Ported test_trianglemesh from upstream slic3r, thanks @lordofhyphens
This commit is contained in:
parent
67e1eba8e6
commit
c99e7cb0df
7 changed files with 506 additions and 9 deletions
|
@ -134,12 +134,30 @@ inline bool is_approx(const Point &p1, const Point &p2, coord_t epsilon = coord_
|
|||
return d.x() < epsilon && d.y() < epsilon;
|
||||
}
|
||||
|
||||
inline bool is_approx(const Vec2f &p1, const Vec2f &p2, float epsilon = float(EPSILON))
|
||||
{
|
||||
Vec2f d = (p2 - p1).cwiseAbs();
|
||||
return d.x() < epsilon && d.y() < epsilon;
|
||||
}
|
||||
|
||||
inline bool is_approx(const Vec2d &p1, const Vec2d &p2, double epsilon = EPSILON)
|
||||
{
|
||||
Vec2d d = (p2 - p1).cwiseAbs();
|
||||
return d.x() < epsilon && d.y() < epsilon;
|
||||
}
|
||||
|
||||
inline bool is_approx(const Vec3f &p1, const Vec3f &p2, float epsilon = float(EPSILON))
|
||||
{
|
||||
Vec3f d = (p2 - p1).cwiseAbs();
|
||||
return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon;
|
||||
}
|
||||
|
||||
inline bool is_approx(const Vec3d &p1, const Vec3d &p2, double epsilon = EPSILON)
|
||||
{
|
||||
Vec3d d = (p2 - p1).cwiseAbs();
|
||||
return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon;
|
||||
}
|
||||
|
||||
namespace int128 {
|
||||
// Exact orientation predicate,
|
||||
// returns +1: CCW, 0: collinear, -1: CW.
|
||||
|
|
|
@ -593,6 +593,16 @@ TriangleMesh TriangleMesh::convex_hull_3d() const
|
|||
return output_mesh;
|
||||
}
|
||||
|
||||
std::vector<ExPolygons> TriangleMesh::slice(const std::vector<double> &z)
|
||||
{
|
||||
// convert doubles to floats
|
||||
std::vector<float> z_f(z.begin(), z.end());
|
||||
TriangleMeshSlicer mslicer(this);
|
||||
std::vector<ExPolygons> layers;
|
||||
mslicer.slice(z_f, 0.0004f, &layers, [](){});
|
||||
return layers;
|
||||
}
|
||||
|
||||
void TriangleMesh::require_shared_vertices()
|
||||
{
|
||||
BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::require_shared_vertices - start";
|
||||
|
@ -1861,7 +1871,8 @@ void TriangleMeshSlicer::cut(float z, TriangleMesh* upper, TriangleMesh* lower)
|
|||
}
|
||||
|
||||
// Generate the vertex list for a cube solid of arbitrary size in X/Y/Z.
|
||||
TriangleMesh make_cube(double x, double y, double z) {
|
||||
TriangleMesh make_cube(double x, double y, double z)
|
||||
{
|
||||
Vec3d pv[8] = {
|
||||
Vec3d(x, y, 0), Vec3d(x, 0, 0), Vec3d(0, 0, 0),
|
||||
Vec3d(0, y, 0), Vec3d(x, y, z), Vec3d(0, y, z),
|
||||
|
@ -1878,7 +1889,8 @@ TriangleMesh make_cube(double x, double y, double z) {
|
|||
Pointf3s vertices(&pv[0], &pv[0]+8);
|
||||
|
||||
TriangleMesh mesh(vertices ,facets);
|
||||
return mesh;
|
||||
mesh.repair();
|
||||
return mesh;
|
||||
}
|
||||
|
||||
// Generate the mesh for a cylinder and return it, using
|
||||
|
@ -1922,7 +1934,9 @@ TriangleMesh make_cylinder(double r, double h, double fa)
|
|||
facets.emplace_back(Vec3crd(id, 2, 3));
|
||||
facets.emplace_back(Vec3crd(id, id - 1, 2));
|
||||
|
||||
return TriangleMesh(std::move(vertices), std::move(facets));
|
||||
TriangleMesh mesh(std::move(vertices), std::move(facets));
|
||||
mesh.repair();
|
||||
return mesh;
|
||||
}
|
||||
|
||||
// Generates mesh for a sphere centered about the origin, using the generated angle
|
||||
|
@ -1978,7 +1992,9 @@ TriangleMesh make_sphere(double radius, double fa)
|
|||
k2 = k2_next;
|
||||
}
|
||||
}
|
||||
return TriangleMesh(std::move(vertices), std::move(facets));
|
||||
TriangleMesh mesh(std::move(vertices), std::move(facets));
|
||||
mesh.repair();
|
||||
return mesh;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -58,8 +58,14 @@ public:
|
|||
BoundingBoxf3 bounding_box() const;
|
||||
// Returns the bbox of this TriangleMesh transformed by the given transformation
|
||||
BoundingBoxf3 transformed_bounding_box(const Transform3d &trafo) const;
|
||||
// Return the size of the mesh in coordinates.
