf(file, "Facets reversed : %5d\n", stl->stats.facets_reversed); + fprintf(file, "Backwards edges : %5d\n", stl->stats.backwards_edges); + fprintf(file, "Normals fixed : %5d\n", stl->stats.normals_fixed); } -void -stl_write_ascii(stl_file *stl, const char *file, const char *label) { - int i; - char *error_msg; +bool stl_write_ascii(stl_file *stl, const char *file, const char *label) +{ + FILE *fp = boost::nowide::fopen(file, "w"); + if (fp == nullptr) { + BOOST_LOG_TRIVIAL(error) << "stl_write_ascii: Couldn't open " << file << " for writing"; + return false; + } - if (stl->error) return; + fprintf(fp, "solid %s\n", label); - /* Open the file */ - FILE *fp = boost::nowide::fopen(file, "w"); - if(fp == NULL) { - error_msg = (char*) - malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */ - sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing", - file); - perror(error_msg); - free(error_msg); - stl->error = 1; - return; - } + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { + fprintf(fp, " facet normal % .8E % .8E % .8E\n", stl->facet_start[i].normal(0), stl->facet_start[i].normal(1), stl->facet_start[i].normal(2)); + fprintf(fp, " outer loop\n"); + fprintf(fp, " vertex % .8E % .8E % .8E\n", stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1), stl->facet_start[i].vertex[0](2)); + fprintf(fp, " vertex % .8E % .8E % .8E\n", stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1), stl->facet_start[i].vertex[1](2)); + fprintf(fp, " vertex % .8E % .8E % .8E\n", stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), stl->facet_start[i].vertex[2](2)); + fprintf(fp, " endloop\n"); + fprintf(fp, " endfacet\n"); + } - fprintf(fp, "solid %s\n", label); - - for(i = 0; i < stl->stats.number_of_facets; i++) { - fprintf(fp, " facet normal % .8E % .8E % .8E\n", - stl->facet_start[i].normal(0), stl->facet_start[i].normal(1), - stl->facet_start[i].normal(2)); - fprintf(fp, " outer loop\n"); - fprintf(fp, " vertex % .8E % .8E % .8E\n", - stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1), - stl->facet_start[i].vertex[0](2)); - fprintf(fp, " vertex % .8E % .8E % .8E\n", - stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1), - stl->facet_start[i].vertex[1](2)); - fprintf(fp, " vertex % .8E % .8E % .8E\n", - stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), - stl->facet_start[i].vertex[2](2)); - fprintf(fp, " endloop\n"); - fprintf(fp, " endfacet\n"); - } - - fprintf(fp, "endsolid %s\n", label); - - fclose(fp); + fprintf(fp, "endsolid %s\n", label); + fclose(fp); + return true; } -void -stl_print_neighbors(stl_file *stl, char *file) { - int i; - FILE *fp; - char *error_msg; +bool stl_print_neighbors(stl_file *stl, char *file) +{ + FILE *fp = boost::nowide::fopen(file, "w"); + if (fp == nullptr) { + BOOST_LOG_TRIVIAL(error) << "stl_print_neighbors: Couldn't open " << file << " for writing"; + return false; + } - if (stl->error) return; - - /* Open the file */ - fp = boost::nowide::fopen(file, "w"); - if(fp == NULL) { - error_msg = (char*) - malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */ - sprintf(error_msg, "stl_print_neighbors: Couldn't open %s for writing", - file); - perror(error_msg); - free(error_msg); - stl->error = 1; - return; - } - - for(i = 0; i < stl->stats.number_of_facets; i++) { - fprintf(fp, "%d, %d,%d, %d,%d, %d,%d\n", + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { + fprintf(fp, "%d, %d,%d, %d,%d, %d,%d\n", i, stl->neighbors_start[i].neighbor[0], (int)stl->neighbors_start[i].which_vertex_not[0], @@ -182,234 +109,142 @@ stl_print_neighbors(stl_file *stl, char *file) { (int)stl->neighbors_start[i].which_vertex_not[1], stl->neighbors_start[i].neighbor[2], (int)stl->neighbors_start[i].which_vertex_not[2]); - } - fclose(fp); + } + fclose(fp); + return true; } -#ifndef BOOST_LITTLE_ENDIAN +#if BOOST_ENDIAN_BIG_BYTE // Swap a buffer of 32bit data from little endian to big endian and vice versa. void stl_internal_reverse_quads(char *buf, size_t cnt) { - for (size_t i = 0; i < cnt; i += 4) { - std::swap(buf[i], buf[i+3]); - std::swap(buf[i+1], buf[i+2]); - } + for (size_t i = 0; i < cnt; i += 4) { + std::swap(buf[i], buf[i+3]); + std::swap(buf[i+1], buf[i+2]); + } } #endif -void -stl_write_binary(stl_file *stl, const char *file, const char *label) { - FILE *fp; - int i; - char *error_msg; +bool stl_write_binary(stl_file *stl, const char *file, const char *label) +{ + FILE *fp = boost::nowide::fopen(file, "wb"); + if (fp == nullptr) { + BOOST_LOG_TRIVIAL(error) << "stl_write_binary: Couldn't open " << file << " for writing"; + return false; + } - if (stl->error) return; + fprintf(fp, "%s", label); + for (size_t i = strlen(label); i < LABEL_SIZE; ++ i) + putc(0, fp); - /* Open the file */ - fp = boost::nowide::fopen(file, "wb"); - if(fp == NULL) { - error_msg = (char*) - malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */ - sprintf(error_msg, "stl_write_binary: Couldn't open %s for writing", - file); - perror(error_msg); - free(error_msg); - stl->error = 1; - return; - } - - fprintf(fp, "%s", label); - for(i = strlen(label); i < LABEL_SIZE; i++) putc(0, fp); - - fseek(fp, LABEL_SIZE, SEEK_SET); -#ifdef BOOST_LITTLE_ENDIAN - fwrite(&stl->stats.number_of_facets, 4, 1, fp); - for (i = 0; i < stl->stats.number_of_facets; ++ i) - fwrite(stl->facet_start + i, SIZEOF_STL_FACET, 1, fp); -#else /* BOOST_LITTLE_ENDIAN */ - char buffer[50]; - // Convert the number of facets to little endian. - memcpy(buffer, &stl->stats.number_of_facets, 4); - stl_internal_reverse_quads(buffer, 4); - fwrite(buffer, 4, 1, fp); - for (i = 0; i < stl->stats.number_of_facets; ++ i) { - memcpy(buffer, stl->facet_start + i, 50); - // Convert to little endian. - stl_internal_reverse_quads(buffer, 48); - fwrite(buffer, SIZEOF_STL_FACET, 1, fp); - } -#endif /* BOOST_LITTLE_ENDIAN */ - fclose(fp); +#if !defined(SEEK_SET) + #define SEEK_SET 0 +#endif + fseek(fp, LABEL_SIZE, SEEK_SET); +#if BOOST_ENDIAN_LITTLE_BYTE + fwrite(&stl->stats.number_of_facets, 4, 1, fp); + for (const stl_facet &facet : stl->facet_start) + fwrite(&facet, SIZEOF_STL_FACET, 1, fp); +#else /* BOOST_ENDIAN_LITTLE_BYTE */ + char buffer[50]; + // Convert the number of facets to little endian. + memcpy(buffer, &stl->stats.number_of_facets, 4); + stl_internal_reverse_quads(buffer, 4); + fwrite(buffer, 4, 1, fp); + for (i = 0; i < stl->stats.number_of_facets; ++ i) { + memcpy(buffer, stl->facet_start + i, 50); + // Convert to little endian. + stl_internal_reverse_quads(buffer, 48); + fwrite(buffer, SIZEOF_STL_FACET, 1, fp); + } +#endif /* BOOST_ENDIAN_LITTLE_BYTE */ + fclose(fp); + return true; } -void -stl_write_vertex(stl_file *stl, int facet, int vertex) { - if (stl->error) return; - printf(" vertex %d/%d % .8E % .8E % .8E\n", vertex, facet, +void stl_write_vertex(stl_file *stl, int facet, int vertex) +{ + printf(" vertex %d/%d % .8E % .8E % .8E\n", vertex, facet, stl->facet_start[facet].vertex[vertex](0), stl->facet_start[facet].vertex[vertex](1), stl->facet_start[facet].vertex[vertex](2)); } -void -stl_write_facet(stl_file *stl, char *label, int facet) { - if (stl->error) return; - printf("facet (%d)/ %s\n", facet, label); - stl_write_vertex(stl, facet, 0); - stl_write_vertex(stl, facet, 1); - stl_write_vertex(stl, facet, 2); +void stl_write_facet(stl_file *stl, char *label, int facet) +{ + printf("facet (%d)/ %s\n", facet, label); + stl_write_vertex(stl, facet, 0); + stl_write_vertex(stl, facet, 1); + stl_write_vertex(stl, facet, 2); } -void -stl_write_edge(stl_file *stl, char *label, stl_hash_edge edge) { - if (stl->error) return; - printf("edge (%d)/(%d) %s\n", edge.facet_number, edge.which_edge, label); - if(edge.which_edge < 3) { - stl_write_vertex(stl, edge.facet_number, edge.which_edge % 3); - stl_write_vertex(stl, edge.facet_number, (edge.which_edge + 1) % 3); - } else { - stl_write_vertex(stl, edge.facet_number, (edge.which_edge + 1) % 3); - stl_write_vertex(stl, edge.facet_number, edge.which_edge % 3); - } +void stl_write_neighbor(stl_file *stl, int facet) +{ + printf("Neighbors %d: %d, %d, %d ; %d, %d, %d\n", facet, + stl->neighbors_start[facet].neighbor[0], + stl->neighbors_start[facet].neighbor[1], + stl->neighbors_start[facet].neighbor[2], + stl->neighbors_start[facet].which_vertex_not[0], + stl->neighbors_start[facet].which_vertex_not[1], + stl->neighbors_start[facet].which_vertex_not[2]); } -void -stl_write_neighbor(stl_file *stl, int facet) { - if (stl->error) return; - printf("Neighbors %d: %d, %d, %d ; %d, %d, %d\n", facet, - stl->neighbors_start[facet].neighbor[0], - stl->neighbors_start[facet].neighbor[1], - stl->neighbors_start[facet].neighbor[2], - stl->neighbors_start[facet].which_vertex_not[0], - stl->neighbors_start[facet].which_vertex_not[1], - stl->neighbors_start[facet].which_vertex_not[2]); -} +bool stl_write_quad_object(stl_file *stl, char *file) +{ + stl_vertex connect_color = stl_vertex::Zero(); + stl_vertex uncon_1_color = stl_vertex::Zero(); + stl_vertex uncon_2_color = stl_vertex::Zero(); + stl_vertex uncon_3_color = stl_vertex::Zero(); + stl_vertex color; -void -stl_write_quad_object(stl_file *stl, char *file) { - FILE *fp; - int i; - int j; - char *error_msg; - stl_vertex connect_color = stl_vertex::Zero(); - stl_vertex uncon_1_color = stl_vertex::Zero(); - stl_vertex uncon_2_color = stl_vertex::Zero(); - stl_vertex uncon_3_color = stl_vertex::Zero(); - stl_vertex color; + FILE *fp = boost::nowide::fopen(file, "w"); + if (fp == nullptr) { + BOOST_LOG_TRIVIAL(error) << "stl_write_quad_object: Couldn't open " << file << " for writing"; + return false; + } - if (stl->error) return; - - /* Open the file */ - fp = boost::nowide::fopen(file, "w"); - if(fp == NULL) { - error_msg = (char*) - malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */ - sprintf(error_msg, "stl_write_quad_object: Couldn't open %s for writing", - file); - perror(error_msg); - free(error_msg); - stl->error = 1; - return; - } - - fprintf(fp, "CQUAD\n"); - for(i = 0; i < stl->stats.number_of_facets; i++) { - j = ((stl->neighbors_start[i].neighbor[0] == -1) + - (stl->neighbors_start[i].neighbor[1] == -1) + - (stl->neighbors_start[i].neighbor[2] == -1)); - if(j == 0) { - color = connect_color; - } else if(j == 1) { - color = uncon_1_color; - } else if(j == 2) { - color = uncon_2_color; - } else { - color = uncon_3_color; - } - fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", - stl->facet_start[i].vertex[0](0), - stl->facet_start[i].vertex[0](1), - stl->facet_start[i].vertex[0](2), color(0), color(1), color(2)); - fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", - stl->facet_start[i].vertex[1](0), - stl->facet_start[i].vertex[1](1), - stl->facet_start[i].vertex[1](2), color(0), color(1), color(2)); - fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", - stl->facet_start[i].vertex[2](0), - stl->facet_start[i].vertex[2](1), - stl->facet_start[i].vertex[2](2), color(0), color(1), color(2)); - fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", - stl->facet_start[i].vertex[2](0), - stl->facet_start[i].vertex[2](1), - stl->facet_start[i].vertex[2](2), color(0), color(1), color(2)); + fprintf(fp, "CQUAD\n"); + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { + switch (stl->neighbors_start[i].num_neighbors_missing()) { + case 0: color = connect_color; break; + case 1: color = uncon_1_color; break; + case 2: color = uncon_2_color; break; + default: color = uncon_3_color; + } + fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1), stl->facet_start[i].vertex[0](2), color(0), color(1), color(2)); + fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1), stl->facet_start[i].vertex[1](2), color(0), color(1), color(2)); + fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), stl->facet_start[i].vertex[2](2), color(0), color(1), color(2)); + fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n", stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), stl->facet_start[i].vertex[2](2), color(0), color(1), color(2)); } fclose(fp); + return true; } -void -stl_write_dxf(stl_file *stl, const char *file, char *label) { - int i; - FILE *fp; - char *error_msg; +bool stl_write_dxf(stl_file *stl, const char *file, char *label) +{ + FILE *fp = boost::nowide::fopen(file, "w"); + if (fp == nullptr) { + BOOST_LOG_TRIVIAL(error) << "stl_write_quad_object: Couldn't open " << file << " for writing"; + return false; + } - if (stl->error) return; + fprintf(fp, "999\n%s\n", label); + fprintf(fp, "0\nSECTION\n2\nHEADER\n0\nENDSEC\n"); + fprintf(fp, "0\nSECTION\n2\nTABLES\n0\nTABLE\n2\nLAYER\n70\n1\n\ + 0\nLAYER\n2\n0\n70\n0\n62\n7\n6\nCONTINUOUS\n0\nENDTAB\n0\nENDSEC\n"); + fprintf(fp, "0\nSECTION\n2\nBLOCKS\n0\nENDSEC\n"); - /* Open the file */ - fp = boost::nowide::fopen(file, "w"); - if(fp == NULL) { - error_msg = (char*) - malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */ - sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing", - file); - perror(error_msg); - free(error_msg); - stl->error = 1; - return; - } + fprintf(fp, "0\nSECTION\n2\nENTITIES\n"); - fprintf(fp, "999\n%s\n", label); - fprintf(fp, "0\nSECTION\n2\nHEADER\n0\nENDSEC\n"); - fprintf(fp, "0\nSECTION\n2\nTABLES\n0\nTABLE\n2\nLAYER\n70\n1\n\ -0\nLAYER\n2\n0\n70\n0\n62\n7\n6\nCONTINUOUS\n0\nENDTAB\n0\nENDSEC\n"); - fprintf(fp, "0\nSECTION\n2\nBLOCKS\n0\nENDSEC\n"); + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { + fprintf(fp, "0\n3DFACE\n8\n0\n"); + fprintf(fp, "10\n%f\n20\n%f\n30\n%f\n", stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1), stl->facet_start[i].vertex[0](2)); + fprintf(fp, "11\n%f\n21\n%f\n31\n%f\n", stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1), stl->facet_start[i].vertex[1](2)); + fprintf(fp, "12\n%f\n22\n%f\n32\n%f\n", stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), stl->facet_start[i].vertex[2](2)); + fprintf(fp, "13\n%f\n23\n%f\n33\n%f\n", stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), stl->facet_start[i].vertex[2](2)); + } - fprintf(fp, "0\nSECTION\n2\nENTITIES\n"); - - for(i = 0; i < stl->stats.number_of_facets; i++) { - fprintf(fp, "0\n3DFACE\n8\n0\n"); - fprintf(fp, "10\n%f\n20\n%f\n30\n%f\n", - stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1), - stl->facet_start[i].vertex[0](2)); - fprintf(fp, "11\n%f\n21\n%f\n31\n%f\n", - stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1), - stl->facet_start[i].vertex[1](2)); - fprintf(fp, "12\n%f\n22\n%f\n32\n%f\n", - stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), - stl->facet_start[i].vertex[2](2)); - fprintf(fp, "13\n%f\n23\n%f\n33\n%f\n", - stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1), - stl->facet_start[i].vertex[2](2)); - } - - fprintf(fp, "0\nENDSEC\n0\nEOF\n"); - - fclose(fp); -} - -void -stl_clear_error(stl_file *stl) { - stl->error = 0; -} - -void -stl_exit_on_error(stl_file *stl) { - if (!stl->error) return; - stl->error = 0; - stl_close(stl); - exit(1); -} - -int -stl_get_error(stl_file *stl) { - return stl->error; + fprintf(fp, "0\nENDSEC\n0\nEOF\n"); + fclose(fp); + return true; } diff --git a/src/admesh/stlinit.cpp b/src/admesh/stlinit.cpp index 911f4f5e8..a328baa75 100644 --- a/src/admesh/stlinit.cpp +++ b/src/admesh/stlinit.cpp @@ -26,6 +26,7 @@ #include #include +#include #include #include @@ -35,351 +36,236 @@ #error "SEEK_SET not defined" #endif -void -stl_open(stl_file *stl, const char *file) { - stl_initialize(stl); - stl_count_facets(stl, file); - stl_allocate(stl); - stl_read(stl, 0, true); - if (stl->fp != nullptr) { - fclose(stl->fp); - stl->fp = nullptr; - } +static FILE* stl_open_count_facets(stl_file *stl, const char *file) +{ + // Open the file in binary mode first. + FILE *fp = boost::nowide::fopen(file, "rb"); + if (fp == nullptr) { + BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: Couldn't open " << file << " for reading"; + return nullptr; + } + // Find size of file. + fseek(fp, 0, SEEK_END); + long file_size = ftell(fp); + + // Check for binary or ASCII file. + fseek(fp, HEADER_SIZE, SEEK_SET); + unsigned char chtest[128]; + if (! fread(chtest, sizeof(chtest), 1, fp)) { + BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: The input is an empty file: " << file; + fclose(fp); + return nullptr; + } + stl->stats.type = ascii; + for (size_t s = 0; s < sizeof(chtest); s++) { + if (chtest[s] > 127) { + stl->stats.type = binary; + break; + } + } + rewind(fp); + + uint32_t num_facets = 0; + + // Get the header and the number of facets in the .STL file. + // If the .STL file is binary, then do the following: + if (stl->stats.type == binary) { + // Test if the STL file has the right size. + if (((file_size - HEADER_SIZE) % SIZEOF_STL_FACET != 0) || (file_size < STL_MIN_FILE_SIZE)) { + BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: The file " << file << " has the wrong size."; + fclose(fp); + return nullptr; + } + num_facets = (file_size - HEADER_SIZE) / SIZEOF_STL_FACET; + + // Read the header. + if (fread(stl->stats.header, LABEL_SIZE, 1, fp) > 79) + stl->stats.header[80] = '\0'; + + // Read the int following the header. This should contain # of facets. + uint32_t header_num_facets; + bool header_num_faces_read = fread(&header_num_facets, sizeof(uint32_t), 1, fp) != 0; +#ifndef BOOST_LITTLE_ENDIAN + // Convert from little endian to big endian. + stl_internal_reverse_quads((char*)&header_num_facets, 4); +#endif /* BOOST_LITTLE_ENDIAN */ + if (! header_num_faces_read || num_facets != header_num_facets) + BOOST_LOG_TRIVIAL(info) << "stl_open_count_facets: Warning: File size doesn't match number of facets in the header: " << file; + } + // Otherwise, if the .STL file is ASCII, then