|
||||
Vec3d size() const { return stl.stats.size.cast<double>(); }
|
||||
/// Return the center of the related bounding box.
|
||||
Vec3d center() const { return this->bounding_box().center(); }
|
||||
// Returns the convex hull of this TriangleMesh
|
||||
TriangleMesh convex_hull_3d() const;
|
||||
// Slice this mesh at the provided Z levels and return the vector
|
||||
std::vector<ExPolygons> slice(const std::vector<double>& z);
|
||||
void reset_repair_stats();
|
||||
bool needed_repair() const;
|
||||
void require_shared_vertices();
|
||||
|
|
|
@ -4,6 +4,7 @@ add_executable(${_TEST_NAME}_tests
|
|||
test_data.cpp
|
||||
test_data.hpp
|
||||
test_flow.cpp
|
||||
test_trianglemesh.cpp
|
||||
)
|
||||
target_link_libraries(${_TEST_NAME}_tests test_common libslic3r)
|
||||
set_property(TARGET ${_TEST_NAME}_tests PROPERTY FOLDER "tests")
|
||||
|
|
|
@ -210,7 +210,7 @@ std::shared_ptr<Print> init_print(std::initializer_list<TestMesh> meshes, Slic3r
|
|||
config->apply(*_config);
|
||||
|
||||
const char* v {std::getenv("SLIC3R_TESTS_GCODE")};
|
||||
auto tests_gcode {(v == nullptr ? ""s : std::string(v))};
|
||||
auto tests_gcode {(v == nullptr ? "" : std::string(v))};
|
||||
|
||||
if (tests_gcode != "")
|
||||
config->set_key_value("gcode_comments", new ConfigOptionBool(true));
|
||||
|
@ -240,9 +240,9 @@ std::shared_ptr<Print> init_print(std::initializer_list<TriangleMesh> meshes, Sl
|
|||
config->apply(*_config);
|
||||
|
||||
const char* v {std::getenv("SLIC3R_TESTS_GCODE")};
|
||||
auto tests_gcode {(v == nullptr ? ""s : std::string(v))};
|
||||
auto tests_gcode {(v == nullptr ? "" : std::string(v))};
|
||||
|
||||
if (tests_gcode != ""s)
|
||||
if (tests_gcode != "")
|
||||
config->set_key_value("gcode_comments", new ConfigOptionBool(true));
|
||||
|
||||
std::shared_ptr<Print> print { std::make_shared<Slic3r::Print>() };
|
||||
|
@ -279,7 +279,7 @@ Slic3r::Model model(const std::string& model_name, TriangleMesh&& _mesh)
|
|||
{
|
||||
Slic3r::Model result;
|
||||
ModelObject *object = result.add_object();
|
||||
object->name += model_name + ".stl"s;
|
||||
object->name += model_name + ".stl";
|
||||
object->add_volume(_mesh);
|
||||
object->add_instance();
|
||||
return result;
|
||||
|
@ -294,3 +294,26 @@ void add_testmesh_to_model(Slic3r::Model& result, const std::string& model_name,
|
|||
}
|
||||
|
||||
} } // namespace Slic3r::Test
|
||||
|
||||
#include <catch2/catch.hpp>
|
||||
|
||||
SCENARIO("init_print functionality") {
|
||||
GIVEN("A default config") {
|
||||
std::shared_ptr<Slic3r::DynamicPrintConfig> config(Slic3r::DynamicPrintConfig::new_from_defaults());
|
||||
std::stringstream gcode;
|
||||
WHEN("init_print is called with a single mesh.") {
|
||||
Slic3r::Model model;
|
||||
auto print = Slic3r::Test::init_print({ Slic3r::Test::TestMesh::cube_20x20x20 }, model, config, true);
|
||||
gcode.clear();
|
||||
THEN("One mesh/printobject is in the resulting Print object.") {
|
||||
REQUIRE(print->objects().size() == 1);
|
||||
}
|
||||
THEN("print->process() doesn't crash.") {
|
||||
REQUIRE_NOTHROW(print->process());
|
||||
}
|
||||
THEN("Export gcode functions outputs text.") {
|
||||
REQUIRE(!Slic3r::Test::gcode(print).empty());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -56,7 +56,7 @@ TriangleMesh mesh(TestMesh m, Vec3d translate, double scale = 1.0);
|
|||
|
||||
/// Templated function to see if two values are equivalent (+/- epsilon)
|
||||
template <typename T>
|
||||
bool _equiv(const T& a, const T& b) { return abs(a - b) < Slic3r::Geometry::epsilon; }
|
||||
bool _equiv(const T& a, const T& b) { return std::abs(a - b) < EPSILON; }
|
||||
|
||||
template <typename T>
|
||||
bool _equiv(const T& a, const T& b, double epsilon) { return abs(a - b) < epsilon; }
|
||||
|
|
433
tests/fff_print/test_trianglemesh.cpp
Normal file
433
tests/fff_print/test_trianglemesh.cpp
Normal file
|
@ -0,0 +1,433 @@
|
|||
#include <catch2/catch.hpp>
|
||||
|
||||
#include "libslic3r/TriangleMesh.hpp"
|
||||
#include "libslic3r/Point.hpp"
|
||||
#include "libslic3r/Config.hpp"
|
||||
#include "libslic3r/Model.hpp"
|
||||
#include "libslic3r/libslic3r.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <future>
|
||||
#include <chrono>
|
||||
|
||||
//#include "test_options.hpp"
|
||||
#include "test_data.hpp"
|
||||
|
||||
using namespace Slic3r;
|
||||
using namespace std;
|
||||
|
||||
SCENARIO( "TriangleMesh: Basic mesh statistics") {
|
||||
GIVEN( "A 20mm cube, built from constexpr std::array" ) {
|
||||
std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
|
||||
std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
|
||||
TriangleMesh cube(vertices, facets);
|
||||
cube.repair();
|
||||
|
||||
THEN( "Volume is appropriate for 20mm square cube.") {
|
||||
REQUIRE(abs(cube.volume() - 20.0*20.0*20.0) < 1e-2);
|
||||
}
|
||||
|
||||
THEN( "Vertices array matches input.") {
|
||||
for (auto i = 0U; i < cube.its.vertices.size(); i++) {
|
||||
REQUIRE(cube.its.vertices.at(i) == vertices.at(i).cast<float>());
|
||||
}
|
||||
for (auto i = 0U; i < vertices.size(); i++) {
|
||||
REQUIRE(vertices.at(i).cast<float>() == cube.its.vertices.at(i));
|
||||
}
|
||||
}
|
||||
THEN( "Vertex count matches vertex array size.") {
|
||||
REQUIRE(cube.facets_count() == facets.size());
|
||||
}
|
||||
|
||||
THEN( "Facet array matches input.") {
|
||||
for (auto i = 0U; i < cube.its.indices.size(); i++) {
|
||||
REQUIRE(cube.its.indices.at(i) == facets.at(i));
|
||||
}
|
||||
|
||||
for (auto i = 0U; i < facets.size(); i++) {
|
||||
REQUIRE(facets.at(i) == cube.its.indices.at(i));
|
||||
}
|
||||
}
|
||||
THEN( "Facet count matches facet array size.") {
|
||||
REQUIRE(cube.facets_count() == facets.size());
|
||||
}
|
||||
|
||||
#if 0
|
||||
THEN( "Number of normals is equal to the number of facets.") {
|
||||
REQUIRE(cube.normals().size() == facets.size());
|
||||
}
|
||||
#endif
|
||||
|
||||
THEN( "center() returns the center of the object.") {
|
||||
REQUIRE(cube.center() == Vec3d(10.0,10.0,10.0));
|
||||
}
|
||||
|
||||
THEN( "Size of cube is (20,20,20)") {