do the following: + else + { + // Reopen the file in text mode (for getting correct newlines on Windows) + // fix to silence a warning about unused return value. + // obviously if it fails we have problems.... + fp = boost::nowide::freopen(file, "r", fp); + + // do another null check to be safe + if (fp == nullptr) { + BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: Couldn't open " << file << " for reading"; + fclose(fp); + return nullptr; + } + + // Find the number of facets. + char linebuf[100]; + int num_lines = 1; + while (fgets(linebuf, 100, fp) != nullptr) { + // Don't count short lines. + if (strlen(linebuf) <= 4) + continue; + // Skip solid/endsolid lines as broken STL file generators may put several of them. + if (strncmp(linebuf, "solid", 5) == 0 || strncmp(linebuf, "endsolid", 8) == 0) + continue; + ++ num_lines; + } + + rewind(fp); + + // Get the header. + int i = 0; + for (; i < 80 && (stl->stats.header[i] = getc(fp)) != '\n'; ++ i) ; + stl->stats.header[i] = '\0'; // Lose the '\n' + stl->stats.header[80] = '\0'; + + num_facets = num_lines / ASCII_LINES_PER_FACET; + } + + stl->stats.number_of_facets += num_facets; + stl->stats.original_num_facets = stl->stats.number_of_facets; + return fp; } -void -stl_initialize(stl_file *stl) { - memset(stl, 0, sizeof(stl_file)); - stl->stats.volume = -1.0; +/* Reads the contents of the file pointed to by fp into the stl structure, + starting at facet first_facet. The second argument says if it's our first + time running this for the stl and therefore we should reset our max and min stats. */ +static bool stl_read(stl_file *stl, FILE *fp, int first_facet, bool first) +{ + if (stl->stats.type == binary) + fseek(fp, HEADER_SIZE, SEEK_SET); + else + rewind(fp); + + char normal_buf[3][32]; + for (uint32_t i = first_facet; i < stl->stats.number_of_facets; ++ i) { + stl_facet facet; + + if (stl->stats.type == binary) { + // Read a single facet from a binary .STL file. We assume little-endian architecture! + if (fread(&facet, 1, SIZEOF_STL_FACET, fp) != SIZEOF_STL_FACET) + return false; +#ifndef BOOST_LITTLE_ENDIAN + // Convert the loaded little endian data to big endian. + stl_internal_reverse_quads((char*)&facet, 48); +#endif /* BOOST_LITTLE_ENDIAN */ + } else { + // Read a single facet from an ASCII .STL file + // skip solid/endsolid + // (in this order, otherwise it won't work when they are paired in the middle of a file) + fscanf(fp, "endsolid%*[^\n]\n"); + fscanf(fp, "solid%*[^\n]\n"); // name might contain spaces so %*s doesn't work and it also can be empty (just "solid") + // Leading space in the fscanf format skips all leading white spaces including numerous new lines and tabs. + int res_normal = fscanf(fp, " facet normal %31s %31s %31s", normal_buf[0], normal_buf[1], normal_buf[2]); + assert(res_normal == 3); + int res_outer_loop = fscanf(fp, " outer loop"); + assert(res_outer_loop == 0); + int res_vertex1 = fscanf(fp, " vertex %f %f %f", &facet.vertex[0](0), &facet.vertex[0](1), &facet.vertex[0](2)); + assert(res_vertex1 == 3); + int res_vertex2 = fscanf(fp, " vertex %f %f %f", &facet.vertex[1](0), &facet.vertex[1](1), &facet.vertex[1](2)); + assert(res_vertex2 == 3); + int res_vertex3 = fscanf(fp, " vertex %f %f %f", &facet.vertex[2](0), &facet.vertex[2](1), &facet.vertex[2](2)); + assert(res_vertex3 == 3); + int res_endloop = fscanf(fp, " endloop"); + assert(res_endloop == 0); + // There is a leading and trailing white space around endfacet to eat up all leading and trailing white spaces including numerous tabs and new lines. + int res_endfacet = fscanf(fp, " endfacet "); + if (res_normal != 3 || res_outer_loop != 0 || res_vertex1 != 3 || res_vertex2 != 3 || res_vertex3 != 3 || res_endloop != 0 || res_endfacet != 0) { + BOOST_LOG_TRIVIAL(error) << "Something is syntactically very wrong with this ASCII STL! "; + return false; + } + + // The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition. + if (sscanf(normal_buf[0], "%f", &facet.normal(0)) != 1 || + sscanf(normal_buf[1], "%f", &facet.normal(1)) != 1 || + sscanf(normal_buf[2], "%f", &facet.normal(2)) != 1) { + // Normal was mangled. Maybe denormals or "not a number" were stored? + // Just reset the normal and silently ignore it. + memset(&facet.normal, 0, sizeof(facet.normal)); + } + } + +#if 0 + // Report close to zero vertex coordinates. Due to the nature of the floating point numbers, + // close to zero values may be represented with singificantly higher precision than the rest of the vertices. + // It may be worth to round these numbers to zero during loading to reduce the number of errors reported + // during the STL import. + for (size_t j = 0; j < 3; ++ j) { + if (facet.vertex[j](0) > -1e-12f && facet.vertex[j](0) < 1e-12f) + printf("stl_read: facet %d(0) = %e\r\n", j, facet.vertex[j](0)); + if (facet.vertex[j](1) > -1e-12f && facet.vertex[j](1) < 1e-12f) + printf("stl_read: facet %d(1) = %e\r\n", j, facet.vertex[j](1)); + if (facet.vertex[j](2) > -1e-12f && facet.vertex[j](2) < 1e-12f) + printf("stl_read: facet %d(2) = %e\r\n", j, facet.vertex[j](2)); + } +#endif + + // Write the facet into memory. + stl->facet_start[i] = facet; + stl_facet_stats(stl, facet, first); + } + + stl->stats.size = stl->stats.max - stl->stats.min; + stl->stats.bounding_diameter = stl->stats.size.norm(); + return true; +} + +bool stl_open(stl_file *stl, const char *file) +{ + stl->clear(); + FILE *fp = stl_open_count_facets(stl, file); + if (fp == nullptr) + return false; + stl_allocate(stl); + bool result = stl_read(stl, fp, 0, true); + fclose(fp); + return result; } #ifndef BOOST_LITTLE_ENDIAN extern void stl_internal_reverse_quads(char *buf, size_t cnt); #endif /* BOOST_LITTLE_ENDIAN */ -void -stl_count_facets(stl_file *stl, const char *file) { - long file_size; - uint32_t header_num_facets; - uint32_t num_facets; - int i; - size_t s; - unsigned char chtest[128]; - int num_lines = 1; - char *error_msg; - - if (stl->error) return; - - /* Open the file in binary mode first */ - stl->fp = boost::nowide::fopen(file, "rb"); - if(stl->fp == NULL) { - error_msg = (char*) - malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */ - sprintf(error_msg, "stl_initialize: Couldn't open %s for reading", - file); - perror(error_msg); - free(error_msg); - stl->error = 1; - return; - } - /* Find size of file */ - fseek(stl->fp, 0, SEEK_END); - file_size = ftell(stl->fp); - - /* Check for binary or ASCII file */ - fseek(stl->fp, HEADER_SIZE, SEEK_SET); - if (!fread(chtest, sizeof(chtest), 1, stl->fp)) { - perror("The input is an empty file"); - stl->error = 1; - return; - } - stl->stats.type = ascii; - for(s = 0; s < sizeof(chtest); s++) { - if(chtest[s] > 127) { - stl->stats.type = binary; - break; - } - } - rewind(stl->fp); - - /* Get the header and the number of facets in the .STL file */ - /* If the .STL file is binary, then do the following */ - if(stl->stats.type == binary) { - /* Test if the STL file has the right size */ - if(((file_size - HEADER_SIZE) % SIZEOF_STL_FACET != 0) - || (file_size < STL_MIN_FILE_SIZE)) { - fprintf(stderr, "The file %s has the wrong size.\n", file); - stl->error = 1; - return; - } - num_facets = (file_size - HEADER_SIZE) / SIZEOF_STL_FACET; - - /* Read the header */ - if (fread(stl->stats.header, LABEL_SIZE, 1, stl->fp) > 79) { - stl->stats.header[80] = '\0'; - } - - /* Read the int following the header. This should contain # of facets */ - bool header_num_faces_read = fread(&header_num_facets, sizeof(uint32_t), 1, stl->fp) != 0; -#ifndef BOOST_LITTLE_ENDIAN - // Convert from little endian to big endian. - stl_internal_reverse_quads((char*)&header_num_facets, 4); -#endif /* BOOST_LITTLE_ENDIAN */ - if (! header_num_faces_read || num_facets != header_num_facets) { - fprintf(stderr, - "Warning: File size doesn't match number of facets in the header\n"); - } - } - /* Otherwise, if the .STL file is ASCII, then do the following */ - else { - /* Reopen the file in text mode (for getting correct newlines on Windows) */ - // fix to silence a warning about unused return value. - // obviously if it fails we have problems.... - stl->fp = boost::nowide::freopen(file, "r", stl->fp); - - // do another null check to be safe - if(stl->fp == NULL) { - error_msg = (char*) - malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */ - sprintf(error_msg, "stl_initialize: Couldn't open %s for reading", - file); - perror(error_msg); - free(error_msg); - stl->error = 1; - return; - } - - /* Find the number of facets */ - char linebuf[100]; - while (fgets(linebuf, 100, stl->fp) != NULL) { - /* don't count short lines */ - if (strlen(linebuf) <= 4) continue; - - /* skip solid/endsolid lines as broken STL file generators may put several of them */ - if (strncmp(linebuf, "solid", 5) == 0 || strncmp(linebuf, "endsolid", 8) == 0) continue; - - ++num_lines; - } - - rewind(stl->fp); - - /* Get the header */ - for(i = 0; - (i < 80) && (stl->stats.header[i] = getc(stl->fp)) != '\n'; i++); - stl->stats.header[i] = '\0'; /* Lose the '\n' */ - stl->stats.header[80] = '\0'; - - num_facets = num_lines / ASCII_LINES_PER_FACET; - } - stl->stats.number_of_facets += num_facets; - stl->stats.original_num_facets = stl->stats.number_of_facets; +void stl_allocate(stl_file *stl) +{ + // Allocate memory for the entire .STL file. + stl->facet_start.assign(stl->stats.number_of_facets, stl_facet()); + // Allocate memory for the neighbors list. + stl->neighbors_start.assign(stl->stats.number_of_facets, stl_neighbors()); } -void -stl_allocate(stl_file *stl) { - if (stl->error) return; - - /* Allocate memory for the entire .STL file */ - stl->facet_start = (stl_facet*)calloc(stl->stats.number_of_facets, - sizeof(stl_facet)); - if(stl->facet_start == NULL) perror("stl_initialize"); - stl->stats.facets_malloced = stl->stats.number_of_facets; - - /* Allocate memory for the neighbors list */ - stl->neighbors_start = (stl_neighbors*) - calloc(stl->stats.number_of_facets, sizeof(stl_neighbors)); - if(stl->facet_start == NULL) perror("stl_initialize"); -} - -void -stl_open_merge(stl_file *stl, char *file_to_merge) { - int num_facets_so_far; - stl_type origStlType; - FILE *origFp; - stl_file stl_to_merge; - - if (stl->error) return; - - /* Record how many facets we have so far from the first file. We will start putting - facets in the next position. Since we're 0-indexed, it'l be the same position. */ - num_facets_so_far = stl->stats.number_of_facets; - - /* Record the file type we started with: */ - origStlType=stl->stats.type; - /* Record the file pointer too: */ - origFp=stl->fp; - - /* Initialize the sturucture with zero stats, header info and sizes: */ - stl_initialize(&stl_to_merge); - stl_count_facets(&stl_to_merge, file_to_merge); - - /* Copy what we need to into stl so that we can read the file_to_merge directly into it - using stl_read: Save the rest of the valuable info: */ - stl->stats.type=stl_to_merge.stats.type; - stl->fp=stl_to_merge.fp; - - /* Add the number of facets we already have in stl with what we we found in stl_to_merge but - haven't read yet. */ - stl->stats.number_of_facets=num_facets_so_far+stl_to_merge.stats.number_of_facets; - - /* Allocate enough room for stl->stats.number_of_facets facets and neighbors: */ - stl_reallocate(stl); - - /* Read the file to merge directly into stl, adding it to what we have already. - Start at num_facets_so_far, the index to the first unused facet. Also say - that this isn't our first time so we should augment stats like min and max - instead of erasing them. */ - stl_read(stl, num_facets_so_far, false); - - /* Restore the stl information we overwrote (for stl_read) so that it still accurately - reflects the subject part: */ - stl->stats.type=origStlType; - stl->fp=origFp; -} - -extern void -stl_reallocate(stl_file *stl) { - if (stl->error) return; - /* Reallocate more memory for the .STL file(s) */ - stl->facet_start = (stl_facet*)realloc(stl->facet_start, stl->stats.number_of_facets * - sizeof(stl_facet)); - if(stl->facet_start == NULL) perror("stl_initialize"); - stl->stats.facets_malloced = stl->stats.number_of_facets; - - /* Reallocate more memory for the neighbors list */ - stl->neighbors_start = (stl_neighbors*) - realloc(stl->neighbors_start, stl->stats.number_of_facets * - sizeof(stl_neighbors)); - if(stl->facet_start == NULL) perror("stl_initialize"); -} - - -/* Reads the contents of the file pointed to by stl->fp into the stl structure, - starting at facet first_facet. The second argument says if it's our first - time running this for the stl and therefore we should reset our max and min stats. */ -void stl_read(stl_file *stl, int first_facet, bool first) { - stl_facet facet; - - if (stl->error) return; - - if(stl->stats.type == binary) { - fseek(stl->fp, HEADER_SIZE, SEEK_SET); - } else { - rewind(stl->fp); - } - - char normal_buf[3][32]; - for(uint32_t i = first_facet; i < stl->stats.number_of_facets; i++) { - if(stl->stats.type == binary) - /* Read a single facet from a binary .STL file */ - { - /* we assume little-endian architecture! */ - if (fread(&facet, 1, SIZEOF_STL_FACET, stl->fp) != SIZEOF_STL_FACET) { - stl->error = 1; - return; - } -#ifndef BOOST_LITTLE_ENDIAN - // Convert the loaded little endian data to big endian. - stl_internal_reverse_quads((char*)&facet, 48); -#endif /* BOOST_LITTLE_ENDIAN */ - } else - /* Read a single facet from an ASCII .STL file */ - { - // skip solid/endsolid - // (in this order, otherwise it won't work when they are paired in the middle of a file) - fscanf(stl->fp, "endsolid%*[^\n]\n"); - fscanf(stl->fp, "solid%*[^\n]\n"); // name might contain spaces so %*s doesn't work and it also can be empty (just "solid") - // Leading space in the fscanf format skips all leading white spaces including numerous new lines and tabs. - int res_normal = fscanf(stl->fp, " facet normal %31s %31s %31s", normal_buf[0], normal_buf[1], normal_buf[2]); - assert(res_normal == 3); - int res_outer_loop = fscanf(stl->fp, " outer loop"); - assert(res_outer_loop == 0); - int res_vertex1 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[0](0), &facet.vertex[0](1), &facet.vertex[0](2)); - assert(res_vertex1 == 3); - int res_vertex2 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[1](0), &facet.vertex[1](1), &facet.vertex[1](2)); - assert(res_vertex2 == 3); - int res_vertex3 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[2](0), &facet.vertex[2](1), &facet.vertex[2](2)); - assert(res_vertex3 == 3); - int res_endloop = fscanf(stl->fp, " endloop"); - assert(res_endloop == 0); - // There is a leading and trailing white space around endfacet to eat up all leading and trailing white spaces including numerous tabs and new lines. - int res_endfacet = fscanf(stl->fp, " endfacet "); - if (res_normal != 3 || res_outer_loop != 0 || res_vertex1 != 3 || res_vertex2 != 3 || res_vertex3 != 3 || res_endloop != 0 || res_endfacet != 0) { - perror("Something is syntactically very wrong with this ASCII STL!"); - stl->error = 1; - return; - } - - // The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition. - if (sscanf(normal_buf[0], "%f", &facet.normal(0)) != 1 || - sscanf(normal_buf[1], "%f", &facet.normal(1)) != 1 || - sscanf(normal_buf[2], "%f", &facet.normal(2)) != 1) { - // Normal was mangled. Maybe denormals or "not a number" were stored? - // Just reset the normal and silently ignore it. - memset(&facet.normal, 0, sizeof(facet.normal)); - } - } - -#if 0 - // Report close to zero vertex coordinates. Due to the nature of the floating point numbers, - // close to zero values may be represented with singificantly higher precision than the rest of the vertices. - // It may be worth to round these numbers to zero during loading to reduce the number of errors reported - // during the STL import. - for (size_t j = 0; j < 3; ++ j) { - if (facet.vertex[j](0) > -1e-12f && facet.vertex[j](0) < 1e-12f) - printf("stl_read: facet %d(0) = %e\r\n", j, facet.vertex[j](0)); - if (facet.vertex[j](1) > -1e-12f && facet.vertex[j](1) < 1e-12f) - printf("stl_read: facet %d(1) = %e\r\n", j, facet.vertex[j](1)); - if (facet.vertex[j](2) > -1e-12f && facet.vertex[j](2) < 1e-12f) - printf("stl_read: facet %d(2) = %e\r\n", j, facet.vertex[j](2)); - } -#endif - - /* Write the facet into memory. */ - stl->facet_start[i] = facet; - stl_facet_stats(stl, facet, first); - } - stl->stats.size = stl->stats.max - stl->stats.min; - stl->stats.bounding_diameter = stl->stats.size.norm(); +void stl_reallocate(stl_file *stl) +{ + stl->facet_start.resize(stl->stats.number_of_facets); + stl->neighbors_start.resize(stl->stats.number_of_facets); } void stl_facet_stats(stl_file *stl, stl_facet facet, bool &first) { - if (stl->error) - return; + // While we are going through all of the facets, let's find the + // maximum and minimum values for x, y, and z - // While we are going through all of the facets, let's find the - // maximum and minimum values for x, y, and z + if (first) { + // Initialize the max and min values the first time through + stl->stats.min = facet.vertex[0]; + stl->stats.max = facet.vertex[0]; + stl_vertex diff = (facet.vertex[1] - facet.vertex[0]).cwiseAbs(); + stl->stats.shortest_edge = std::max(diff(0), std::max(diff(1), diff(2))); + first = false; + } - if (first) { - // Initialize the max and min values the first time through - stl->stats.min = facet.vertex[0]; - stl->stats.max = facet.vertex[0]; - stl_vertex diff = (facet.vertex[1] - facet.vertex[0]).cwiseAbs(); - stl->stats.shortest_edge = std::max(diff(0), std::max(diff(1), diff(2))); - first = false; - } - - // Now find the max and min values. - for (size_t i = 0; i < 3; ++ i) { - stl->stats.min = stl->stats.min.cwiseMin(facet.vertex[i]); - stl->stats.max = stl->stats.max.cwiseMax(facet.vertex[i]); - } -} - -void stl_close(stl_file *stl) -{ - assert(stl->fp == nullptr); - assert(stl->heads == nullptr); - assert(stl->tail == nullptr); - - if (stl->facet_start != NULL) - free(stl->facet_start); - if (stl->neighbors_start != NULL) - free(stl->neighbors_start); - if (stl->v_indices != NULL) - free(stl->v_indices); - if (stl->v_shared != NULL) - free(stl->v_shared); - memset(stl, 0, sizeof(stl_file)); + // Now find the max and min values. + for (size_t i = 0; i < 3; ++ i) { + stl->stats.min = stl->stats.min.cwiseMin(facet.vertex[i]); + stl->stats.max = stl->stats.max.cwiseMax(facet.vertex[i]); + } } diff --git a/src/admesh/util.cpp b/src/admesh/util.cpp index 305a58e22..029e44a28 100644 --- a/src/admesh/util.cpp +++ b/src/admesh/util.cpp @@ -25,435 +25,375 @@ #include #include +#include + #include "stl.h" -static void stl_rotate(float *x, float *y, const double c, const double s); -static float get_area(stl_facet *facet); -static float get_volume(stl_file *stl); +void stl_verify_neighbors(stl_file *stl) +{ + stl->stats.backwards_edges = 0; - -void -stl_verify_neighbors(stl_file *stl) { - int i; - int j; - stl_edge edge_a; - stl_edge edge_b; - int neighbor; - int vnot; - - if (stl->error) return; - - stl->stats.backwards_edges = 0; - - for(i = 0; i < stl->stats.number_of_facets; i++) { - for(j = 0; j < 3; j++) { - edge_a.p1 = stl->facet_start[i].vertex[j]; - edge_a.p2 = stl->facet_start[i].vertex[(j + 1) % 3]; - neighbor = stl->neighbors_start[i].neighbor[j]; - vnot = stl->neighbors_start[i].which_vertex_not[j]; - - if(neighbor == -1) - continue; /* this edge has no neighbor... Continue. */ - if(vnot < 3) { - edge_b.p1 = stl->facet_start[neighbor].vertex[(vnot + 2) % 3]; - edge_b.p2 = stl->facet_start[neighbor].vertex[(vnot + 1) % 3]; - } else { - stl->stats.backwards_edges += 1; - edge_b.p1 = stl->facet_start[neighbor].vertex[(vnot + 1) % 3]; - edge_b.p2 = stl->facet_start[neighbor].vertex[(vnot + 2) % 3]; - } - if (edge_a.p1 != edge_b.p1 || edge_a.p2 != edge_b.p2) { - /* These edges should match but they don't. Print results. */ - printf("edge %d of facet %d doesn't match edge %d of facet %d\n", - j, i, vnot + 1, neighbor); - stl_write_facet(stl, (char*)"first facet", i); - stl_write_facet(stl, (char*)"second facet", neighbor); - } - } - } + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { + for (int j = 0; j < 3; ++ j) { + struct stl_edge { + stl_vertex p1; + stl_vertex p2; + int facet_number; + }; + stl_edge edge_a; + edge_a.p1 = stl->facet_start[i].vertex[j]; + edge_a.p2 = stl->facet_start[i].vertex[(j + 1) % 3]; + int neighbor = stl->neighbors_start[i].neighbor[j]; + if (neighbor == -1) + continue; // this edge has no neighbor... Continue. + int vnot = stl->neighbors_start[i].which_vertex_not[j]; + stl_edge edge_b; + if (vnot < 3) { + edge_b.p1 = stl->facet_start[neighbor].vertex[(vnot + 2) % 3]; + edge_b.p2 = stl->facet_start[neighbor].vertex[(vnot + 1) % 3]; + } else { + stl->stats.backwards_edges += 1; + edge_b.p1 = stl->facet_start[neighbor].vertex[(vnot + 1) % 3]; + edge_b.p2 = stl->facet_start[neighbor].vertex[(vnot + 2) % 3]; + } + if (edge_a.p1 != edge_b.p1 || edge_a.p2 != edge_b.p2) { + // These edges should match but they don't. Print results. + BOOST_LOG_TRIVIAL(info) << "edge " << j << " of facet " << i << " doesn't match edge " << (vnot + 1) << " of facet " << neighbor; + stl_write_facet(stl, (char*)"first facet", i); + stl_write_facet(stl, (char*)"second facet", neighbor); + } + } + } } void stl_translate(stl_file *stl, float x, float y, float z) { - if (stl->error) - return; - - stl_vertex new_min(x, y, z); - stl_vertex shift = new_min - stl->stats.min; - for (int i = 0; i < stl->stats.number_of_facets; ++ i) - for (int j = 0; j < 3; ++ j) - stl->facet_start[i].vertex[j] += shift; - stl->stats.min = new_min; - stl->stats.max += shift; - stl_invalidate_shared_vertices(stl); + stl_vertex new_min(x, y, z); + stl_vertex shift = new_min - stl->stats.min; + for (int i = 0; i < stl->stats.number_of_facets; ++ i) + for (int j = 0; j < 3; ++ j) + stl->facet_start[i].vertex[j] += shift; + stl->stats.min = new_min; + stl->stats.max += shift; } /* Translates the stl by x,y,z, relatively from wherever it is currently */ void stl_translate_relative(stl_file *stl, float x, float y, float z) { - if (stl->error) - return; - - stl_vertex shift(x, y, z); - for (int i = 0; i < stl->stats.number_of_facets; ++ i) - for (int j = 0; j < 3; ++ j) - stl->facet_start[i].vertex[j] += shift; - stl->stats.min += shift; - stl->stats.max += shift; - stl_invalidate_shared_vertices(stl); + stl_vertex shift(x, y, z); + for (int i = 0; i < stl->stats.number_of_facets; ++ i) + for (int j = 0; j < 3; ++ j) + stl->facet_start[i].vertex[j] += shift; + stl->stats.min += shift; + stl->stats.max += shift; } void stl_scale_versor(stl_file *stl, const stl_vertex &versor) { - if (stl->error) - return; - - // Scale extents. - auto s = versor.array(); - stl->stats.min.array() *= s; - stl->stats.max.array() *= s; - // Scale size. - stl->stats.size.array() *= s; - // Scale volume. - if (stl->stats.volume > 0.0) - stl->stats.volume *= versor(0) * versor(1) * versor(2); - // Scale the mesh. - for (int i = 0; i < stl->stats.number_of_facets; ++ i) - for (int j = 0; j < 3; ++ j) - stl->facet_start[i].vertex[j].array() *= s; - stl_invalidate_shared_vertices(stl); + // Scale extents. + auto s = versor.array(); + stl->stats.min.array() *= s; + stl->stats.max.array() *= s; + // Scale size. + stl->stats.size.array() *= s; + // Scale volume. + if (stl->stats.volume > 0.0) + stl->stats.volume *= versor(0) * versor(1) * versor(2); + // Scale the mesh. + for (int i = 0; i < stl->stats.number_of_facets; ++ i) + for (int j = 0; j < 3; ++ j) + stl->facet_start[i].vertex[j].array() *= s; } static void calculate_normals(stl_file *stl) { - if (stl->error) - return; - - stl_normal normal; - for(uint32_t i = 0; i < stl->stats.number_of_facets; i++) { - stl_calculate_normal(normal, &stl->facet_start[i]); - stl_normalize_vector(normal); - stl->facet_start[i].normal = normal; - } + stl_normal normal; + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { + stl_calculate_normal(normal, &stl->facet_start[i]); + stl_normalize_vector(normal); + stl->facet_start[i].normal = normal; + } } -void -stl_rotate_x(stl_file *stl, float angle) { - int i; - int j; - double radian_angle = (angle / 180.0) * M_PI; - double c = cos(radian_angle); - double s = sin(radian_angle); - - if (stl->error) return; - - for(i = 0; i < stl->stats.number_of_facets; i++) { - for(j = 0; j < 3; j++) { - stl_rotate(&stl->facet_start[i].vertex[j](1), - &stl->facet_start[i].vertex[j](2), c, s); - } - } - stl_get_size(stl); - calculate_normals(stl); +static inline void rotate_point_2d(float &x, float &y, const double c, const double s) +{ + double xold = x; + double yold = y; + x = float(c * xold - s * yold); + y = float(s * xold + c * yold); } -void -stl_rotate_y(stl_file *stl, float angle) { - int i; - int j; - double radian_angle = (angle / 180.0) * M_PI; - double c = cos(radian_angle); - double s = sin(radian_angle); - - if (stl->error) return; - - for(i = 0; i < stl->stats.number_of_facets; i++) { - for(j = 0; j < 3; j++) { - stl_rotate(&stl->facet_start[i].vertex[j](2), - &stl->facet_start[i].vertex[j](0), c, s); - } - } - stl_get_size(stl); - calculate_normals(stl); +void stl_rotate_x(stl_file *stl, float angle) +{ + double radian_angle = (angle / 180.0) * M_PI; + double c = cos(radian_angle); + double s = sin(radian_angle); + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) + for (int j = 0; j < 3; ++ j) + rotate_point_2d(stl->facet_start[i].vertex[j](1), stl->facet_start[i].vertex[j](2), c, s); + stl_get_size(stl); + calculate_normals(stl); } -void -stl_rotate_z(stl_file *stl, float angle) { - int i; - int j; - double radian_angle = (angle / 180.0) * M_PI; - double c = cos(radian_angle); - double s = sin(radian_angle); - - if (stl->error) return; - - for(i = 0; i < stl->stats.number_of_facets; i++) { - for(j = 0; j < 3; j++) { - stl_rotate(&stl->facet_start[i].vertex[j](0), - &stl->facet_start[i].vertex[j](1), c, s); - } - } - stl_get_size(stl); - calculate_normals(stl); +void stl_rotate_y(stl_file *stl, float angle) +{ + double radian_angle = (angle / 180.0) * M_PI; + double c = cos(radian_angle); + double s = sin(radian_angle); + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) + for (int j = 0; j < 3; ++ j) + rotate_point_2d(stl->facet_start[i].vertex[j](2), stl->facet_start[i].vertex[j](0), c, s); + stl_get_size(stl); + calculate_normals(stl); } +void stl_rotate_z(stl_file *stl, float angle) +{ + double radian_angle = (angle / 180.0) * M_PI; + double c = cos(radian_angle); + double s = sin(radian_angle); + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) + for (int j = 0; j < 3; ++ j) + rotate_point_2d(stl->facet_start[i].vertex[j](0), stl->facet_start[i].vertex[j](1), c, s); + stl_get_size(stl); + calculate_normals(stl); +} +void its_rotate_x(indexed_triangle_set &its, float angle) +{ + double radian_angle = (angle / 180.0) * M_PI; + double c = cos(radian_angle); + double s = sin(radian_angle); + for (stl_vertex &v : its.vertices) + rotate_point_2d(v(1), v(2), c, s); +} -static void -stl_rotate(float *x, float *y, const double c, const double s) { - double xold = *x; - double yold = *y; - *x = float(c * xold - s * yold); - *y = float(s * xold + c * yold); +void its_rotate_y(indexed_triangle_set& its, float angle) +{ + double radian_angle = (angle / 180.0) * M_PI; + double c = cos(radian_angle); + double s = sin(radian_angle); + for (stl_vertex& v : its.vertices) + rotate_point_2d(v(2), v(0), c, s); +} + +void its_rotate_z(indexed_triangle_set& its, float angle) +{ + double radian_angle = (angle / 180.0) * M_PI; + double c = cos(radian_angle); + double s = sin(radian_angle); + for (stl_vertex& v : its.vertices) + rotate_point_2d(v(0), v(1), c, s); } void stl_get_size(stl_file *stl) { - if (stl->error || stl->stats.number_of_facets == 0) - return; - stl->stats.min = stl->facet_start[0].vertex[0]; - stl->stats.max = stl->stats.min; - for (int i = 0; i < stl->stats.number_of_facets; ++ i) { - const stl_facet &face = stl->facet_start[i]; - for (int j = 0; j < 3; ++ j) { - stl->stats.min = stl->stats.min.cwiseMin(face.vertex[j]); - stl->stats.max = stl->stats.max.cwiseMax(face.vertex[j]); - } - } - stl->stats.size = stl->stats.max - stl->stats.min; - stl->stats.bounding_diameter = stl->stats.size.norm(); + if (stl->stats.number_of_facets == 0) + return; + stl->stats.min = stl->facet_start[0].vertex[0]; + stl->stats.max = stl->stats.min; + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { + const stl_facet &face = stl->facet_start[i]; + for (int j = 0; j < 3; ++ j) { + stl->stats.min = stl->stats.min.cwiseMin(face.vertex[j]); + stl->stats.max = stl->stats.max.cwiseMax(face.vertex[j]); + } + } + stl->stats.size = stl->stats.max - stl->stats.min; + stl->stats.bounding_diameter = stl->stats.size.norm(); } void stl_mirror_xy(stl_file *stl) { - if (stl->error) - return; - - for(int i = 0; i < stl->stats.number_of_facets; i++) { - for(int j = 0; j < 3; j++) { - stl->facet_start[i].vertex[j](2) *= -1.0; - } - } - float temp_size = stl->stats.min(2); - stl->stats.min(2) = stl->stats.max(2); - stl->stats.max(2) = temp_size; - stl->stats.min(2) *= -1.0; - stl->stats.max(2) *= -1.0; - stl_reverse_all_facets(stl); - stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */ + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) + for (int j = 0; j < 3; ++ j) + stl->facet_start[i].vertex[j](2) *= -1.0; + float temp_size = stl->stats.min(2); + stl->stats.min(2) = stl->stats.max(2); + stl->stats.max(2) = temp_size; + stl->stats.min(2) *= -1.0; + stl->stats.max(2) *= -1.0; + stl_reverse_all_facets(stl); + stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */ } void stl_mirror_yz(stl_file *stl) { - if (stl->error) return; - - for (int i = 0; i < stl->stats.number_of_facets; i++) { - for (int j = 0; j < 3; j++) { - stl->facet_start[i].vertex[j](0) *= -1.0; - } - } - float temp_size = stl->stats.min(0); - stl->stats.min(0) = stl->stats.max(0); - stl->stats.max(0) = temp_size; - stl->stats.min(0) *= -1.0; - stl->stats.max(0) *= -1.0; - stl_reverse_all_facets(stl); - stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */ + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) + for (int j = 0; j < 3; j++) + stl->facet_start[i].vertex[j](0) *= -1.0; + float temp_size = stl->stats.min(0); + stl->stats.min(0) = stl->stats.max(0); + stl->stats.max(0) = temp_size; + stl->stats.min(0) *= -1.0; + stl->stats.max(0) *= -1.0; + stl_reverse_all_facets(stl); + stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */ } void stl_mirror_xz(stl_file *stl) { - if (stl->error) - return; - - for (int i = 0; i < stl->stats.number_of_facets; i++) { - for (int j = 0; j < 3; j++) { - stl->facet_start[i].vertex[j](1) *= -1.0; - } - } - float temp_size = stl->stats.min(1); - stl->stats.min(1) = stl->stats.max(1); - stl->stats.max(1) = temp_size; - stl->stats.min(1) *= -1.0; - stl->stats.max(1) *= -1.0; - stl_reverse_all_facets(stl); - stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */ -} - -static float get_volume(stl_file *stl) -{ - if (stl->error) - return 0; - - // Choose a point, any point as the reference. - stl_vertex p0 = stl->facet_start[0].vertex[0]; - float volume = 0.f; - for(uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { - // Do dot product to get distance from point to plane. - float height = stl->facet_start[i].normal.dot(stl->facet_start[i].vertex[0] - p0); - float area = get_area(&stl->facet_start[i]); - volume += (area * height) / 3.0f; - } - return volume; -} - -void stl_calculate_volume(stl_file *stl) -{ - if (stl->error) return; - stl->stats.volume = get_volume(stl); - if(stl->stats.volume < 0.0) { - stl_reverse_all_facets(stl); - stl->stats.volume = -stl->stats.volume; - } + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) + for (int j = 0; j < 3; ++ j) + stl->facet_start[i].vertex[j](1) *= -1.0; + float temp_size = stl->stats.min(1); + stl->stats.min(1) = stl->stats.max(1); + stl->stats.max(1) = temp_size; + stl->stats.min(1) *= -1.0; + stl->stats.max(1) *= -1.0; + stl_reverse_all_facets(stl); + stl->stats.facets_reversed -= stl->stats.number_of_facets; // for not altering stats } static float get_area(stl_facet *facet) { - /* cast to double before calculating cross product because large coordinates - can result in overflowing product - (bad area is responsible for bad volume and bad facets reversal) */ - double cross[3][3]; - for (int i = 0; i < 3; i++) { - cross[i][0]=(((double)facet->vertex[i](1) * (double)facet->vertex[(i + 1) % 3](2)) - - ((double)facet->vertex[i](2) * (double)facet->vertex[(i + 1) % 3](1))); - cross[i][1]=(((double)facet->vertex[i](2) * (double)facet->vertex[(i + 1) % 3](0)) - - ((double)facet->vertex[i](0) * (double)facet->vertex[(i + 1) % 3](2))); - cross[i][2]=(((double)facet->vertex[i](0) * (double)facet->vertex[(i + 1) % 3](1)) - - ((double)facet->vertex[i](1) * (double)facet->vertex[(i + 1) % 3](0))); - } + /* cast to double before calculating cross product because large coordinates + can result in overflowing product + (bad area is responsible for bad volume and bad facets reversal) */ + double cross[3][3]; + for (int i = 0; i < 3; i++) { + cross[i][0]=(((double)facet->vertex[i](1) * (double)facet->vertex[(i + 1) % 3](2)) - + ((double)facet->vertex[i](2) * (double)facet->vertex[(i + 1) % 3](1))); + cross[i][1]=(((double)facet->vertex[i](2) * (double)facet->vertex[(i + 1) % 3](0)) - + ((double)facet->vertex[i](0) * (double)facet->vertex[(i + 1) % 3](2))); + cross[i][2]=(((double)facet->vertex[i](0) * (double)facet->vertex[(i + 1) % 3](1)) - + ((double)facet->vertex[i](1) * (double)facet->vertex[(i + 1) % 3](0))); + } - stl_normal sum; - sum(0) = cross[0][0] + cross[1][0] + cross[2][0]; - sum(1) = cross[0][1] + cross[1][1] + cross[2][1]; - sum(2) = cross[0][2] + cross[1][2] + cross[2][2]; + stl_normal sum; + sum(0) = cross[0][0] + cross[1][0] + cross[2][0]; + sum(1) = cross[0][1] + cross[1][1] + cross[2][1]; + sum(2) = cross[0][2] + cross[1][2] + cross[2][2]; - // This should already be done. But just in case, let's do it again. - //FIXME this is questionable. the "sum" normal should be accurate, while the normal "n" may be calculated with a low accuracy. - stl_normal n; - stl_calculate_normal(n, facet); - stl_normalize_vector(n); - return 0.5f * n.dot(sum); + // This should already be done. But just in case, let's do it again. + //FIXME this is questionable. the "sum" normal should be accurate, while the normal "n" may be calculated with a low accuracy. + stl_normal n; + stl_calculate_normal(n, facet); + stl_normalize_vector(n); + return 0.5f * n.dot(sum); } -void stl_repair(stl_file *stl, - int fixall_flag, - int exact_flag, - int tolerance_flag, - float tolerance, - int increment_flag, - float increment, - int nearby_flag, - int iterations, - int remove_unconnected_flag, - int fill_holes_flag, - int normal_directions_flag, - int normal_values_flag, - int reverse_all_flag, - int verbose_flag) { - - int i; - int last_edges_fixed = 0; - - if (stl->error) return; - - if(exact_flag || fixall_flag || nearby_flag || remove_unconnected_flag - || fill_holes_flag || normal_directions_flag) { - if (verbose_flag) - printf("Checking exact...