|
||||
REQUIRE(cube.size() == Vec3d(20,20,20));
|
||||
}
|
||||
|
||||
}
|
||||
GIVEN( "A 20mm cube with one corner on the origin") {
|
||||
const std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
|
||||
const std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
|
||||
|
||||
TriangleMesh cube(vertices, facets);
|
||||
cube.repair();
|
||||
|
||||
THEN( "Volume is appropriate for 20mm square cube.") {
|
||||
REQUIRE(abs(cube.volume() - 20.0*20.0*20.0) < 1e-2);
|
||||
}
|
||||
|
||||
THEN( "Vertices array matches input.") {
|
||||
for (auto i = 0U; i < cube.its.vertices.size(); i++) {
|
||||
REQUIRE(cube.its.vertices.at(i) == vertices.at(i).cast<float>());
|
||||
}
|
||||
for (auto i = 0U; i < vertices.size(); i++) {
|
||||
REQUIRE(vertices.at(i).cast<float>() == cube.its.vertices.at(i));
|
||||
}
|
||||
}
|
||||
THEN( "Vertex count matches vertex array size.") {
|
||||
REQUIRE(cube.facets_count() == facets.size());
|
||||
}
|
||||
|
||||
THEN( "Facet array matches input.") {
|
||||
for (auto i = 0U; i < cube.its.indices.size(); i++) {
|
||||
REQUIRE(cube.its.indices.at(i) == facets.at(i));
|
||||
}
|
||||
|
||||
for (auto i = 0U; i < facets.size(); i++) {
|
||||
REQUIRE(facets.at(i) == cube.its.indices.at(i));
|
||||
}
|
||||
}
|
||||
THEN( "Facet count matches facet array size.") {
|
||||
REQUIRE(cube.facets_count() == facets.size());
|
||||
}
|
||||
|
||||
#if 0
|
||||
THEN( "Number of normals is equal to the number of facets.") {
|
||||
REQUIRE(cube.normals().size() == facets.size());
|
||||
}
|
||||
#endif
|
||||
|
||||
THEN( "center() returns the center of the object.") {
|
||||
REQUIRE(cube.center() == Vec3d(10.0,10.0,10.0));
|
||||
}
|
||||
|
||||
THEN( "Size of cube is (20,20,20)") {
|
||||
REQUIRE(cube.size() == Vec3d(20,20,20));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SCENARIO( "TriangleMesh: Transformation functions affect mesh as expected.") {
|
||||
GIVEN( "A 20mm cube with one corner on the origin") {
|
||||
const std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
|
||||
const std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
|
||||
TriangleMesh cube(vertices, facets);
|
||||
cube.repair();
|
||||
|
||||
WHEN( "The cube is scaled 200% uniformly") {
|
||||
cube.scale(2.0);
|
||||
THEN( "The volume is equivalent to 40x40x40 (all dimensions increased by 200%") {
|
||||
REQUIRE(abs(cube.volume() - 40.0*40.0*40.0) < 1e-2);
|
||||
}
|
||||
}
|
||||
WHEN( "The resulting cube is scaled 200% in the X direction") {
|
||||
cube.scale(Vec3d(2.0, 1, 1));
|
||||
THEN( "The volume is doubled.") {
|
||||
REQUIRE(abs(cube.volume() - 2*20.0*20.0*20.0) < 1e-2);
|
||||
}
|
||||
THEN( "The X coordinate size is 200%.") {
|
||||
REQUIRE(cube.its.vertices.at(0).x() == 40.0);
|
||||
}
|
||||
}
|
||||
|
||||
WHEN( "The cube is scaled 25% in the X direction") {
|
||||
cube.scale(Vec3d(0.25, 1, 1));
|
||||
THEN( "The volume is 25% of the previous volume.") {
|
||||
REQUIRE(abs(cube.volume() - 0.25*20.0*20.0*20.0) < 1e-2);
|
||||
}
|
||||
THEN( "The X coordinate size is 25% from previous.") {
|
||||
REQUIRE(cube.its.vertices.at(0).x() == 5.0);
|
||||
}
|
||||
}
|
||||
|
||||
WHEN( "The cube is rotated 45 degrees.") {
|
||||
cube.rotate_z(float(M_PI / 4.));
|
||||
THEN( "The X component of the size is sqrt(2)*20") {
|
||||
REQUIRE(abs(cube.size().x() - sqrt(2.0)*20) < 1e-2);
|
||||
}
|
||||
}
|
||||
|
||||
WHEN( "The cube is translated (5, 10, 0) units with a Vec3f ") {
|
||||
cube.translate(Vec3f(5.0, 10.0, 0.0));
|
||||
THEN( "The first vertex is located at 25, 30, 0") {
|
||||
REQUIRE(cube.its.vertices.at(0) == Vec3f(25.0, 30.0, 0.0));
|
||||
}
|
||||
}
|
||||
|
||||
WHEN( "The cube is translated (5, 10, 0) units with 3 doubles") {
|
||||
cube.translate(5.0, 10.0, 0.0);
|
||||
THEN( "The first vertex is located at 25, 30, 0") {
|
||||
REQUIRE(cube.its.vertices.at(0) == Vec3f(25.0, 30.0, 0.0));
|
||||
}
|
||||
}
|
||||
WHEN( "The cube is translated (5, 10, 0) units and then aligned to origin") {
|
||||
cube.translate(5.0, 10.0, 0.0);
|
||||
cube.align_to_origin();
|
||||
THEN( "The third vertex is located at 0,0,0") {
|
||||
REQUIRE(cube.its.vertices.at(2) == Vec3f(0.0, 0.0, 0.0));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SCENARIO( "TriangleMesh: slice behavior.") {
|
||||
GIVEN( "A 20mm cube with one corner on the origin") {
|
||||
const std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
|
||||
const std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
|
||||
TriangleMesh cube(vertices, facets);
|
||||
cube.repair();
|
||||
|
||||
WHEN("Cube is sliced with z = [0+EPSILON,2,4,8,6,8,10,12,14,16,18,20]") {
|
||||
std::vector<double> z { 0+EPSILON,2,4,8,6,8,10,12,14,16,18,20 };
|
||||
auto result {cube.slice(z)};
|
||||
THEN( "The correct number of polygons are returned per layer.") {
|
||||
for (auto i = 0U; i < z.size(); i++) {
|
||||
REQUIRE(result.at(i).size() == 1);
|
||||
}
|
||||
}
|
||||
THEN( "The area of the returned polygons is correct.") {
|
||||
for (auto i = 0U; i < z.size(); i++) {
|
||||
REQUIRE(result.at(i).at(0).area() == 20.0*20/(std::pow(SCALING_FACTOR,2)));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
GIVEN( "A STL with an irregular shape.") {
|
||||
const std::vector<Vec3d> vertices {Vec3d(0,0,0),Vec3d(0,0,20),Vec3d(0,5,0),Vec3d(0,5,20),Vec3d(50,0,0),Vec3d(50,0,20),Vec3d(15,5,0),Vec3d(35,5,0),Vec3d(15,20,0),Vec3d(50,5,0),Vec3d(35,20,0),Vec3d(15,5,10),Vec3d(50,5,20),Vec3d(35,5,10),Vec3d(35,20,10),Vec3d(15,20,10)};
|
||||
const std::vector<Vec3crd> facets {Vec3crd(0,1,2),Vec3crd(2,1,3),Vec3crd(1,0,4),Vec3crd(5,1,4),Vec3crd(0,2,4),Vec3crd(4,2,6),Vec3crd(7,6,8),Vec3crd(4,6,7),Vec3crd(9,4,7),Vec3crd(7,8,10),Vec3crd(2,3,6),Vec3crd(11,3,12),Vec3crd(7,12,9),Vec3crd(13,12,7),Vec3crd(6,3,11),Vec3crd(11,12,13),Vec3crd(3,1,5),Vec3crd(12,3,5),Vec3crd(5,4,9),Vec3crd(12,5,9),Vec3crd(13,7,10),Vec3crd(14,13,10),Vec3crd(8,15,10),Vec3crd(10,15,14),Vec3crd(6,11,8),Vec3crd(8,11,15),Vec3crd(15,11,13),Vec3crd(14,15,13)};
|
||||
|
||||
TriangleMesh cube(vertices, facets);
|
||||
cube.repair();
|
||||