\n"); - exact_flag = 1; - stl_check_facets_exact(stl); - stl->stats.facets_w_1_bad_edge = - (stl->stats.connected_facets_2_edge - - stl->stats.connected_facets_3_edge); - stl->stats.facets_w_2_bad_edge = - (stl->stats.connected_facets_1_edge - - stl->stats.connected_facets_2_edge); - stl->stats.facets_w_3_bad_edge = - (stl->stats.number_of_facets - - stl->stats.connected_facets_1_edge); - } - - if(nearby_flag || fixall_flag) { - if(!tolerance_flag) { - tolerance = stl->stats.shortest_edge; - } - if(!increment_flag) { - increment = stl->stats.bounding_diameter / 10000.0; - } - - if(stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) { - for(i = 0; i < iterations; i++) { - if(stl->stats.connected_facets_3_edge < - stl->stats.number_of_facets) { - if (verbose_flag) - printf("\ -Checking nearby. Tolerance= %f Iteration=%d of %d...", - tolerance, i + 1, iterations); - stl_check_facets_nearby(stl, tolerance); - if (verbose_flag) - printf(" Fixed %d edges.\n", - stl->stats.edges_fixed - last_edges_fixed); - last_edges_fixed = stl->stats.edges_fixed; - tolerance += increment; - } else { - if (verbose_flag) - printf("\ -All facets connected. No further nearby check necessary.\n"); - break; - } - } - } else { - if (verbose_flag) - printf("All facets connected. No nearby check necessary.\n"); - } - } - - if(remove_unconnected_flag || fixall_flag || fill_holes_flag) { - if(stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) { - if (verbose_flag) - printf("Removing unconnected facets...\n"); - stl_remove_unconnected_facets(stl); - } else - if (verbose_flag) - printf("No unconnected need to be removed.\n"); - } - - if(fill_holes_flag || fixall_flag) { - if(stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) { - if (verbose_flag) - printf("Filling holes...\n"); - stl_fill_holes(stl); - } else - if (verbose_flag) - printf("No holes need to be filled.\n"); - } - - if(reverse_all_flag) { - if (verbose_flag) - printf("Reversing all facets...\n"); - stl_reverse_all_facets(stl); - } - - if(normal_directions_flag || fixall_flag) { - if (verbose_flag) - printf("Checking normal directions...\n"); - stl_fix_normal_directions(stl); - } - - if(normal_values_flag || fixall_flag) { - if (verbose_flag) - printf("Checking normal values...\n"); - stl_fix_normal_values(stl); - } - - /* Always calculate the volume. It shouldn't take too long */ - if (verbose_flag) - printf("Calculating volume...\n"); - stl_calculate_volume(stl); - - if(exact_flag) { - if (verbose_flag) - printf("Verifying neighbors...\n"); - stl_verify_neighbors(stl); - } +static float get_volume(stl_file *stl) +{ + // Choose a point, any point as the reference. + stl_vertex p0 = stl->facet_start[0].vertex[0]; + float volume = 0.f; + for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) { + // Do dot product to get distance from point to plane. + float height = stl->facet_start[i].normal.dot(stl->facet_start[i].vertex[0] - p0); + float area = get_area(&stl->facet_start[i]); + volume += (area * height) / 3.0f; + } + return volume; +} + +void stl_calculate_volume(stl_file *stl) +{ + stl->stats.volume = get_volume(stl); + if (stl->stats.volume < 0.0) { + stl_reverse_all_facets(stl); + stl->stats.volume = -stl->stats.volume; + } +} + +void stl_repair( + stl_file *stl, + bool fixall_flag, + bool exact_flag, + bool tolerance_flag, + float tolerance, + bool increment_flag, + float increment, + bool nearby_flag, + int iterations, + bool remove_unconnected_flag, + bool fill_holes_flag, + bool normal_directions_flag, + bool normal_values_flag, + bool reverse_all_flag, + bool verbose_flag) +{ + if (exact_flag || fixall_flag || nearby_flag || remove_unconnected_flag || fill_holes_flag || normal_directions_flag) { + if (verbose_flag) + printf("Checking exact...\n"); + exact_flag = true; + stl_check_facets_exact(stl); + stl->stats.facets_w_1_bad_edge = (stl->stats.connected_facets_2_edge - stl->stats.connected_facets_3_edge); + stl->stats.facets_w_2_bad_edge = (stl->stats.connected_facets_1_edge - stl->stats.connected_facets_2_edge); + stl->stats.facets_w_3_bad_edge = (stl->stats.number_of_facets - stl->stats.connected_facets_1_edge); + } + + if (nearby_flag || fixall_flag) { + if (! tolerance_flag) + tolerance = stl->stats.shortest_edge; + if (! increment_flag) + increment = stl->stats.bounding_diameter / 10000.0; + } + + if (stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) { + int last_edges_fixed = 0; + for (int i = 0; i < iterations; ++ i) { + if (stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) { + if (verbose_flag) + printf("Checking nearby. Tolerance= %f Iteration=%d of %d...", tolerance, i + 1, iterations); + stl_check_facets_nearby(stl, tolerance); + if (verbose_flag) + printf(" Fixed %d edges.\n", stl->stats.edges_fixed - last_edges_fixed); + last_edges_fixed = stl->stats.edges_fixed; + tolerance += increment; + } else { + if (verbose_flag) + printf("All facets connected. No further nearby check necessary.\n"); + break; + } + } + } else if (verbose_flag) + printf("All facets connected. No nearby check necessary.\n"); + + if (remove_unconnected_flag || fixall_flag || fill_holes_flag) { + if (stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) { + if (verbose_flag) + printf("Removing unconnected facets...\n"); + stl_remove_unconnected_facets(stl); + } else if (verbose_flag) + printf("No unconnected need to be removed.\n"); + } + + if (fill_holes_flag || fixall_flag) { + if (stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) { + if (verbose_flag) + printf("Filling holes...\n"); + stl_fill_holes(stl); + } else if (verbose_flag) + printf("No holes need to be filled.\n"); + } + + if (reverse_all_flag) { + if (verbose_flag) + printf("Reversing all facets...\n"); + stl_reverse_all_facets(stl); + } + + if (normal_directions_flag || fixall_flag) { + if (verbose_flag) + printf("Checking normal directions...\n"); + stl_fix_normal_directions(stl); + } + + if (normal_values_flag || fixall_flag) { + if (verbose_flag) + printf("Checking normal values...\n"); + stl_fix_normal_values(stl); + } + + // Always calculate the volume. It shouldn't take too long. + if (verbose_flag) + printf("Calculating volume...\n"); + stl_calculate_volume(stl); + + if (exact_flag) { + if (verbose_flag) + printf("Verifying neighbors...\n"); + stl_verify_neighbors(stl); + } } diff --git a/src/libslic3r/Fill/FillRectilinear3.cpp b/src/libslic3r/Fill/FillRectilinear3.cpp index 8a0b90ead..dab584298 100644 --- a/src/libslic3r/Fill/FillRectilinear3.cpp +++ b/src/libslic3r/Fill/FillRectilinear3.cpp @@ -15,7 +15,7 @@ #include "FillRectilinear3.hpp" - #define SLIC3R_DEBUG +// #define SLIC3R_DEBUG // Make assert active if SLIC3R_DEBUG #ifdef SLIC3R_DEBUG diff --git a/src/libslic3r/Format/3mf.cpp b/src/libslic3r/Format/3mf.cpp index 38b34c462..4793586e3 100644 --- a/src/libslic3r/Format/3mf.cpp +++ b/src/libslic3r/Format/3mf.cpp @@ -1489,10 +1489,10 @@ namespace Slic3r { } // splits volume out of imported geometry - unsigned int triangles_count = volume_data.last_triangle_id - volume_data.first_triangle_id + 1; - ModelVolume* volume = object.add_volume(TriangleMesh()); - stl_file& stl = volume->mesh.stl; - stl.stats.type = inmemory; + TriangleMesh triangle_mesh; + stl_file &stl = triangle_mesh.stl; + unsigned int triangles_count = volume_data.last_triangle_id - volume_data.first_triangle_id + 1; + stl.stats.type = inmemory; stl.stats.number_of_facets = (uint32_t)triangles_count; stl.stats.original_num_facets = (int)stl.stats.number_of_facets; stl_allocate(&stl); @@ -1509,9 +1509,11 @@ namespace Slic3r { } } - stl_get_size(&stl); - volume->mesh.repair(); - volume->center_geometry(); + stl_get_size(&stl); + triangle_mesh.repair(); + + ModelVolume* volume = object.add_volume(std::move(triangle_mesh)); + volume->center_geometry_after_creation(); volume->calculate_convex_hull(); // apply volume's name and config data @@ -1879,29 +1881,28 @@ namespace Slic3r { if (volume == nullptr) continue; + if (!volume->mesh().repaired) + throw std::runtime_error("store_3mf() requires repair()"); + if (!volume->mesh().has_shared_vertices()) + throw std::runtime_error("store_3mf() requires shared vertices"); + volumes_offsets.insert(VolumeToOffsetsMap::value_type(volume, Offsets(vertices_count))).first; - if (!volume->mesh.repaired) - volume->mesh.repair(); - - stl_file& stl = volume->mesh.stl; - if (stl.v_shared == nullptr) - stl_generate_shared_vertices(&stl); - - if (stl.stats.shared_vertices == 0) + const indexed_triangle_set &its = volume->mesh().its; + if (its.vertices.empty()) { add_error("Found invalid mesh"); return false; } - vertices_count += stl.stats.shared_vertices; + vertices_count += its.vertices.size(); const Transform3d& matrix = volume->get_matrix(); - for (int i = 0; i < stl.stats.shared_vertices; ++i) + for (size_t i = 0; i < its.vertices.size(); ++i) { stream << " <" << VERTEX_TAG << " "; - Vec3f v = (matrix * stl.v_shared[i].cast()).cast(); + Vec3f v = (matrix * its.vertices[i].cast()).cast(); stream << "x=\"" << v(0) << "\" "; stream << "y=\"" << v(1) << "\" "; stream << "z=\"" << v(2) << "\" />\n"; @@ -1920,19 +1921,19 @@ namespace Slic3r { VolumeToOffsetsMap::iterator volume_it = volumes_offsets.find(volume); assert(volume_it != volumes_offsets.end()); - stl_file& stl = volume->mesh.stl; + const indexed_triangle_set &its = volume->mesh().its; // updates triangle offsets volume_it->second.first_triangle_id = triangles_count; - triangles_count += stl.stats.number_of_facets; + triangles_count += its.indices.size(); volume_it->second.last_triangle_id = triangles_count - 1; - for (uint32_t i = 0; i < stl.stats.number_of_facets; ++i) + for (size_t i = 0; i < its.indices.size(); ++ i) { stream << " <" << TRIANGLE_TAG << " "; for (int j = 0; j < 3; ++j) { - stream << "v" << j + 1 << "=\"" << stl.v_indices[i].vertex[j] + volume_it->second.first_vertex_id << "\" "; + stream << "v" << j + 1 << "=\"" << its.indices[i][j] + volume_it->second.first_vertex_id << "\" "; } stream << "/>\n"; } diff --git a/src/libslic3r/Format/AMF.cpp b/src/libslic3r/Format/AMF.cpp index d26b5f3ed..a33d21c9f 100644 --- a/src/libslic3r/Format/AMF.cpp +++ b/src/libslic3r/Format/AMF.cpp @@ -522,7 +522,8 @@ void AMFParserContext::endElement(const char * /* name */) case NODE_TYPE_VOLUME: { assert(m_object && m_volume); - stl_file &stl = m_volume->mesh.stl; + TriangleMesh mesh; + stl_file &stl = mesh.stl; stl.stats.type = inmemory; stl.stats.number_of_facets = int(m_volume_facets.size() / 3); stl.stats.original_num_facets = stl.stats.number_of_facets; @@ -533,8 +534,9 @@ void AMFParserContext::endElement(const char * /* name */) memcpy(facet.vertex[v].data(), &m_object_vertices[m_volume_facets[i ++] * 3], 3 * sizeof(float)); } stl_get_size(&stl); - m_volume->mesh.repair(); - m_volume->center_geometry(); + mesh.repair(); + m_volume->set_mesh(std::move(mesh)); + m_volume->center_geometry_after_creation(); m_volume->calculate_convex_hull(); m_volume_facets.clear(); m_volume = nullptr; @@ -923,23 +925,23 @@ bool store_amf(const char *path, Model *model, const DynamicPrintConfig *config) int num_vertices = 0; for (ModelVolume *volume : object->volumes) { vertices_offsets.push_back(num_vertices); - if (! volume->mesh.repaired) + if (! volume->mesh().repaired) throw std::runtime_error("store_amf() requires repair()"); - auto &stl = volume->mesh.stl; - if (stl.v_shared == nullptr) - stl_generate_shared_vertices(&stl); + if (! volume->mesh().has_shared_vertices()) + throw std::runtime_error("store_amf() requires shared vertices"); + const indexed_triangle_set &its = volume->mesh().its; const Transform3d& matrix = volume->get_matrix(); - for (size_t i = 0; i < stl.stats.shared_vertices; ++i) { + for (size_t i = 0; i < its.vertices.size(); ++i) { stream << " \n"; stream << " \n"; - Vec3f v = (matrix * stl.v_shared[i].cast()).cast(); + Vec3f v = (matrix * its.vertices[i].cast()).cast(); stream << " " << v(0) << "\n"; stream << " " << v(1) << "\n"; stream << " " << v(2) << "\n"; stream << " \n"; stream << " \n"; } - num_vertices += stl.stats.shared_vertices; + num_vertices += its.vertices.size(); } stream << " \n"; for (size_t i_volume = 0; i_volume < object->volumes.size(); ++i_volume) { @@ -956,10 +958,11 @@ bool store_amf(const char *path, Model *model, const DynamicPrintConfig *config) if (volume->is_modifier()) stream << " 1\n"; stream << " " << ModelVolume::type_to_string(volume->type()) << "\n"; - for (int i = 0; i < (int)volume->mesh.stl.stats.number_of_facets; ++i) { + const indexed_triangle_set &its = volume->mesh().its; + for (size_t i = 0; i < (int)its.indices.size(); ++i) { stream << " \n"; for (int j = 0; j < 3; ++j) - stream << " " << volume->mesh.stl.v_indices[i].vertex[j] + vertices_offset << "\n"; + stream << " " << its.indices[i][j] + vertices_offset << "\n"; stream << " \n"; } stream << " \n"; diff --git a/src/libslic3r/Format/PRUS.cpp b/src/libslic3r/Format/PRUS.cpp index 502cac6e9..03ea71a83 100644 --- a/src/libslic3r/Format/PRUS.cpp +++ b/src/libslic3r/Format/PRUS.cpp @@ -161,16 +161,15 @@ static void extract_model_from_archive( else { // Header has been extracted. Now read the faces. stl_file &stl = mesh.stl; - stl.error = 0; stl.stats.type = inmemory; stl.stats.number_of_facets = header.nTriangles; stl.stats.original_num_facets = header.nTriangles; stl_allocate(&stl); if (header.nTriangles > 0 && data.size() == 50 * header.nTriangles + sizeof(StlHeader)) { - memcpy((char*)stl.facet_start, data.data() + sizeof(StlHeader), 50 * header.nTriangles); + memcpy((char*)stl.facet_start.data(), data.data() + sizeof(StlHeader), 50 * header.nTriangles); if (sizeof(stl_facet) > SIZEOF_STL_FACET) { // The stl.facet_start is not packed tightly. Unpack the array of stl_facets. - unsigned char *data = (unsigned char*)stl.facet_start; + unsigned char *data = (unsigned char*)stl.facet_start.data(); for (size_t i = header.nTriangles - 1; i > 0; -- i) memmove(data + i * sizeof(stl_facet), data + i * SIZEOF_STL_FACET, SIZEOF_STL_FACET); } @@ -257,7 +256,7 @@ static void extract_model_from_archive( stl.stats.number_of_facets = (uint32_t)facets.size(); stl.stats.original_num_facets = (int)facets.size(); stl_allocate(&stl); - memcpy((void*)stl.facet_start, facets.data(), facets.size() * 50); + memcpy((void*)stl.facet_start.data(), facets.data(), facets.size() * 50); stl_get_size(&stl); mesh.repair(); // Add a mesh to a model. diff --git a/src/libslic3r/Format/STL.cpp b/src/libslic3r/Format/STL.cpp index b00623d1d..932906fe0 100644 --- a/src/libslic3r/Format/STL.cpp +++ b/src/libslic3r/Format/STL.cpp @@ -17,8 +17,7 @@ namespace Slic3r { bool load_stl(const char *path, Model *model, const char *object_name_in) { TriangleMesh mesh; - mesh.ReadSTLFile(path); - if (mesh.stl.error) { + if (! mesh.ReadSTLFile(path)) { // die "Failed to open $file\n" if !-e $path; return false; } diff --git a/src/libslic3r/Model.cpp b/src/libslic3r/Model.cpp index 3b1bd5df2..8e879a3e6 100644 --- a/src/libslic3r/Model.cpp +++ b/src/libslic3r/Model.cpp @@ -160,12 +160,6 @@ Model Model::read_from_archive(const std::string &input_file, DynamicPrintConfig return model; } -void Model::repair() -{ - for (ModelObject *o : this->objects) - o->repair(); -} - ModelObject* Model::add_object() { this->objects.emplace_back(new ModelObject(this)); @@ -472,7 +466,7 @@ bool Model::looks_like_multipart_object() const if (obj->volumes.size() > 1 || obj->config.keys().size() > 1) return false; for (const ModelVolume *vol : obj->volumes) { - double zmin_this = vol->mesh.bounding_box().min(2); + double zmin_this = vol->mesh().bounding_box().min(2); if (zmin == std::numeric_limits::max()) zmin = zmin_this; else if (std::abs(zmin - zmin_this) > EPSILON) @@ -679,7 +673,7 @@ ModelVolume* ModelObject::add_volume(const TriangleMesh &mesh) { ModelVolume* v = new ModelVolume(this, mesh); this->volumes.push_back(v); - v->center_geometry(); + v->center_geometry_after_creation(); this->invalidate_bounding_box(); return v; } @@ -688,7 +682,7 @@ ModelVolume* ModelObject::add_volume(TriangleMesh &&mesh) { ModelVolume* v = new ModelVolume(this, std::move(mesh)); this->volumes.push_back(v); - v->center_geometry(); + v->center_geometry_after_creation(); this->invalidate_bounding_box(); return v; } @@ -697,8 +691,9 @@ ModelVolume* ModelObject::add_volume(const ModelVolume &other) { ModelVolume* v = new ModelVolume(this, other); this->volumes.push_back(v); - v->center_geometry(); - this->invalidate_bounding_box(); + // The volume should already be centered at this point of time when copying shared pointers of the triangle mesh and convex hull. +// v->center_geometry_after_creation(); +// this->invalidate_bounding_box(); return v; } @@ -706,7 +701,7 @@ ModelVolume* ModelObject::add_volume(const ModelVolume &other, TriangleMesh &&me { ModelVolume* v = new ModelVolume(this, other, std::move(mesh)); this->volumes.push_back(v); - v->center_geometry(); + v->center_geometry_after_creation(); this->invalidate_bounding_box(); return v; } @@ -827,7 +822,7 @@ TriangleMesh ModelObject::raw_mesh() const for (const ModelVolume *v : this->volumes) if (v->is_model_part()) { - TriangleMesh vol_mesh(v->mesh); + TriangleMesh vol_mesh(v->mesh()); vol_mesh.transform(v->get_matrix()); mesh.merge(vol_mesh); } @@ -840,7 +835,7 @@ TriangleMesh ModelObject::full_raw_mesh() const TriangleMesh mesh; for (const ModelVolume *v : this->volumes) { - TriangleMesh vol_mesh(v->mesh); + TriangleMesh vol_mesh(v->mesh()); vol_mesh.transform(v->get_matrix()); mesh.merge(vol_mesh); } @@ -854,7 +849,7 @@ const BoundingBoxf3& ModelObject::raw_mesh_bounding_box() const m_raw_mesh_bounding_box.reset(); for (const ModelVolume *v : this->volumes) if (v->is_model_part()) - m_raw_mesh_bounding_box.merge(v->mesh.transformed_bounding_box(v->get_matrix())); + m_raw_mesh_bounding_box.merge(v->mesh().transformed_bounding_box(v->get_matrix())); } return m_raw_mesh_bounding_box; } @@ -863,7 +858,7 @@ BoundingBoxf3 ModelObject::full_raw_mesh_bounding_box() const { BoundingBoxf3 bb; for (const ModelVolume *v : this->volumes) - bb.merge(v->mesh.transformed_bounding_box(v->get_matrix())); + bb.merge(v->mesh().transformed_bounding_box(v->get_matrix())); return bb; } @@ -881,7 +876,7 @@ const BoundingBoxf3& ModelObject::raw_bounding_box() const for (const ModelVolume *v : this->volumes) { if (v->is_model_part()) - m_raw_bounding_box.merge(v->mesh.transformed_bounding_box(inst_matrix * v->get_matrix())); + m_raw_bounding_box.merge(v->mesh().transformed_bounding_box(inst_matrix * v->get_matrix())); } } return m_raw_bounding_box; @@ -895,7 +890,7 @@ BoundingBoxf3 ModelObject::instance_bounding_box(size_t instance_idx, bool dont_ for (ModelVolume *v : this->volumes) { if (v->is_model_part()) - bb.merge(v->mesh.transformed_bounding_box(inst_matrix * v->get_matrix())); + bb.merge(v->mesh().transformed_bounding_box(inst_matrix * v->get_matrix())); } return bb; } @@ -908,21 +903,20 @@ Polygon ModelObject::convex_hull_2d(const Transform3d &trafo_instance) const Points pts; for (const ModelVolume *v : this->volumes) if (v->is_model_part()) { - const stl_file &stl = v->mesh.stl; Transform3d trafo = trafo_instance * v->get_matrix(); - if (stl.v_shared == nullptr) { + const indexed_triangle_set &its = v->mesh().its; + if (its.vertices.empty()) { // Using the STL faces. - for (unsigned int i = 0; i < stl.stats.number_of_facets; ++ i) { - const stl_facet &facet = stl.facet_start[i]; + const stl_file& stl = v->mesh().stl; + for (const stl_facet &facet : stl.facet_start) for (size_t j = 0; j < 3; ++ j) { Vec3d p = trafo * facet.vertex[j].cast(); pts.emplace_back(coord_t(scale_(p.x())), coord_t(scale_(p.y()))); } - } } else { // Using the shared vertices should be a bit quicker than using the STL faces. - for (int i = 0; i < stl.stats.shared_vertices; ++ i) { - Vec3d p = trafo * stl.v_shared[i].cast(); + for (size_t i = 0; i < its.vertices.size(); ++ i) { + Vec3d p = trafo * its.vertices[i].cast(); pts.emplace_back(coord_t(scale_(p.x())), coord_t(scale_(p.y()))); } } @@ -1039,6 +1033,7 @@ void ModelObject::mirror(Axis axis) this->invalidate_bounding_box(); } +// This method could only be called before the meshes of this ModelVolumes are not shared! void ModelObject::scale_mesh(const Vec3d &versor) { for (ModelVolume *v : this->volumes) @@ -1062,14 +1057,14 @@ size_t ModelObject::facets_count() const size_t num = 0; for (const ModelVolume *v : this->volumes) if (v->is_model_part()) - num += v->mesh.stl.stats.number_of_facets; + num += v->mesh().stl.stats.number_of_facets; return num; } bool ModelObject::needed_repair() const { for (const ModelVolume *v : this->volumes) - if (v->is_model_part() && v->mesh.needed_repair()) + if (v->is_model_part() && v->mesh().needed_repair()) return true; return false; } @@ -1135,11 +1130,12 @@ ModelObjectPtrs ModelObject::cut(size_t instance, coordf_t z, bool keep_upper, b // Transform the mesh by the combined transformation matrix. // Flip the triangles in case the composite transformation is left handed. - volume->mesh.transform(instance_matrix * volume_matrix, true); + TriangleMesh mesh(volume->mesh()); + mesh.transform(instance_matrix * volume_matrix, true); + volume->reset_mesh(); // Perform cut - volume->mesh.require_shared_vertices(); // TriangleMeshSlicer needs this - TriangleMeshSlicer tms(&volume->mesh); + TriangleMeshSlicer tms(&mesh); tms.cut(float(z), &upper_mesh, &lower_mesh); // Reset volume transformation except for offset @@ -1158,14 +1154,14 @@ ModelObjectPtrs ModelObject::cut(size_t instance, coordf_t z, bool keep_upper, b if (keep_upper && upper_mesh.facets_count() > 0) { ModelVolume* vol = upper->add_volume(upper_mesh); - vol->name = volume->name; - vol->config = volume->config; + vol->name = volume->name; + vol->config = volume->config; vol->set_material(volume->material_id(), *volume->material()); } if (keep_lower && lower_mesh.facets_count() > 0) { ModelVolume* vol = lower->add_volume(lower_mesh); - vol->name = volume->name; - vol->config = volume->config; + vol->name = volume->name; + vol->config = volume->config; vol->set_material(volume->material_id(), *volume->material()); // Compute the lower part instances' bounding boxes to figure out where to place @@ -1233,7 +1229,7 @@ void ModelObject::split(ModelObjectPtrs* new_objects) } ModelVolume* volume = this->volumes.front(); - TriangleMeshPtrs meshptrs = volume->mesh.split(); + TriangleMeshPtrs meshptrs = volume->mesh().split(); for (TriangleMesh *mesh : meshptrs) { mesh->repair(); @@ -1260,12 +1256,6 @@ void ModelObject::split(ModelObjectPtrs* new_objects) return; } -void ModelObject::repair() -{ - for (ModelVolume *v : this->volumes) - v->mesh.repair(); -} - // Support for non-uniform scaling of instances. If an instance is rotated by angles, which are not multiples of ninety degrees, // then the scaling in world coordinate system is not representable by the Geometry::Transformation structure. // This situation is solved by baking in the instance transformation into the mesh vertices. @@ -1295,8 +1285,8 @@ void ModelObject::bake_xy_rotation_into_meshes(size_t instance_idx) // Adjust the meshes. // Transformation to be applied to the meshes. - Eigen::Matrix3d mesh_trafo_3x3 = reference_trafo.get_matrix(true, false, uniform_scaling, ! has_mirrorring).matrix().block<3, 3>(0, 0); - Transform3d volume_offset_correction = this->instances[instance_idx]->get_transformation().get_matrix().inverse() * reference_trafo.get_matrix(); + Eigen::Matrix3d mesh_trafo_3x3 = reference_trafo.get_matrix(true, false, uniform_scaling, ! has_mirrorring).matrix().block<3, 3>(0, 0); + Transform3d volume_offset_correction = this->instances[instance_idx]->get_transformation().get_matrix().inverse() * reference_trafo.get_matrix(); for (ModelVolume *model_volume : this->volumes) { const Geometry::Transformation volume_trafo = model_volume->get_transformation(); bool volume_left_handed = volume_trafo.is_left_handed(); @@ -1306,7 +1296,8 @@ void ModelObject::bake_xy_rotation_into_meshes(size_t instance_idx) double volume_new_scaling_factor = volume_uniform_scaling ? volume_trafo.get_scaling_factor().x() : 1.; // Transform the mesh. Matrix3d volume_trafo_3x3 = volume_trafo.get_matrix(true, false, volume_uniform_scaling, !volume_has_mirrorring).matrix().block<3, 3>(0, 0); - model_volume->transform_mesh(mesh_trafo_3x3 * volume_trafo_3x3, left_handed != volume_left_handed); + // Following method creates a new shared_ptr + model_volume->transform_this_mesh(mesh_trafo_3x3 * volume_trafo_3x3, left_handed != volume_left_handed); // Reset the rotation, scaling and mirroring. model_volume->set_rotation(Vec3d(0., 0., 0.)); model_volume->set_scaling_factor(Vec3d(volume_new_scaling_factor, volume_new_scaling_factor, volume_new_scaling_factor)); @@ -1347,13 +1338,9 @@ double ModelObject::get_instance_min_z(size_t instance_idx) const Transform3d mv = mi * v->get_matrix(); const TriangleMesh& hull = v->get_convex_hull(); - for (uint32_t f = 0; f < hull.stl.stats.number_of_facets; ++f) - { - const stl_facet* facet = hull.stl.facet_start + f; - min_z = std::min(min_z, Vec3d::UnitZ().dot(mv * facet->vertex[0].cast())); - min_z = std::min(min_z, Vec3d::UnitZ().dot(mv * facet->vertex[1].cast())); - min_z = std::min(min_z, Vec3d::UnitZ().dot(mv * facet->vertex[2].cast())); - } + for (const stl_facet &facet : hull.stl.facet_start) + for (int i = 0; i < 3; ++ i) + min_z = std::min(min_z, (mv * facet.vertex[i].cast()).z()); } return min_z + inst->get_offset(Z); @@ -1452,7 +1439,7 @@ std::string ModelObject::get_export_filename() const stl_stats ModelObject::get_object_stl_stats() const { if (this->volumes.size() == 1) - return this->volumes[0]->mesh.stl.stats; + return this->volumes[0]->mesh().stl.stats; stl_stats full_stats; memset(&full_stats, 0, sizeof(stl_stats)); @@ -1463,7 +1450,7 @@ stl_stats ModelObject::get_object_stl_stats() const if (volume->id() == this->volumes[0]->id()) continue; - const stl_stats& stats = volume->mesh.stl.stats; + const stl_stats& stats = volume->mesh().stl.stats; // initialize full_stats (for repaired errors) full_stats.degenerate_facets += stats.degenerate_facets; @@ -1531,30 +1518,30 @@ bool ModelVolume::is_splittable() const { // the call mesh.is_splittable() is expensive, so cache the value to calculate it only once if (m_is_splittable == -1) - m_is_splittable = (int)mesh.is_splittable(); + m_is_splittable = (int)this->mesh().is_splittable(); return m_is_splittable == 1; } -void ModelVolume::center_geometry() +void ModelVolume::center_geometry_after_creation() { - Vec3d shift = mesh.bounding_box().center(); + Vec3d shift = this->mesh().bounding_box().center(); if (!shift.isApprox(Vec3d::Zero())) { - mesh.translate(-(float)shift(0), -(float)shift(1), -(float)shift(2)); - m_convex_hull.translate(-(float)shift(0), -(float)shift(1), -(float)shift(2)); + m_mesh->translate(-(float)shift(0), -(float)shift(1), -(float)shift(2)); + m_convex_hull->translate(-(float)shift(0), -(float)shift(1), -(float)shift(2)); translate(shift); } } void ModelVolume::calculate_convex_hull() { - m_convex_hull = mesh.convex_hull_3d(); + m_convex_hull = std::make_shared(this->mesh().convex_hull_3d()); } int ModelVolume::get_mesh_errors_count() const { - const stl_stats& stats = this->mesh.stl.stats; + const stl_stats& stats = this->mesh().stl.stats; return stats.degenerate_facets + stats.edges_fixed + stats.facets_removed + stats.facets_added + stats.facets_reversed + stats.backwards_edges; @@ -1562,7 +1549,7 @@ int ModelVolume::get_mesh_errors_count() const const TriangleMesh& ModelVolume::get_convex_hull() const { - return m_convex_hull; + return *m_convex_hull.get(); } ModelVolumeType ModelVolume::type_from_string(const std::string &s) @@ -1602,7 +1589,7 @@ std::string ModelVolume::type_to_string(const ModelVolumeType t) // This is useful to assign different materials to different volumes of an object. size_t ModelVolume::split(unsigned int max_extruders) { - TriangleMeshPtrs meshptrs = this->mesh.split(); + TriangleMeshPtrs meshptrs = this->mesh().split(); if (meshptrs.size() <= 1) { delete meshptrs.front(); return 1; @@ -1619,7 +1606,7 @@ size_t ModelVolume::split(unsigned int max_extruders) mesh->repair(); if (idx == 0) { - this->mesh = std::move(*mesh); + this->set_mesh(std::move(*mesh)); this->calculate_convex_hull(); // Assign a new unique ID, so that a new GLVolume will be generated. this->set_new_unique_id(); @@ -1628,7 +1615,7 @@ size_t ModelVolume::split(unsigned int max_extruders) this->object->volumes.insert(this->object->volumes.begin() + (++ivolume), new ModelVolume(object, *this, std::move(*mesh))); this->object->volumes[ivolume]->set_offset(Vec3d::Zero()); - this->object->volumes[ivolume]->center_geometry(); + this->object->volumes[ivolume]->center_geometry_after_creation(); this->object->volumes[ivolume]->translate(offset); this->object->volumes[ivolume]->name = name + "_" + std::to_string(idx + 1); this->object->volumes[ivolume]->config.set_deserialize("extruder", Model::get_auto_extruder_id_as_string(max_extruders)); @@ -1694,24 +1681,33 @@ void ModelVolume::mirror(Axis axis) set_mirror(mirror); } +// This method could only be called before the meshes of this ModelVolumes are not shared! void ModelVolume::scale_geometry(const Vec3d& versor) { - mesh.scale(versor); - m_convex_hull.scale(versor); + m_mesh->scale(versor); + m_convex_hull->scale(versor); } -void ModelVolume::transform_mesh(const Transform3d &mesh_trafo, bool fix_left_handed) +void ModelVolume::transform_this_mesh(const Transform3d &mesh_trafo, bool fix_left_handed) { - this->mesh.transform(mesh_trafo, fix_left_handed); - this->m_convex_hull.transform(mesh_trafo, fix_left_handed); + TriangleMesh mesh = this->mesh(); + mesh.transform(mesh_trafo, fix_left_handed); + this->set_mesh(std::move(mesh)); + TriangleMesh convex_hull = this->get_convex_hull(); + convex_hull.transform(mesh_trafo, fix_left_handed); + this->m_convex_hull = std::make_shared(std::move(convex_hull)); // Let the rest of the application know that the geometry changed, so the meshes have to be reloaded. this->set_new_unique_id(); } -void ModelVolume::transform_mesh(const Matrix3d &matrix, bool fix_left_handed) +void ModelVolume::transform_this_mesh(const Matrix3d &matrix, bool fix_left_handed) { - this->mesh.transform(matrix, fix_left_handed); - this->m_convex_hull.transform(matrix, fix_left_handed); + TriangleMesh mesh = this->mesh(); + mesh.transform(matrix, fix_left_handed); + this->set_mesh(std::move(mesh)); + TriangleMesh convex_hull = this->get_convex_hull(); + convex_hull.transform(matrix, fix_left_handed); + this->m_convex_hull = std::make_shared(std::move(convex_hull)); // Let the rest of the application know that the geometry changed, so the meshes have to be reloaded. this->set_new_unique_id(); } diff --git a/src/libslic3r/Model.hpp b/src/libslic3r/Model.hpp index 41bf5bd4b..0fd1140f0 100644 --- a/src/libslic3r/Model.hpp +++ b/src/libslic3r/Model.hpp @@ -7,7 +7,9 @@ #include "Point.hpp" #include "TriangleMesh.hpp" #include "Slicing.hpp" + #include +#include #include #include #include @@ -261,6 +263,7 @@ public: void rotate(double angle, const Vec3d& axis); void mirror(Axis axis); + // This method could only be called before the meshes of this ModelVolumes are not shared! void scale_mesh(const Vec3d& versor); size_t materials_count() const; @@ -268,7 +271,6 @@ public: bool needed_repair() const; ModelObjectPtrs cut(size_t instance, coordf_t z, bool keep_upper = true, bool keep_lower = true, bool rotate_lower = false); // Note: z is in world coordinates void split(ModelObjectPtrs* new_objects); - void repair(); // Support for non-uniform scaling of instances. If an instance is rotated by angles, which are not multiples of ninety degrees, // then the scaling in world coordinate system is not representable by the Geometry::Transformation structure. // This situation is solved by baking in the instance transformation into the mesh vertices. @@ -340,7 +342,12 @@ class ModelVolume : public ModelBase public: std::string name; // The triangular model. - TriangleMesh mesh; + const TriangleMesh& mesh() const { return *m_mesh.get(); } + void set_mesh(const TriangleMesh &mesh) { m_mesh = std::make_shared(mesh); } + void set_mesh(TriangleMesh &&mesh) { m_mesh = std::make_shared(std::move(mesh)); } + void set_mesh(std::shared_ptr &mesh) { m_mesh = mesh; } + void set_mesh(std::unique_ptr &&mesh) { m_mesh = std::move(mesh); } + void reset_mesh() { m_mesh = std::make_shared(); } // Configuration parameters specific to an object model geometry or a modifier volume, // overriding the global Slic3r settings and the ModelObject settings. DynamicPrintConfig config; @@ -377,13 +384,16 @@ public: void rotate(double angle, const Vec3d& axis); void mirror(Axis axis); + // This method could only be called before the meshes of this ModelVolumes are not shared! void scale_geometry(const Vec3d& versor); - // translates the mesh and the convex hull so that the origin of their vertices is in the center of this volume's bounding box - void center_geometry(); + // Translates the mesh and the convex hull so that the origin of their vertices is in the center of this volume's bounding box. + // Attention! This method may only be called just after ModelVolume creation! It must not be called once the TriangleMesh of this ModelVolume is shared! + void center_geometry_after_creation(); void calculate_convex_hull(); const TriangleMesh& get_convex_hull() const; + std::shared_ptr get_convex_hull_shared_ptr() const { return m_convex_hull; } // Get count of errors in the mesh int get_mesh_errors_count() const; @@ -430,18 +440,20 @@ protected: explicit ModelVolume(const ModelVolume &rhs) = default; void set_model_object(ModelObject *model_object) { object = model_object; } - void transform_mesh(const Transform3d& t, bool fix_left_handed); - void transform_mesh(const Matrix3d& m, bool fix_left_handed); + void transform_this_mesh(const Transform3d& t, bool fix_left_handed); + void transform_this_mesh(const Matrix3d& m, bool fix_left_handed); private: // Parent object owning this ModelVolume. - ModelObject* object; + ModelObject* object; + // The triangular model. + std::shared_ptr m_mesh; // Is it an object to be printed, or a modifier volume? - ModelVolumeType m_type; - t_model_material_id m_material_id; + ModelVolumeType m_type; + t_model_material_id m_material_id; // The convex hull of this model's mesh. - TriangleMesh m_convex_hull; - Geometry::Transformation m_transformation; + std::shared_ptr m_convex_hull; + Geometry::Transformation m_transformation; // flag to optimize the checking if the volume is splittable // -1 -> is unknown value (before first cheking) @@ -449,24 +461,24 @@ private: // 1 -> is splittable mutable int m_is_splittable{ -1 }; - ModelVolume(ModelObject *object, const TriangleMesh &mesh) : mesh(mesh), m_type(ModelVolumeType::MODEL_PART), object(object) + ModelVolume(ModelObject *object, const TriangleMesh &mesh) : m_mesh(new TriangleMesh(mesh)), m_type(ModelVolumeType::MODEL_PART), object(object) { if (mesh.stl.stats.number_of_facets > 1) calculate_convex_hull(); } ModelVolume(ModelObject *object, TriangleMesh &&mesh, TriangleMesh &&convex_hull) : - mesh(std::move(mesh)), m_convex_hull(std::move(convex_hull)), m_type(ModelVolumeType::MODEL_PART), object(object) {} + m_mesh(new TriangleMesh(std::move(mesh))), m_convex_hull(new TriangleMesh(std::move(convex_hull))), m_type(ModelVolumeType::MODEL_PART), object(object) {} // Copying an existing volume, therefore this volume will get a copy of the ID assigned. ModelVolume(ModelObject *object, const ModelVolume &other) : ModelBase(other), // copy the ID - name(other.name), mesh(other.mesh), m_convex_hull(other.m_convex_hull), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation) + name(other.name), m_mesh(other.m_mesh), m_convex_hull(other.m_convex_hull), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation) { this->set_material_id(other.material_id()); } // Providing a new mesh, therefore this volume will get a new unique ID assigned. ModelVolume(ModelObject *object, const ModelVolume &other, const TriangleMesh &&mesh) : - name(other.name), mesh(std::move(mesh)), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation) + name(other.name), m_mesh(new TriangleMesh(std::move(mesh))), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation) { this->set_material_id(other.material_id()); if (mesh.stl.stats.number_of_facets > 1) @@ -597,10 +609,6 @@ public: static Model read_from_file(const std::string &input_file, DynamicPrintConfig *config = nullptr, bool add_default_instances = true); static Model read_from_archive(const std::string &input_file, DynamicPrintConfig *config, bool add_default_instances = true); - /// Repair the ModelObjects of the current Model. - /// This function calls repair function on each TriangleMesh of each model object volume - void repair(); - // Add a new ModelObject to this Model, generate a new ID for this ModelObject. ModelObject* add_object(); ModelObject* add_object(const char *name, const char *path, const TriangleMesh &mesh); diff --git a/src/libslic3r/PrintObject.cpp b/src/libslic3r/PrintObject.cpp index 660a2d939..d99aceabf 100644 --- a/src/libslic3r/PrintObject.cpp +++ b/src/libslic3r/PrintObject.cpp @@ -1797,7 +1797,7 @@ std::vector PrintObject::_slice_volumes(const std::vector &z, if (! volumes.empty()) { // Compose mesh. //FIXME better to perform slicing over each volume separately and then to use a Boolean operation to merge them. - TriangleMesh mesh(volumes.front()->mesh); + TriangleMesh mesh(volumes.front()->mesh()); mesh.transform(volumes.front()->get_matrix(), true); assert(mesh.repaired); if (volumes.size() == 1 && mesh.repaired) { @@ -1806,7 +1806,7 @@ std::vector PrintObject::_slice_volumes(const std::vector &z, } for (size_t idx_volume = 1; idx_volume < volumes.size(); ++ idx_volume) { const ModelVolume &model_volume = *volumes[idx_volume]; - TriangleMesh vol_mesh(model_volume.mesh); + TriangleMesh vol_mesh(model_volume.mesh()); vol_mesh.transform(model_volume.get_matrix(), true); mesh.merge(vol_mesh); } @@ -1815,10 +1815,11 @@ std::vector PrintObject::_slice_volumes(const std::vector &z, // apply XY shift mesh.translate(- unscale(m_copies_shift(0)), - unscale(m_copies_shift(1)), 0); // perform actual slicing - TriangleMeshSlicer mslicer; const Print *print = this->print(); auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();}); - mesh.require_shared_vertices(); // TriangleMeshSlicer needs this + // TriangleMeshSlicer needs shared vertices, also this calls the repair() function. + mesh.require_shared_vertices(); + TriangleMeshSlicer mslicer; mslicer.init(&mesh, callback); mslicer.slice(z, float(m_config.slice_closing_radius.value), &layers, callback); m_print->throw_if_canceled(); @@ -1832,7 +1833,7 @@ std::vector PrintObject::_slice_volume(const std::vector &z, std::vector layers; // Compose mesh. //FIXME better to perform slicing over each volume separately and then to use a Boolean operation to merge them. - TriangleMesh mesh(volume.mesh); + TriangleMesh mesh(volume.mesh()); mesh.transform(volume.get_matrix(), true); if (mesh.repaired) { //FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it. @@ -1846,7 +1847,8 @@ std::vector PrintObject::_slice_volume(const std::vector &z, TriangleMeshSlicer mslicer; const Print *print = this->print(); auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();}); - mesh.require_shared_vertices(); // TriangleMeshSlicer needs this + // TriangleMeshSlicer needs the shared vertices. + mesh.require_shared_vertices(); mslicer.init(&mesh, callback); mslicer.slice(z, float(m_config.slice_closing_radius.value), &layers, callback); m_print->throw_if_canceled(); diff --git a/src/libslic3r/SLA/SLASupportTreeIGL.cpp b/src/libslic3r/SLA/SLASupportTreeIGL.cpp index c368b8604..1609b9ac4 100644 --- a/src/libslic3r/SLA/SLASupportTreeIGL.cpp +++ b/src/libslic3r/SLA/SLASupportTreeIGL.cpp @@ -121,19 +121,10 @@ EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh): m_aabb(new AABBImpl()) { V.resize(3*stl.stats.number_of_facets, 3); F.resize(stl.stats.number_of_facets, 3); for (unsigned int i = 0; i < stl.stats.number_of_facets; ++i) { - const stl_facet* facet = stl.facet_start+i; - V(3*i+0, 0) = double(facet->vertex[0](0)); - V(3*i+0, 1) = double(facet->vertex[0](1)); - V(3*i+0, 2) = double(facet->vertex[0](2)); - - V(3*i+1, 0) = double(facet->vertex[1](0)); - V(3*i+1, 1) = double(facet->vertex[1](1)); - V(3*i+1, 2) = double(facet->vertex[1](2)); - - V(3*i+2, 0) = double(facet->vertex[2](0)); - V(3*i+2, 1) = double(facet->vertex[2](1)); - V(3*i+2, 2) = double(facet->vertex[2](2)); - + const stl_facet &facet = stl.facet_start[i]; + V.block<1, 3>(3 * i + 0, 0) = facet.vertex[0].cast(); + V.block<1, 3>(3 * i + 1, 0) = facet.vertex[1].cast(); + V.block<1, 3>(3 * i + 2, 0) = facet.vertex[2].cast(); F(i, 0) = int(3*i+0); F(i, 1) = int(3*i+1); F(i, 2) = int(3*i+2); diff --git a/src/libslic3r/Slicing.cpp b/src/libslic3r/Slicing.cpp index 3a05e9d8a..e1bb4b313 100644 --- a/src/libslic3r/Slicing.cpp +++ b/src/libslic3r/Slicing.cpp @@ -227,7 +227,7 @@ std::vector layer_height_profile_adaptive( as.set_slicing_parameters(slicing_params); for (const ModelVolume *volume : volumes) if (volume->is_model_part()) - as.add_mesh(&volume->mesh); + as.add_mesh(&volume->mesh()); as.prepare(); // 2) Generate layers using the algorithm of @platsch diff --git a/src/libslic3r/SlicingAdaptive.cpp b/src/libslic3r/SlicingAdaptive.cpp index 2ef4aec8c..ad03b550b 100644 --- a/src/libslic3r/SlicingAdaptive.cpp +++ b/src/libslic3r/SlicingAdaptive.cpp @@ -27,8 +27,8 @@ void SlicingAdaptive::prepare() nfaces_total += (*it_mesh)->stl.stats.number_of_facets; m_faces.reserve(nfaces_total); for (std::vector::const_iterator it_mesh = m_meshes.begin(); it_mesh != m_meshes.end(); ++ it_mesh) - for (int i = 0; i < (*it_mesh)->stl.stats.number_of_facets; ++ i) - m_faces.push_back((*it_mesh)->stl.facet_start + i); + for (const stl_facet &face : (*it_mesh)->stl.facet_start) + m_faces.emplace_back(&face); // 2) Sort faces lexicographically by their Z span. std::sort(m_faces.begin(), m_faces.end(), [](const stl_facet *f1, const stl_facet *f2) { diff --git a/src/libslic3r/TriangleMesh.cpp b/src/libslic3r/TriangleMesh.cpp index 6581a8320..56accfefa 100644 --- a/src/libslic3r/TriangleMesh.cpp +++ b/src/libslic3r/TriangleMesh.cpp @@ -42,20 +42,17 @@ namespace Slic3r { -TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector& facets) - : repaired(false) +TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector& facets) : repaired(false) { - stl_initialize(&this->stl); stl_file &stl = this->stl; - stl.error = 0; stl.stats.type = inmemory; // count facets and allocate memory - stl.stats.number_of_facets = facets.size(); + stl.stats.number_of_facets = (uint32_t)facets.size(); stl.stats.original_num_facets = stl.stats.number_of_facets; stl_allocate(&stl); - for (uint32_t i = 0; i < stl.stats.number_of_facets; i++) { + for (uint32_t i = 0; i < stl.stats.number_of_facets; ++ i) { stl_facet facet; facet.vertex[0] = points[facets[i](0)].cast(); facet.vertex[1] = points[facets[i](1)].cast(); @@ -73,57 +70,37 @@ TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector& f stl_get_size(&stl); } -TriangleMesh& TriangleMesh::operator=(const TriangleMesh &other) -{ - stl_close(&this->stl); - this->stl = other.stl; - this->repaired = other.repaired; - this->stl.heads = nullptr; - this->stl.tail = nullptr; - this->stl.error = other.stl.error; - if (other.stl.facet_start != nullptr) { - this->stl.facet_start = (stl_facet*)calloc(other.stl.stats.number_of_facets, sizeof(stl_facet)); - std::copy(other.stl.facet_start, other.stl.facet_start + other.stl.stats.number_of_facets, this->stl.facet_start); - } - if (other.stl.neighbors_start != nullptr) { - this->stl.neighbors_start = (stl_neighbors*)calloc(other.stl.stats.number_of_facets, sizeof(stl_neighbors)); - std::copy(other.stl.neighbors_start, other.stl.neighbors_start + other.stl.stats.number_of_facets, this->stl.neighbors_start); - } - if (other.stl.v_indices != nullptr) { - this->stl.v_indices = (v_indices_struct*)calloc(other.stl.stats.number_of_facets, sizeof(v_indices_struct)); - std::copy(other.stl.v_indices, other.stl.v_indices + other.stl.stats.number_of_facets, this->stl.v_indices); - } - if (other.stl.v_shared != nullptr) { - this->stl.v_shared = (stl_vertex*)calloc(other.stl.stats.shared_vertices, sizeof(stl_vertex)); - std::copy(other.stl.v_shared, other.stl.v_shared + other.stl.stats.shared_vertices, this->stl.v_shared); - } - return *this; -} - // #define SLIC3R_TRACE_REPAIR -void TriangleMesh::repair() +void TriangleMesh::repair(bool update_shared_vertices) { - if (this->repaired) return; - + if (this->repaired) { + if (update_shared_vertices) + this->require_shared_vertices(); + return; + } + // admesh fails when repairing empty meshes - if (this->stl.stats.number_of_facets == 0) return; + if (this->stl.stats.number_of_facets == 0) + return; BOOST_LOG_TRIVIAL(debug) << "TriangleMesh::repair() started"; - + // checking exact #ifdef SLIC3R_TRACE_REPAIR BOOST_LOG_TRIVIAL(trace) << "\tstl_check_faces_exact"; #endif /* SLIC3R_TRACE_REPAIR */ + assert(stl_validate(&this->stl)); stl_check_facets_exact(&stl); + assert(stl_validate(&this->stl)); stl.stats.facets_w_1_bad_edge = (stl.stats.connected_facets_2_edge - stl.stats.connected_facets_3_edge); stl.stats.facets_w_2_bad_edge = (stl.stats.connected_facets_1_edge - stl.stats.connected_facets_2_edge); stl.stats.facets_w_3_bad_edge = (stl.stats.number_of_facets - stl.stats.connected_facets_1_edge); // checking nearby //int last_edges_fixed = 0; - float tolerance = stl.stats.shortest_edge; - float increment = stl.stats.bounding_diameter / 10000.0; + float tolerance = (float)stl.stats.shortest_edge; + float increment = (float)stl.stats.bounding_diameter / 10000.0f; int iterations = 2; if (stl.stats.connected_facets_3_edge < (int)stl.stats.number_of_facets) { for (int i = 0; i < iterations; i++) { @@ -141,6 +118,7 @@ void TriangleMesh::repair() } } } + assert(stl_validate(&this->stl)); // remove_unconnected if (stl.stats.connected_facets_3_edge < (int)stl.stats.number_of_facets) { @@ -148,6 +126,7 @@ void TriangleMesh::repair() BOOST_LOG_TRIVIAL(trace) << "\tstl_remove_unconnected_facets"; #endif /* SLIC3R_TRACE_REPAIR */ stl_remove_unconnected_facets(&stl); + assert(stl_validate(&this->stl)); } // fill_holes @@ -168,28 +147,38 @@ void TriangleMesh::repair() BOOST_LOG_TRIVIAL(trace) << "\tstl_fix_normal_directions"; #endif /* SLIC3R_TRACE_REPAIR */ stl_fix_normal_directions(&stl); + assert(stl_validate(&this->stl)); // normal_values #ifdef SLIC3R_TRACE_REPAIR BOOST_LOG_TRIVIAL(trace) << "\tstl_fix_normal_values"; #endif /* SLIC3R_TRACE_REPAIR */ stl_fix_normal_values(&stl); + assert(stl_validate(&this->stl)); // always calculate the volume and reverse all normals if volume is negative #ifdef SLIC3R_TRACE_REPAIR BOOST_LOG_TRIVIAL(trace) << "\tstl_calculate_volume"; #endif /* SLIC3R_TRACE_REPAIR */ stl_calculate_volume(&stl); + assert(stl_validate(&this->stl)); // neighbors #ifdef SLIC3R_TRACE_REPAIR BOOST_LOG_TRIVIAL(trace) << "\tstl_verify_neighbors"; #endif /* SLIC3R_TRACE_REPAIR */ stl_verify_neighbors(&stl); + assert(stl_validate(&this->stl)); this->repaired = true; BOOST_LOG_TRIVIAL(debug) << "TriangleMesh::repair() finished"; + + // This call should be quite cheap, a lot of code requires the indexed_triangle_set data structure, + // and it is risky to generate such a structure once the meshes are shared. Do it now. + this->its.clear(); + if (update_shared_vertices) + this->require_shared_vertices(); } float TriangleMesh::volume() @@ -249,20 +238,24 @@ bool TriangleMesh::needed_repair() const void TriangleMesh::WriteOBJFile(const char* output_file) { - stl_generate_shared_vertices(&stl); - stl_write_obj(&stl, output_file); + its_write_obj(this->its, output_file); } void TriangleMesh::scale(float factor) { stl_scale(&(this->stl), factor); - stl_invalidate_shared_vertices(&this->stl); + for (stl_vertex& v : this->its.vertices) + v *= factor; } void TriangleMesh::scale(const Vec3d &versor) { stl_scale_versor(&this->stl, versor.cast()); - stl_invalidate_shared_vertices(&this->stl); + for (stl_vertex& v : this->its.vertices) { + v.x() *= versor.x(); + v.y() *= versor.y(); + v.z() *= versor.z(); + } } void TriangleMesh::translate(float x, float y, float z) @@ -270,7 +263,9 @@ void TriangleMesh::translate(float x, float y, float z) if (x == 0.f && y == 0.f && z == 0.f) return; stl_translate_relative(&(this->stl), x, y, z); - stl_invalidate_shared_vertices(&this->stl); + stl_vertex shift(x, y, z); + for (stl_vertex& v : this->its.vertices) + v += shift; } void TriangleMesh::translate(const Vec3f &displacement) @@ -287,13 +282,15 @@ void TriangleMesh::rotate(float angle, const Axis &axis) angle = Slic3r::Geometry::rad2deg(angle); if (axis == X) { - stl_rotate_x(&(this->stl), angle); + stl_rotate_x(&this->stl, angle); + its_rotate_x(this->its, angle); } else if (axis == Y) { - stl_rotate_y(&(this->stl), angle); + stl_rotate_y(&this->stl, angle); + its_rotate_y(this->its, angle); } else if (axis == Z) { - stl_rotate_z(&(this->stl), angle); + stl_rotate_z(&this->stl, angle); + its_rotate_z(this->its, angle); } - stl_invalidate_shared_vertices(&this->stl); } void TriangleMesh::rotate(float angle, const Vec3d& axis) @@ -305,39 +302,49 @@ void TriangleMesh::rotate(float angle, const Vec3d& axis) Transform3d m = Transform3d::Identity(); m.rotate(Eigen::AngleAxisd(angle, axis_norm)); stl_transform(&stl, m); + its_transform(its, m); } void TriangleMesh::mirror(const Axis &axis) { if (axis == X) { stl_mirror_yz(&this->stl); + for (stl_vertex &v : this->its.vertices) + v(0) *= -1.0; } else if (axis == Y) { stl_mirror_xz(&this->stl); + for (stl_vertex &v : this->its.vertices) + v(1) *= -1.0; } else if (axis == Z) { stl_mirror_xy(&this->stl); + for (stl_vertex &v : this->its.vertices) + v(2) *= -1.0; } - stl_invalidate_shared_vertices(&this->stl); } void TriangleMesh::transform(const Transform3d& t, bool fix_left_handed) { stl_transform(&stl, t); - stl_invalidate_shared_vertices(&stl); + its_transform(its, t); if (fix_left_handed && t.matrix().block(0, 0, 3, 3).determinant() < 0.) { // Left handed transformation is being applied. It is a good idea to flip the faces and their normals. - this->repair(); + this->repair(false); stl_reverse_all_facets(&stl); + this->its.clear(); + this->require_shared_vertices(); } } void TriangleMesh::transform(const Matrix3d& m, bool fix_left_handed) { stl_transform(&stl, m); - stl_invalidate_shared_vertices(&stl); + its_transform(its, m); if (fix_left_handed && m.determinant() < 0.) { // Left handed transformation is being applied. It is a good idea to flip the faces and their normals. - this->repair(); + this->repair(false); stl_reverse_all_facets(&stl); + this->its.clear(); + this->require_shared_vertices(); } } @@ -355,7 +362,8 @@ void TriangleMesh::rotate(double angle, Point* center) return; Vec2f c = center->cast(); this->translate(-c(0), -c(1), 0); - stl_rotate_z(&(this->stl), (float)angle); + stl_rotate_z(&this->stl, (float)angle); + its_rotate_z(this->its, (float)angle); this->translate(c(0), c(1), 0); } @@ -435,9 +443,8 @@ TriangleMeshPtrs TriangleMesh::split() const TriangleMesh* mesh = new TriangleMesh; meshes.emplace_back(mesh); mesh->stl.stats.type = inmemory; - mesh->stl.stats.number_of_facets = facets.size(); + mesh->stl.stats.number_of_facets = (uint32_t)facets.size(); mesh->stl.stats.original_num_facets = mesh->stl.stats.number_of_facets; - stl_clear_error(&mesh->stl); stl_allocate(&mesh->stl); // Assign the facets to the new mesh. @@ -455,7 +462,7 @@ void TriangleMesh::merge(const TriangleMesh &mesh) { // reset stats and metadata int number_of_facets = this->stl.stats.number_of_facets; - stl_invalidate_shared_vertices(&this->stl); + this->its.clear(); this->repaired = false; // update facet count and allocate more memory @@ -477,13 +484,12 @@ ExPolygons TriangleMesh::horizontal_projection() const { Polygons pp; pp.reserve(this->stl.stats.number_of_facets); - for (uint32_t i = 0; i < this->stl.stats.number_of_facets; ++ i) { - stl_facet* facet = &this->stl.facet_start[i]; + for (const stl_facet &facet : this->stl.facet_start) { Polygon p; p.points.resize(3); - p.points[0] = Point::new_scale(facet->vertex[0](0), facet->vertex[0](1)); - p.points[1] = Point::new_scale(facet->vertex[1](0), facet->vertex[1](1)); - p.points[2] = Point::new_scale(facet->vertex[2](0), facet->vertex[2](1)); + p.points[0] = Point::new_scale(facet.vertex[0](0), facet.vertex[0](1)); + p.points[1] = Point::new_scale(facet.vertex[1](0), facet.vertex[1](1)); + p.points[2] = Point::new_scale(facet.vertex[2](0), facet.vertex[2](1)); p.make_counter_clockwise(); // do this after scaling, as