WHEN(" a top tangent plane is sliced") {
|
||||
auto slices {cube.slice({5.0, 10.0})};
|
||||
THEN( "its area is included") {
|
||||
REQUIRE(slices.at(0).at(0).area() > 0);
|
||||
REQUIRE(slices.at(1).at(0).area() > 0);
|
||||
}
|
||||
}
|
||||
WHEN(" a model that has been transformed is sliced") {
|
||||
cube.mirror_z();
|
||||
auto slices {cube.slice({-5.0, -10.0})};
|
||||
THEN( "it is sliced properly (mirrored bottom plane area is included)") {
|
||||
REQUIRE(slices.at(0).at(0).area() > 0);
|
||||
REQUIRE(slices.at(1).at(0).area() > 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SCENARIO( "make_xxx functions produce meshes.") {
|
||||
GIVEN("make_cube() function") {
|
||||
WHEN("make_cube() is called with arguments 20,20,20") {
|
||||
TriangleMesh cube = make_cube(20,20,20);
|
||||
THEN("The resulting mesh has one and only one vertex at 0,0,0") {
|
||||
auto verts {cube.its.vertices};
|
||||
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return t.x() == 0 && t.y() == 0 && t.z() == 0; } ) == 1);
|
||||
}
|
||||
THEN("The mesh volume is 20*20*20") {
|
||||
REQUIRE(abs(cube.volume() - 20.0*20.0*20.0) < 1e-2);
|
||||
}
|
||||
THEN("The resulting mesh is in the repaired state.") {
|
||||
REQUIRE(cube.repaired == true);
|
||||
}
|
||||
THEN("There are 12 facets.") {
|
||||
REQUIRE(cube.its.indices.size() == 12);
|
||||
}
|
||||
}
|
||||
}
|
||||
GIVEN("make_cylinder() function") {
|
||||
WHEN("make_cylinder() is called with arguments 10,10, PI / 3") {
|
||||
TriangleMesh cyl = make_cylinder(10, 10, PI / 243.0);
|
||||
double angle = (2*PI / floor(2*PI / (PI / 243.0)));
|
||||
THEN("The resulting mesh has one and only one vertex at 0,0,0") {
|
||||
auto verts {cyl.its.vertices};
|
||||
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return t.x() == 0 && t.y() == 0 && t.z() == 0; } ) == 1);
|
||||
}
|
||||
THEN("The resulting mesh has one and only one vertex at 0,0,10") {
|
||||
auto verts {cyl.its.vertices};
|
||||
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return t.x() == 0 && t.y() == 0 && t.z() == 10; } ) == 1);
|
||||
}
|
||||
THEN("Resulting mesh has 2 + (2*PI/angle * 2) vertices.") {
|
||||
REQUIRE(cyl.its.vertices.size() == (2 + ((2*PI/angle)*2)));
|
||||
}
|
||||
THEN("Resulting mesh has 2*PI/angle * 4 facets") {
|
||||
REQUIRE(cyl.its.indices.size() == (2*PI/angle)*4);
|
||||
}
|
||||
THEN("The resulting mesh is in the repaired state.") {
|
||||
REQUIRE(cyl.repaired == true);
|
||||
}
|
||||
THEN( "The mesh volume is approximately 10pi * 10^2") {
|
||||
REQUIRE(abs(cyl.volume() - (10.0 * M_PI * std::pow(10,2))) < 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
GIVEN("make_sphere() function") {
|
||||
WHEN("make_sphere() is called with arguments 10, PI / 3") {
|
||||
TriangleMesh sph = make_sphere(10, PI / 243.0);
|
||||
double angle = (2.0*PI / floor(2.0*PI / (PI / 243.0)));
|
||||
THEN("Resulting mesh has one point at 0,0,-10 and one at 0,0,10") {
|
||||
const std::vector<stl_vertex> &verts = sph.its.vertices;
|
||||