winding order might change while doing that pp.emplace_back(p); } @@ -495,11 +501,10 @@ ExPolygons TriangleMesh::horizontal_projection() const // 2D convex hull of a 3D mesh projected into the Z=0 plane. Polygon TriangleMesh::convex_hull() { - this->require_shared_vertices(); Points pp; - pp.reserve(this->stl.stats.shared_vertices); - for (int i = 0; i < this->stl.stats.shared_vertices; ++ i) { - const stl_vertex &v = this->stl.v_shared[i]; + pp.reserve(this->its.vertices.size()); + for (size_t i = 0; i < this->its.vertices.size(); ++ i) { + const stl_vertex &v = this->its.vertices[i]; pp.emplace_back(Point::new_scale(v(0), v(1))); } return Slic3r::Geometry::convex_hull(pp); @@ -517,49 +522,47 @@ BoundingBoxf3 TriangleMesh::bounding_box() const BoundingBoxf3 TriangleMesh::transformed_bounding_box(const Transform3d &trafo) const { BoundingBoxf3 bbox; - if (stl.v_shared == nullptr) { + if (this->its.vertices.empty()) { // Using the STL faces. - for (size_t i = 0; i < this->facets_count(); ++ i) { - const stl_facet &facet = this->stl.facet_start[i]; + for (const stl_facet &facet : this->stl.facet_start) for (size_t j = 0; j < 3; ++ j) bbox.merge(trafo * facet.vertex[j].cast()); - } } else { // Using the shared vertices should be a bit quicker than using the STL faces. - for (int i = 0; i < stl.stats.shared_vertices; ++ i) - bbox.merge(trafo * this->stl.v_shared[i].cast()); + for (const stl_vertex &v : this->its.vertices) + bbox.merge(trafo * v.cast()); } return bbox; } TriangleMesh TriangleMesh::convex_hull_3d() const { - // Helper struct for qhull: - struct PointForQHull{ - PointForQHull(float x_p, float y_p, float z_p) : x((realT)x_p), y((realT)y_p), z((realT)z_p) {} - realT x, y, z; - }; - std::vector src_vertices; - - // We will now fill the vector with input points for computation: - stl_facet* facet_ptr = stl.facet_start; - while (facet_ptr < stl.facet_start + stl.stats.number_of_facets) - { - for (int i = 0; i < 3; ++i) - { - const stl_vertex& v = facet_ptr->vertex[i]; - src_vertices.emplace_back(v(0), v(1), v(2)); - } - - facet_ptr += 1; - } - // The qhull call: orgQhull::Qhull qhull; qhull.disableOutputStream(); // we want qhull to be quiet - try + std::vector src_vertices; + try { - qhull.runQhull("", 3, (int)src_vertices.size(), (const realT*)(src_vertices.data()), "Qt"); + if (this->has_shared_vertices()) { +#if REALfloat + qhull.runQhull("", 3, (int)this->its.vertices.size(), (const realT*)(this->its.vertices.front().data()), "Qt"); +#else + src_vertices.reserve(this->its.vertices() * 3); + // We will now fill the vector with input points for computation: + for (const stl_vertex &v : ths->its.vertices.size()) + for (int i = 0; i < 3; ++ i) + src_vertices.emplace_back(v(i)); + qhull.runQhull("", 3, (int)src_vertices.size() / 3, src_vertices.data(), "Qt"); +#endif + } else { + src_vertices.reserve(this->stl.facet_start.size() * 9); + // We will now fill the vector with input points for computation: + for (const stl_facet &f : this->stl.facet_start) + for (int i = 0; i < 3; ++ i) + for (int j = 0; j < 3; ++ j) + src_vertices.emplace_back(f.vertex[i](j)); + qhull.runQhull("", 3, (int)src_vertices.size() / 3, src_vertices.data(), "Qt"); + } } catch (...) { @@ -587,34 +590,20 @@ TriangleMesh TriangleMesh::convex_hull_3d() const TriangleMesh output_mesh(dst_vertices, facets); output_mesh.repair(); - output_mesh.require_shared_vertices(); return output_mesh; } void TriangleMesh::require_shared_vertices() { BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::require_shared_vertices - start"; - if (!this->repaired) + assert(stl_validate(&this->stl)); + if (! this->repaired) this->repair(); - if (this->stl.v_shared == NULL) { + if (this->its.vertices.empty()) { BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::require_shared_vertices - stl_generate_shared_vertices"; - stl_generate_shared_vertices(&(this->stl)); + stl_generate_shared_vertices(&this->stl, this->its); } -#ifdef _DEBUG - // Verify validity of neighborship data. - for (int facet_idx = 0; facet_idx < stl.stats.number_of_facets; ++facet_idx) { - const stl_neighbors &nbr = stl.neighbors_start[facet_idx]; - const int *vertices = stl.v_indices[facet_idx].vertex; - for (int nbr_idx = 0; nbr_idx < 3; ++nbr_idx) { - int nbr_face = this->stl.neighbors_start[facet_idx].neighbor[nbr_idx]; - if (nbr_face != -1) { - assert( - (stl.v_indices[nbr_face].vertex[(nbr.which_vertex_not[nbr_idx] + 1) % 3] == vertices[(nbr_idx + 1) % 3] && stl.v_indices[nbr_face].vertex[(nbr.which_vertex_not[nbr_idx] + 2) % 3] == vertices[nbr_idx]) || - (stl.v_indices[nbr_face].vertex[(nbr.which_vertex_not[nbr_idx] + 2) % 3] == vertices[(nbr_idx + 1) % 3] && stl.v_indices[nbr_face].vertex[(nbr.which_vertex_not[nbr_idx] + 1) % 3] == vertices[nbr_idx])); - } - } - } -#endif /* _DEBUG */ + assert(stl_validate(&this->stl, this->its)); BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::require_shared_vertices - end"; } @@ -626,10 +615,9 @@ void TriangleMeshSlicer::init(const TriangleMesh *_mesh, throw_on_cancel_callbac throw_on_cancel(); facets_edges.assign(_mesh->stl.stats.number_of_facets * 3, -1); - v_scaled_shared.assign(_mesh->stl.v_shared, _mesh->stl.v_shared + _mesh->stl.stats.shared_vertices); - // Scale the copied vertices. - for (int i = 0; i < this->mesh->stl.stats.shared_vertices; ++ i) - this->v_scaled_shared[i] *= float(1. / SCALING_FACTOR); + v_scaled_shared.assign(_mesh->its.vertices.size(), stl_vertex()); + for (size_t i = 0; i < v_scaled_shared.size(); ++ i) + this->v_scaled_shared[i] = _mesh->its.vertices[i] / float(SCALING_FACTOR); // Create a mapping from triangle edge into face. struct EdgeToFace { @@ -649,8 +637,8 @@ void TriangleMeshSlicer::init(const TriangleMesh *_mesh, throw_on_cancel_callbac for (uint32_t facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; ++ facet_idx) for (int i = 0; i < 3; ++ i) { EdgeToFace &e2f = edges_map[facet_idx*3+i]; - e2f.vertex_low = this->mesh->stl.v_indices[facet_idx].vertex[i]; - e2f.vertex_high = this->mesh->stl.v_indices[facet_idx].vertex[(i + 1) % 3]; + e2f.vertex_low = this->mesh->its.indices[facet_idx][i]; + e2f.vertex_high = this->mesh->its.indices[facet_idx][(i + 1) % 3]; e2f.face = facet_idx; // 1 based indexing, to be always strictly positive. e2f.face_edge = i + 1; @@ -818,7 +806,7 @@ void TriangleMeshSlicer::slice(const std::vector &z, std::vector* lines, boost::mutex* lines_mutex, const std::vector &z) const { - const stl_facet &facet = m_use_quaternion ? this->mesh->stl.facet_start[facet_idx].rotated(m_quaternion) : this->mesh->stl.facet_start[facet_idx]; + const stl_facet &facet = m_use_quaternion ? (this->mesh->stl.facet_start.data() + facet_idx)->rotated(m_quaternion) : *(this->mesh->stl.facet_start.data() + facet_idx); // find facet extents const float min_z = fminf(facet.vertex[0](2), fminf(facet.vertex[1](2), facet.vertex[2](2))); @@ -887,7 +875,7 @@ TriangleMeshSlicer::FacetSliceType TriangleMeshSlicer::slice_facet( // Reorder vertices so that the first one is the one with lowest Z. // This is needed to get all intersection lines in a consistent order // (external on the right of the line) - const int *vertices = this->mesh->stl.v_indices[facet_idx].vertex; + const stl_triangle_vertex_indices &vertices = this->mesh->its.indices[facet_idx]; int i = (facet.vertex[1].z() == min_z) ? 1 : ((facet.vertex[2].z() == min_z) ? 2 : 0); // These are used only if the cut plane is tilted: @@ -1714,7 +1702,7 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower) BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::cut - slicing object"; float scaled_z = scale_(z); for (uint32_t facet_idx = 0; facet_idx < this->mesh->stl.stats.number_of_facets; ++ facet_idx) { - stl_facet* facet = &this->mesh->stl.facet_start[facet_idx]; + const stl_facet* facet = &this->mesh->stl.facet_start[facet_idx]; // find facet extents float min_z = std::min(facet->vertex[0](2), std::min(facet->vertex[1](2), facet->vertex[2](2))); @@ -1736,10 +1724,12 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower) if (min_z > z || (min_z == z && max_z > z)) { // facet is above the cut plane and does not belong to it - if (upper != NULL) stl_add_facet(&upper->stl, facet); + if (upper != nullptr) + stl_add_facet(&upper->stl, facet); } else if (max_z < z || (max_z == z && min_z < z)) { // facet is below the cut plane and does not belong to it - if (lower != NULL) stl_add_facet(&lower->stl, facet); + if (lower != nullptr) + stl_add_facet(&lower->stl, facet); } else if (min_z < z && max_z > z) { // Facet is cut by the slicing plane. @@ -1786,22 +1776,24 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower) quadrilateral[1].vertex[2] = v0v1; if (v0(2) > z) { - if (upper != NULL) stl_add_facet(&upper->stl, &triangle); - if (lower != NULL) { + if (upper != nullptr) + stl_add_facet(&upper->stl, &triangle); + if (lower != nullptr) { stl_add_facet(&lower->stl, &quadrilateral[0]); stl_add_facet(&lower->stl, &quadrilateral[1]); } } else { - if (upper != NULL) { + if (upper != nullptr) { stl_add_facet(&upper->stl, &quadrilateral[0]); stl_add_facet(&upper->stl, &quadrilateral[1]); } - if (lower != NULL) stl_add_facet(&lower->stl, &triangle); + if (lower != nullptr) + stl_add_facet(&lower->stl, &triangle); } } } - if (upper != NULL) { + if (upper != nullptr) { BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::cut - triangulating upper part"; ExPolygons section; this->make_expolygons_simple(upper_lines, §ion); @@ -1815,7 +1807,7 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower) } } - if (lower != NULL) { + if (lower != nullptr) { BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::cut - triangulating lower part"; ExPolygons section; this->make_expolygons_simple(lower_lines, §ion); @@ -1905,10 +1897,10 @@ TriangleMesh make_cylinder(double r, double h, double fa) //FIXME better to discretize an Icosahedron recursively http://www.songho.ca/opengl/gl_sphere.html TriangleMesh make_sphere(double radius, double fa) { - int sectorCount = ceil(2. * M_PI / fa); - int stackCount = ceil(M_PI / fa); - float sectorStep = 2. * M_PI / sectorCount; - float stackStep = M_PI / stackCount; + int sectorCount = int(ceil(2. * M_PI / fa)); + int stackCount = int(ceil(M_PI / fa)); + float sectorStep = float(2. * M_PI / sectorCount); + float stackStep = float(M_PI / stackCount); Pointf3s vertices; vertices.reserve((stackCount - 1) * sectorCount + 2); diff --git a/src/libslic3r/TriangleMesh.hpp b/src/libslic3r/TriangleMesh.hpp index c284f6482..054a98935 100644 --- a/src/libslic3r/TriangleMesh.hpp +++ b/src/libslic3r/TriangleMesh.hpp @@ -21,19 +21,13 @@ typedef std::vector TriangleMeshPtrs; class TriangleMesh { public: - TriangleMesh() : repaired(false) { stl_initialize(&this->stl); } + TriangleMesh() : repaired(false) {} TriangleMesh(const Pointf3s &points, const std::vector &facets); - TriangleMesh(const TriangleMesh &other) : repaired(false) { stl_initialize(&this->stl); *this = other; } - TriangleMesh(TriangleMesh &&other) : repaired(false) { stl_initialize(&this->stl); this->swap(other); } - ~TriangleMesh() { clear(); } - TriangleMesh& operator=(const TriangleMesh &other); - TriangleMesh& operator=(TriangleMesh &&other) { this->swap(other); return *this; } - void clear() { stl_close(&this->stl); this->repaired = false; } - void swap(TriangleMesh &other) { std::swap(this->stl, other.stl); std::swap(this->repaired, other.repaired); } - void ReadSTLFile(const char* input_file) { stl_open(&stl, input_file); } - void write_ascii(const char* output_file) { stl_write_ascii(&this->stl, output_file, ""); } - void write_binary(const char* output_file) { stl_write_binary(&this->stl, output_file, ""); } - void repair(); + void clear() { this->stl.clear(); this->its.clear(); this->repaired = false; } + bool ReadSTLFile(const char* input_file) { return stl_open(&stl, input_file); } + bool write_ascii(const char* output_file) { return stl_write_ascii(&this->stl, output_file, ""); } + bool write_binary(const char* output_file) { return stl_write_binary(&this->stl, output_file, ""); } + void repair(bool update_shared_vertices = true); float volume(); void check_topology(); bool is_manifold() const { return this->stl.stats.connected_facets_3_edge == (int)this->stl.stats.number_of_facets; } @@ -58,7 +52,7 @@ public: TriangleMeshPtrs split() const; void merge(const TriangleMesh &mesh); ExPolygons horizontal_projection() const; - const float* first_vertex() const { return this->stl.facet_start ? &this->stl.facet_start->vertex[0](0) : nullptr; } + const float* first_vertex() const { return this->stl.facet_start.empty() ? nullptr : &this->stl.facet_start.front().vertex[0](0); } // 2D convex hull of a 3D mesh projected into the Z=0 plane. Polygon convex_hull(); BoundingBoxf3 bounding_box() const; @@ -69,12 +63,13 @@ public: void reset_repair_stats(); bool needed_repair() const; void require_shared_vertices(); - bool has_shared_vertices() const { return stl.v_shared != NULL; } + bool has_shared_vertices() const { return ! this->its.vertices.empty(); } size_t facets_count() const { return this->stl.stats.number_of_facets; } bool empty() const { return this->facets_count() == 0; } bool is_splittable() const; stl_file stl; + indexed_triangle_set its; bool repaired; private: diff --git a/src/slic3r/Config/Version.cpp b/src/slic3r/Config/Version.cpp index 2eda135d6..fe3adfd7f 100644 --- a/src/slic3r/Config/Version.cpp +++ b/src/slic3r/Config/Version.cpp @@ -198,6 +198,11 @@ size_t Index::load(const boost::filesystem::path &path) size_t idx_line = 0; Version ver; while (std::getline(ifs, line)) { +#ifndef _MSVCVER + // On a Unix system, getline does not remove the trailing carriage returns, if the index is shared over a Windows filesystem. Remove them manually. + while (! line.empty() && line.back() == '\r') + line.pop_back(); +#endif ++ idx_line; // Skip the initial white spaces. char *key = left_trim(const_cast(line.data())); diff --git a/src/slic3r/GUI/3DScene.cpp b/src/slic3r/GUI/3DScene.cpp index 59480de1c..33ab1f5d1 100644 --- a/src/slic3r/GUI/3DScene.cpp +++ b/src/slic3r/GUI/3DScene.cpp @@ -241,8 +241,6 @@ GLVolume::GLVolume(float r, float g, float b, float a) : m_transformed_bounding_box_dirty(true) , m_sla_shift_z(0.0) , m_transformed_convex_hull_bounding_box_dirty(true) - , m_convex_hull(nullptr) - , m_convex_hull_owned(false) // geometry_id == 0 -> invalid , geometry_id(std::pair(0, 0)) , extruder_id(0) @@ -268,12 +266,6 @@ GLVolume::GLVolume(float r, float g, float b, float a) set_render_color(r, g, b, a); } -GLVolume::~GLVolume() -{ - if (m_convex_hull_owned) - delete m_convex_hull; -} - void GLVolume::set_render_color(float r, float g, float b, float a) { render_color[0] = r; @@ -335,12 +327,6 @@ void GLVolume::set_color_from_model_volume(const ModelVolume *model_volume) color[3] = model_volume->is_model_part() ? 1.f : 0.5f; } -void GLVolume::set_convex_hull(const TriangleMesh *convex_hull, bool owned) -{ - m_convex_hull = convex_hull; - m_convex_hull_owned = owned; -} - Transform3d GLVolume::world_matrix() const { Transform3d m = m_instance_transformation.get_matrix() * m_volume_transformation.get_matrix(); @@ -377,7 +363,7 @@ const BoundingBoxf3& GLVolume::transformed_convex_hull_bounding_box() const BoundingBoxf3 GLVolume::transformed_convex_hull_bounding_box(const Transform3d &trafo) const { - return (m_convex_hull != nullptr && m_convex_hull->stl.stats.number_of_facets > 0) ? + return (m_convex_hull && m_convex_hull->stl.stats.number_of_facets > 0) ? m_convex_hull->transformed_bounding_box(trafo) : bounding_box.transformed(trafo); } @@ -587,7 +573,7 @@ int GLVolumeCollection::load_object_volume( const ModelVolume *model_volume = model_object->volumes[volume_idx]; const int extruder_id = model_volume->extruder_id(); const ModelInstance *instance = model_object->instances[instance_idx]; - const TriangleMesh& mesh = model_volume->mesh; + const TriangleMesh& mesh = model_volume->mesh(); float color[4]; memcpy(color, GLVolume::MODEL_COLOR[((color_by == "volume") ? volume_idx : obj_idx) % 4], sizeof(float) * 3); /* if (model_volume->is_support_blocker()) { @@ -613,7 +599,7 @@ int GLVolumeCollection::load_object_volume( if (model_volume->is_model_part()) { // GLVolume will reference a convex hull from model_volume! - v.set_convex_hull(&model_volume->get_convex_hull(), false); + v.set_convex_hull(model_volume->get_convex_hull_shared_ptr()); if (extruder_id != -1) v.extruder_id = extruder_id; } @@ -656,7 +642,10 @@ void GLVolumeCollection::load_object_auxiliary( v.composite_id = GLVolume::CompositeID(obj_idx, - int(milestone), (int)instance_idx.first); v.geometry_id = std::pair(timestamp, model_instance.id().id); // Create a copy of the convex hull mesh for each instance. Use a move operator on the last instance. - v.set_convex_hull((&instance_idx == &instances.back()) ? new TriangleMesh(std::move(convex_hull)) : new TriangleMesh(convex_hull), true); + if (&instance_idx == &instances.back()) + v.set_convex_hull(std::move(convex_hull)); + else + v.set_convex_hull(convex_hull); v.is_modifier = false; v.shader_outside_printer_detection_enabled = (milestone == slaposSupportTree); v.set_instance_transformation(model_instance.get_transformation()); diff --git a/src/slic3r/GUI/3DScene.hpp b/src/slic3r/GUI/3DScene.hpp index 2ca11073b..0414a1ed3 100644 --- a/src/slic3r/GUI/3DScene.hpp +++ b/src/slic3r/GUI/3DScene.hpp @@ -10,6 +10,7 @@ #include "slic3r/GUI/GLCanvas3DManager.hpp" #include +#include #ifndef NDEBUG #define HAS_GLSAFE @@ -243,7 +244,6 @@ public: GLVolume(float r = 1.f, float g = 1.f, float b = 1.f, float a = 1.f); GLVolume(const float *rgba) : GLVolume(rgba[0], rgba[1], rgba[2], rgba[3]) {} - ~GLVolume(); private: Geometry::Transformation m_instance_transformation; @@ -255,10 +255,8 @@ private: mutable BoundingBoxf3 m_transformed_bounding_box; // Whether or not is needed to recalculate the transformed bounding box. mutable bool m_transformed_bounding_box_dirty; - // Pointer to convex hull of the original mesh, if any. - // This object may or may not own the convex hull instance based on m_convex_hull_owned - const TriangleMesh* m_convex_hull; - bool m_convex_hull_owned; + // Convex hull of the volume, if any. + std::shared_ptr m_convex_hull; // Bounding box of this volume, in unscaled coordinates. mutable BoundingBoxf3 m_transformed_convex_hull_bounding_box; // Whether or not is needed to recalculate the transformed convex hull bounding box. @@ -395,7 +393,9 @@ public: double get_sla_shift_z() const { return m_sla_shift_z; } void set_sla_shift_z(double z) { m_sla_shift_z = z; } - void set_convex_hull(const TriangleMesh *convex_hull, bool owned); + void set_convex_hull(std::shared_ptr convex_hull) { m_convex_hull = std::move(convex_hull); } + void set_convex_hull(const TriangleMesh &convex_hull) { m_convex_hull = std::make_shared(convex_hull); } + void set_convex_hull(TriangleMesh &&convex_hull) { m_convex_hull = std::make_shared(std::move(convex_hull)); } int object_idx() const { return this->composite_id.object_id; } int volume_idx() const { return this->composite_id.volume_id; } diff --git a/src/slic3r/GUI/BackgroundSlicingProcess.cpp b/src/slic3r/GUI/BackgroundSlicingProcess.cpp index 94fb6481b..b77a272e2 100644 --- a/src/slic3r/GUI/BackgroundSlicingProcess.cpp +++ b/src/slic3r/GUI/BackgroundSlicingProcess.cpp @@ -89,7 +89,7 @@ void BackgroundSlicingProcess::process_fff() // Perform the final post-processing of the export path by applying the print statistics over the file name. std::string export_path = m_fff_print->print_statistics().finalize_output_path(m_export_path); if (copy_file(m_temp_output_path, export_path) != 0) - throw std::runtime_error(_utf8(L("Copying of the temporary G-code to the output G-code failed"))); + throw std::runtime_error(_utf8(L("Copying of the temporary G-code to the output G-code failed. Maybe the SD card is write locked?"))); m_print->set_status(95, _utf8(L("Running post-processing scripts"))); run_post_process_scripts(export_path, m_fff_print->config()); m_print->set_status(100, (boost::format(_utf8(L("G-code file exported to %1%"))) % export_path).str()); diff --git a/src/slic3r/GUI/GLCanvas3D.cpp b/src/slic3r/GUI/GLCanvas3D.cpp index 21f1d23cd..db6939e3d 100644 --- a/src/slic3r/GUI/GLCanvas3D.cpp +++ b/src/slic3r/GUI/GLCanvas3D.cpp @@ -5502,7 +5502,7 @@ void GLCanvas3D::_load_sla_shells() v.set_instance_offset(unscale(instance.shift(0), instance.shift(1), 0)); v.set_instance_rotation(Vec3d(0.0, 0.0, (double)instance.rotation)); v.set_instance_mirror(X, object.is_left_handed() ? -1. : 1.); - v.set_convex_hull(new TriangleMesh(std::move(mesh.convex_hull_3d())), true); + v.set_convex_hull(mesh.convex_hull_3d()); }; // adds objects' volumes diff --git a/src/slic3r/GUI/GUI_ObjectList.cpp b/src/slic3r/GUI/GUI_ObjectList.cpp index dffa02e95..cbf7a5ef5 100644 --- a/src/slic3r/GUI/GUI_ObjectList.cpp +++ b/src/slic3r/GUI/GUI_ObjectList.cpp @@ -261,7 +261,7 @@ wxString ObjectList::get_mesh_errors_list(const int obj_idx, const int vol_idx / const stl_stats& stats = vol_idx == -1 ? (*m_objects)[obj_idx]->get_object_stl_stats() : - (*m_objects)[obj_idx]->volumes[vol_idx]->mesh.stl.stats; + (*m_objects)[obj_idx]->volumes[vol_idx]->mesh().stl.stats; std::map error_msg = { { L("degenerate facets"), stats.degenerate_facets }, @@ -1592,7 +1592,7 @@ void ObjectList::load_generic_subobject(const std::string& type_name, const Mode // First (any) GLVolume of the selected instance. They all share the same instance matrix. const GLVolume* v = selection.get_volume(*selection.get_volume_idxs().begin()); // Transform the new modifier to be aligned with the print bed. - const BoundingBoxf3 mesh_bb = new_volume->mesh.bounding_box(); + const BoundingBoxf3 mesh_bb = new_volume->mesh().bounding_box(); new_volume->set_transformation(volume_to_bed_transformation(v->get_instance_transformation(), mesh_bb)); // Set the modifier position. auto offset = (type_name == "Slab") ? diff --git a/src/slic3r/GUI/Gizmos/GLGizmoSlaSupports.cpp b/src/slic3r/GUI/Gizmos/GLGizmoSlaSupports.cpp index 72db3a9dd..cfe07a61c 100644 --- a/src/slic3r/GUI/Gizmos/GLGizmoSlaSupports.cpp +++ b/src/slic3r/GUI/Gizmos/GLGizmoSlaSupports.cpp @@ -27,6 +27,7 @@ GLGizmoSlaSupports::GLGizmoSlaSupports(GLCanvas3D& parent, unsigned int sprite_i : GLGizmoBase(parent, sprite_id) #endif // ENABLE_SVG_ICONS , m_quadric(nullptr) + , m_its(nullptr) { m_quadric = ::gluNewQuadric(); if (m_quadric != nullptr) @@ -379,36 +380,23 @@ bool GLGizmoSlaSupports::is_point_clipped(const Vec3d& point) const bool GLGizmoSlaSupports::is_mesh_update_necessary() const { return ((m_state == On) && (m_model_object != nullptr) && !m_model_object->instances.empty()) - && ((m_model_object->id() != m_current_mesh_model_id) || m_V.size()==0); + && ((m_model_object->id() != m_current_mesh_model_id) || m_its == nullptr); } void GLGizmoSlaSupports::update_mesh() { wxBusyCursor wait; - Eigen::MatrixXf& V = m_V; - Eigen::MatrixXi& F = m_F; - // We rely on SLA model object having a single volume, // this way we can use that mesh directly. // This mesh does not account for the possible Z up SLA offset. - m_mesh = &m_model_object->volumes.front()->mesh; - const_cast(m_mesh)->require_shared_vertices(); // TriangleMeshSlicer needs this - const stl_file& stl = m_mesh->stl; - V.resize(3 * stl.stats.number_of_facets, 3); - F.resize(stl.stats.number_of_facets, 3); - for (unsigned int i=0; ivertex[0](0); V(3*i+0, 1) = facet->vertex[0](1); V(3*i+0, 2) = facet->vertex[0](2); - V(3*i+1, 0) = facet->vertex[1](0); V(3*i+1, 1) = facet->vertex[1](1); V(3*i+1, 2) = facet->vertex[1](2); - V(3*i+2, 0) = facet->vertex[2](0); V(3*i+2, 1) = facet->vertex[2](1); V(3*i+2, 2) = facet->vertex[2](2); - F(i, 0) = 3*i+0; - F(i, 1) = 3*i+1; - F(i, 2) = 3*i+2; - } + m_mesh = &m_model_object->volumes.front()->mesh(); + m_its = &m_mesh->its; m_current_mesh_model_id = m_model_object->id(); m_editing_mode = false; - m_AABB = igl::AABB(); - m_AABB.init(m_V, m_F); + m_AABB.deinit(); + m_AABB.init( + MapMatrixXfUnaligned(m_its->vertices.front().data(), m_its->vertices.size(), 3), + MapMatrixXiUnaligned(m_its->indices.front().data(), m_its->indices.size(), 3)); } // Unprojects the mouse position on the mesh and return the hit point and normal of the facet. @@ -416,7 +404,7 @@ void GLGizmoSlaSupports::update_mesh() std::pair GLGizmoSlaSupports::unproject_on_mesh(const Vec2d& mouse_pos) { // if the gizmo doesn't have the V, F structures for igl, calculate them first: - if (m_V.size() == 0) + if (m_its == nullptr) update_mesh(); const Camera& camera = m_parent.get_camera(); @@ -442,7 +430,10 @@ std::pair GLGizmoSlaSupports::unproject_on_mesh(const Vec2d& mouse point1 = inv * point1; point2 = inv * point2; - if (!m_AABB.intersect_ray(m_V, m_F, point1.cast(), (point2-point1).cast(), hits)) + if (!m_AABB.intersect_ray( + MapMatrixXfUnaligned(m_its->vertices.front().data(), m_its->vertices.size(), 3), + MapMatrixXiUnaligned(m_its->indices.front().data(), m_its->indices.size(), 3), + point1.cast(), (point2-point1).cast(), hits)) throw std::invalid_argument("unproject_on_mesh(): No intersection found."); std::sort(hits.begin(), hits.end(), [](const igl::Hit& a, const igl::Hit& b) { return a.t < b.t; }); @@ -457,9 +448,9 @@ std::pair GLGizmoSlaSupports::unproject_on_mesh(const Vec2d& mouse igl::Hit& hit = hits[i]; int fid = hit.id; // facet id bc = Vec3f(1-hit.u-hit.v, hit.u, hit.v); // barycentric coordinates of the hit - a = (m_V.row(m_F(fid, 1)) - m_V.row(m_F(fid, 0))); - b = (m_V.row(m_F(fid, 2)) - m_V.row(m_F(fid, 0))); - result = bc(0) * m_V.row(m_F(fid, 0)) + bc(1) * m_V.row(m_F(fid, 1)) + bc(2)*m_V.row(m_F(fid, 2)); + a = (m_its->vertices[m_its->indices[fid](1)] - m_its->vertices[m_its->indices[fid](0)]); + b = (m_its->vertices[m_its->indices[fid](2)] - m_its->vertices[m_its->indices[fid](0)]); + result = bc(0) * m_its->vertices[m_its->indices[fid](0)] + bc(1) * m_its->vertices[m_its->indices[fid](1)] + bc(2)*m_its->vertices[m_its->indices[fid](2)]; if (m_clipping_plane_distance == 0.f || !is_point_clipped(result.cast())) break; } @@ -564,15 +555,18 @@ bool GLGizmoSlaSupports::gizmo_event(SLAGizmoEventType action, const Vec2d& mous // Cast a ray in the direction of the camera and look for intersection with the mesh: std::vector hits; // Offset the start of the ray to the front of the ball + EPSILON to account for numerical inaccuracies. - if (m_AABB.intersect_ray(m_V, m_F, support_point.pos + direction_to_camera_mesh * (support_point.head_front_radius + EPSILON), direction_to_camera_mesh, hits)) { + if (m_AABB.intersect_ray( + MapMatrixXfUnaligned(m_its->vertices.front().data(), m_its->vertices.size(), 3), + MapMatrixXiUnaligned(m_its->indices.front().data(), m_its->indices.size(), 3), + support_point.pos + direction_to_camera_mesh * (support_point.head_front_radius + EPSILON), direction_to_camera_mesh, hits)) { std::sort(hits.begin(), hits.end(), [](const igl::Hit& h1, const igl::Hit& h2) { return h1.t < h2.t; }); if (m_clipping_plane_distance != 0.f) { // If the closest hit facet normal points in the same direction as the ray, // we are looking through the mesh and should therefore discard the point: int fid = hits.front().id; // facet id - Vec3f a = (m_V.row(m_F(fid, 1)) - m_V.row(m_F(fid, 0))); - Vec3f b = (m_V.row(m_F(fid, 2)) - m_V.row(m_F(fid, 0))); + Vec3f a = (m_its->vertices[m_its->indices[fid](1)] - m_its->vertices[m_its->indices[fid](0)]); + Vec3f b = (m_its->vertices[m_its->indices[fid](2)] - m_its->vertices[m_its->indices[fid](0)]); if ((a.cross(b)).dot(direction_to_camera_mesh) > 0.f) is_obscured = true; @@ -582,7 +576,7 @@ bool GLGizmoSlaSupports::gizmo_event(SLAGizmoEventType action, const Vec2d& mous int fid = hit.id; // facet id Vec3f bc = Vec3f(1-hit.u-hit.v, hit.u, hit.v); // barycentric coordinates of the hit - Vec3f hit_pos = bc(0) * m_V.row(m_F(fid, 0)) + bc(1) * m_V.row(m_F(fid, 1)) + bc(2)*m_V.row(m_F(fid, 2)); + Vec3f hit_pos = bc(0) * m_its->vertices[m_its->indices[fid](0)] + bc(1) * m_its->vertices[m_its->indices[fid](1)] + bc(2)*m_its->vertices[m_its->indices[fid](2)]; if (is_point_clipped(hit_pos.cast())) { hits.erase(hits.begin()+j); --j; @@ -759,9 +753,12 @@ void GLGizmoSlaSupports::update_cache_entry_normal(unsigned int i) const int idx = 0; Eigen::Matrix pp = m_editing_mode_cache[i].support_point.pos; Eigen::Matrix cc; - m_AABB.squared_distance(m_V, m_F, pp, idx, cc); - Vec3f a = (m_V.row(m_F(idx, 1)) - m_V.row(m_F(idx, 0))); - Vec3f b = (m_V.row(m_F(idx, 2)) - m_V.row(m_F(idx, 0))); + m_AABB.squared_distance( + MapMatrixXfUnaligned(m_its->vertices.front().data(), m_its->vertices.size(), 3), + MapMatrixXiUnaligned(m_its->indices.front().data(), m_its->indices.size(), 3), + pp, idx, cc); + Vec3f a = (m_its->vertices[m_its->indices[idx](1)] - m_its->vertices[m_its->indices[idx](0)]); + Vec3f b = (m_its->vertices[m_its->indices[idx](2)] - m_its->vertices[m_its->indices[idx](0)]); m_editing_mode_cache[i].normal = a.cross(b); } @@ -1067,8 +1064,7 @@ void GLGizmoSlaSupports::on_set_state() m_clipping_plane_distance = 0.f; // Release triangle mesh slicer and the AABB spatial search structure. m_AABB.deinit(); - m_V = Eigen::MatrixXf(); - m_F = Eigen::MatrixXi(); + m_its = nullptr; m_tms.reset(); m_supports_tms.reset(); }); diff --git a/src/slic3r/GUI/Gizmos/GLGizmoSlaSupports.hpp b/src/slic3r/GUI/Gizmos/GLGizmoSlaSupports.hpp index afd0087aa..30238cc9d 100644 --- a/src/slic3r/GUI/Gizmos/GLGizmoSlaSupports.hpp +++ b/src/slic3r/GUI/Gizmos/GLGizmoSlaSupports.hpp @@ -35,10 +35,11 @@ private: const float RenderPointScale = 1.f; GLUquadricObj* m_quadric; - Eigen::MatrixXf m_V; // vertices - Eigen::MatrixXi m_F; // facets indices - igl::AABB m_AABB; + typedef Eigen::Map> MapMatrixXfUnaligned; + typedef Eigen::Map> MapMatrixXiUnaligned; + igl::AABB m_AABB; const TriangleMesh* m_mesh; + const indexed_triangle_set* m_its; mutable const TriangleMesh* m_supports_mesh; mutable std::vector m_triangles; mutable std::vector m_supports_triangles; diff --git a/src/slic3r/GUI/Plater.cpp b/src/slic3r/GUI/Plater.cpp index 44f77b3f7..18b3078bb 100644 --- a/src/slic3r/GUI/Plater.cpp +++ b/src/slic3r/GUI/Plater.cpp @@ -3565,7 +3565,7 @@ void Plater::export_stl(bool extended, bool selection_only) else { const GLVolume* volume = selection.get_volume(*selection.get_volume_idxs().begin()); - mesh = model_object->volumes[volume->volume_idx()]->mesh; + mesh = model_object->volumes[volume->volume_idx()]->mesh(); mesh.transform(volume->get_volume_transformation().get_matrix()); mesh.translate(-model_object->origin_translation.cast()); } diff --git a/src/slic3r/GUI/PresetBundle.cpp b/src/slic3r/GUI/PresetBundle.cpp index fb3b6f7a4..b28cb2eda 100644 --- a/src/slic3r/GUI/PresetBundle.cpp +++ b/src/slic3r/GUI/PresetBundle.cpp @@ -781,7 +781,7 @@ void PresetBundle::load_config_file_config(const std::string &name_or_path, bool if (i == 0) suffix[0] = 0; else - sprintf(suffix, "%d", i); + sprintf(suffix, "%d", (int)i); std::string new_name = name + suffix; loaded = &this->filaments.load_preset(this->filaments.path_from_name(new_name), new_name, std::move(cfg), i == 0); @@ -837,7 +837,7 @@ void PresetBundle::load_config_file_config_bundle(const std::string &path, const return preset_name_dst; // Try to generate another name. char buf[64]; - sprintf(buf, " (%d)", i); + sprintf(buf, " (%d)", (int)i); preset_name_dst = preset_name_src + buf + bundle_name; } } @@ -1379,7 +1379,7 @@ void PresetBundle::export_configbundle(const std::string &path, bool export_syst for (size_t i = 0; i < this->filament_presets.size(); ++ i) { char suffix[64]; if (i > 0) - sprintf(suffix, "_%d", i); + sprintf(suffix, "_%d", (int)i); else suffix[0] = 0; c << "filament" << suffix << " = " << this->filament_presets[i] << std::endl; diff --git a/src/slic3r/Utils/FixModelByWin10.cpp b/src/slic3r/Utils/FixModelByWin10.cpp index 1daeaff26..710f19090 100644 --- a/src/slic3r/Utils/FixModelByWin10.cpp +++ b/src/slic3r/Utils/FixModelByWin10.cpp @@ -389,10 +389,10 @@ void fix_model_by_win10_sdk_gui(ModelObject &model_object, int volume_idx) throw std::runtime_error(L("Repaired 3MF file does not contain any volume")); if (model.objects.front()->volumes.size() > 1) throw std::runtime_error(L("Repaired 3MF file contains more than one volume")); - meshes_repaired.emplace_back(std::move(model.objects.front()->volumes.front()->mesh)); + meshes_repaired.emplace_back(std::move(model.objects.front()->volumes.front()->mesh())); } for (size_t i = 0; i < volumes.size(); ++ i) { - volumes[i]->mesh = std::move(meshes_repaired[i]); + volumes[i]->set_mesh(std::move(meshes_repaired[i])); volumes[i]->set_new_unique_id(); } model_object.invalidate_bounding_box(); diff --git a/xs/xsp/Model.xsp b/xs/xsp/Model.xsp index a1c8890ef..6a2cc6080 100644 --- a/xs/xsp/Model.xsp +++ b/xs/xsp/Model.xsp @@ -253,7 +253,7 @@ ModelMaterial::attributes() Ref config() %code%{ RETVAL = &THIS->config; %}; Ref mesh() - %code%{ RETVAL = &THIS->mesh; %}; + %code%{ RETVAL = &THIS->mesh(); %}; bool modifier() %code%{ RETVAL = THIS->is_modifier(); %}; diff --git a/xs/xsp/TriangleMesh.xsp b/xs/xsp/TriangleMesh.xsp index e519f9210..f3153665c 100644 --- a/xs/xsp/TriangleMesh.xsp +++ b/xs/xsp/TriangleMesh.xsp @@ -46,7 +46,6 @@ TriangleMesh::ReadFromPerl(vertices, facets) SV* facets CODE: stl_file &stl = THIS->stl; - stl.error = 0; stl.stats.type = inmemory; // count facets and allocate memory @@ -99,20 +98,18 @@ SV* TriangleMesh::vertices() CODE: if (!THIS->repaired) CONFESS("vertices() requires repair()"); - - if (THIS->stl.v_shared == NULL) - stl_generate_shared_vertices(&(THIS->stl)); + THIS->require_shared_vertices(); // vertices AV* vertices = newAV(); - av_extend(vertices, THIS->stl.stats.shared_vertices); - for (int i = 0; i < THIS->stl.stats.shared_vertices; i++) { + av_extend(vertices, THIS->its.vertices.size()); + for (size_t i = 0; i < THIS->its.vertices.size(); i++) { AV* vertex = newAV(); av_store(vertices, i, newRV_noinc((SV*)vertex)); av_extend(vertex, 2); - av_store(vertex, 0, newSVnv(THIS->stl.v_shared[i](0))); - av_store(vertex, 1, newSVnv(THIS->stl.v_shared[i](1))); - av_store(vertex, 2, newSVnv(THIS->stl.v_shared[i](2))); + av_store(vertex, 0, newSVnv(THIS->its.vertices[i](0))); + av_store(vertex, 1, newSVnv(THIS->its.vertices[i](1))); + av_store(vertex, 2, newSVnv(THIS->its.vertices[i](2))); } RETVAL = newRV_noinc((SV*)vertices); @@ -123,9 +120,7 @@ SV* TriangleMesh::facets() CODE: if (!THIS->repaired) CONFESS("facets() requires repair()"); - - if (THIS->stl.v_shared == NULL) - stl_generate_shared_vertices(&(THIS->stl)); + THIS->require_shared_vertices(); // facets AV* facets = newAV(); @@ -134,9 +129,9 @@ TriangleMesh::facets() AV* facet = newAV(); av_store(facets, i, newRV_noinc((SV*)facet)); av_extend(facet, 2); - av_store(facet, 0, newSVnv(THIS->stl.v_indices[i].vertex[0])); - av_store(facet, 1, newSVnv(THIS->stl.v_indices[i].vertex[1])); - av_store(facet, 2, newSVnv(THIS->stl.v_indices[i].vertex[2])); + av_store(facet, 0, newSVnv(THIS->its.indices[i][0])); + av_store(facet, 1, newSVnv(THIS->its.indices[i][1])); + av_store(facet, 2, newSVnv(THIS->its.indices[i][2])); } RETVAL = newRV_noinc((SV*)facets);