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return is_approx(t, Vec3f(0.f, 0.f, 10.f)); } ) == 1);
|
||||
REQUIRE(std::count_if(verts.begin(), verts.end(), [](const Vec3f& t) { return is_approx(t, Vec3f(0.f, 0.f, -10.f)); } ) == 1);
|
||||
}
|
||||
THEN("The resulting mesh is in the repaired state.") {
|
||||
REQUIRE(sph.repaired == true);
|
||||
}
|
||||
THEN( "The mesh volume is approximately 4/3 * pi * 10^3") {
|
||||
REQUIRE(abs(sph.volume() - (4.0/3.0 * M_PI * std::pow(10,3))) < 1); // 1% tolerance?
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SCENARIO( "TriangleMesh: split functionality.") {
|
||||
GIVEN( "A 20mm cube with one corner on the origin") {
|
||||
const std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
|
||||
const std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
|
||||
|
||||
TriangleMesh cube(vertices, facets);
|
||||
cube.repair();
|
||||
WHEN( "The mesh is split into its component parts.") {
|
||||
auto meshes {cube.split()};
|
||||
THEN(" The bounding box statistics are propagated to the split copies") {
|
||||
REQUIRE(meshes.size() == 1);
|
||||
REQUIRE((meshes.at(0)->bounding_box() == cube.bounding_box()));
|
||||
}
|
||||
}
|
||||
}
|
||||
GIVEN( "Two 20mm cubes, each with one corner on the origin, merged into a single TriangleMesh") {
|
||||
const std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
|
||||
const std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
|
||||
|
||||
TriangleMesh cube(vertices, facets);
|
||||
cube.repair();
|
||||
TriangleMesh cube2(vertices, facets);
|
||||
cube2.repair();
|
||||
|
||||
cube.merge(cube2);
|
||||
cube.repair();
|
||||
WHEN( "The combined mesh is split") {
|
||||
auto meshes {cube.split()};
|
||||
THEN( "Two meshes are in the output vector.") {
|
||||
REQUIRE(meshes.size() == 2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SCENARIO( "TriangleMesh: Mesh merge functions") {
|
||||
GIVEN( "Two 20mm cubes, each with one corner on the origin") {
|
||||
const std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
|
||||
const std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
|
||||
|
||||
TriangleMesh cube(vertices, facets);
|
||||
cube.repair();
|
||||
TriangleMesh cube2(vertices, facets);
|
||||
cube2.repair();
|
||||
|
||||
WHEN( "The two meshes are merged") {
|
||||
cube.merge(cube2);
|
||||
cube.repair();
|
||||
THEN( "There are twice as many facets in the merged mesh as the original.") {
|
||||
REQUIRE(cube.stl.stats.number_of_facets == 2 * cube2.stl.stats.number_of_facets);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SCENARIO( "TriangleMeshSlicer: Cut behavior.") {
|
||||
GIVEN( "A 20mm cube with one corner on the origin") {
|
||||
const std::vector<Vec3d> vertices { Vec3d(20,20,0), Vec3d(20,0,0), Vec3d(0,0,0), Vec3d(0,20,0), Vec3d(20,20,20), Vec3d(0,20,20), Vec3d(0,0,20), Vec3d(20,0,20) };
|
||||
const std::vector<Vec3crd> facets { Vec3crd(0,1,2), Vec3crd(0,2,3), Vec3crd(4,5,6), Vec3crd(4,6,7), Vec3crd(0,4,7), Vec3crd(0,7,1), Vec3crd(1,7,6), Vec3crd(1,6,2), Vec3crd(2,6,5), Vec3crd(2,5,3), Vec3crd(4,0,3), Vec3crd(4,3,5) };
|
||||
|
||||
TriangleMesh cube(vertices, facets);
|
||||
cube.repair();
|
||||
WHEN( "Object is cut at the bottom") {
|
||||
TriangleMesh upper {};
|
||||
TriangleMesh lower {};
|
||||
TriangleMeshSlicer slicer(&cube);
|
||||
slicer.cut(0, &upper, &lower);
|
||||
THEN("Upper mesh has all facets except those belonging to the slicing plane.") {
|
||||
REQUIRE(upper.facets_count() == 12);
|
||||
}
|
||||
THEN("Lower mesh has no facets.") {
|
||||
REQUIRE(lower.facets_count() == 0);
|
||||
}
|
||||
}
|
||||
WHEN( "Object is cut at the center") {
|
||||
TriangleMesh upper {};
|
||||
TriangleMesh lower {};
|
||||
TriangleMeshSlicer slicer(&cube);
|
||||
slicer.cut(10, &upper, &lower);
|
||||
THEN("Upper mesh has 2 external horizontal facets, 3 facets on each side, and 6 facets on the triangulated side (2 + 12 + 6).") {
|
||||
REQUIRE(upper.facets_count() == 2+12+6);
|
||||
}
|
||||
THEN("Lower mesh has 2 external horizontal facets, 3 facets on each side, and 6 facets on the triangulated side (2 + 12 + 6).") {
|
||||
REQUIRE(lower.facets_count() == 2+12+6);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#ifdef TEST_PERFORMANCE
|
||||
TEST_CASE("Regression test for issue #4486 - files take forever to slice") {
|
||||
TriangleMesh mesh;
|
||||
auto config {Slic3r::Config::new_from_defaults()};
|
||||
mesh.ReadSTLFile(std::string(testfile_dir) + "test_trianglemesh/4486/100_000.stl");
|
||||
mesh.repair();
|
||||
|
||||
config->set("layer_height", 500);
|
||||
config->set("first_layer_height", 250);
|
||||
config->set("nozzle_diameter", 500);
|
||||
|
||||
Slic3r::Model model;
|
||||
auto print {Slic3r::Test::init_print({mesh}, model, config)};
|
||||
|
||||
print->status_cb = [] (int ln, const std::string& msg) { Slic3r::Log::info("Print") << ln << " " << msg << "\n";};
|
||||
|
||||
std::future<void> fut = std::async([&print] () { print->process(); });
|
||||
std::chrono::milliseconds span {120000};
|
||||
bool timedout {false};
|
||||
if(fut.wait_for(span) == std::future_status::timeout) {
|
||||
timedout = true;
|
||||
}
|
||||
REQUIRE(timedout == false);
|
||||
|
||||
}
|
||||
#endif // TEST_PERFORMANCE
|
||||
|
||||
#ifdef BUILD_PROFILE
|
||||
TEST_CASE("Profile test for issue #4486 - files take forever to slice") {
|
||||
TriangleMesh mesh;
|
||||
auto config {Slic3r::Config::new_from_defaults()};
|
||||
mesh.ReadSTLFile(std::string(testfile_dir) + "test_trianglemesh/4486/10_000.stl");
|
||||
mesh.repair();
|
||||
|
||||
config->set("layer_height", 500);
|
||||
config->set("first_layer_height", 250);
|
||||
config->set("nozzle_diameter", 500);
|
||||
config->set("fill_density", "5%");
|
||||
|
||||
Slic3r::Model model;
|
||||
auto print {Slic3r::Test::init_print({mesh}, model, config)};
|
||||
|
||||
print->status_cb = [] (int ln, const std::string& msg) { Slic3r::Log::info("Print") << ln << " " << msg << "\n";};
|
||||
|
||||
print->process();
|
||||
|
||||
REQUIRE(true);
|
||||
|
||||
}
|
||||
#endif //BUILD_PROFILE
|
Loading…
Reference in a new issue