Refactored cooling logic for readibility and maintainability.

This commit is contained in:
bubnikv 2018-04-25 22:54:52 +02:00
parent 269770bbbc
commit cbaf0ccc51
3 changed files with 430 additions and 350 deletions

View File

@ -79,6 +79,7 @@ $config->set('disable_fan_first_layers', [ 0 ]);
"G1 X50 F2500\n" . "G1 X50 F2500\n" .
"G1 F3000;_EXTRUDE_SET_SPEED\n" . "G1 F3000;_EXTRUDE_SET_SPEED\n" .
"G1 X100 E1\n" . "G1 X100 E1\n" .
";_EXTRUDE_END\n" .
"G1 E4 F400", "G1 E4 F400",
# Print time of $gcode. # Print time of $gcode.
my $print_time = 50 / (2500 / 60) + 100 / (3000 / 60) + 4 / (400 / 60); my $print_time = 50 / (2500 / 60) + 100 / (3000 / 60) + 4 / (400 / 60);

View File

@ -89,8 +89,9 @@ struct PerExtruderAdjustments
time_total += line.time; time_total += line.time;
return time_total; return time_total;
} }
// Calculate the maximum time when slowing down. // Calculate the total elapsed time when slowing down
float maximum_time(bool slowdown_external_perimeters) { // to the minimum extrusion feed rate defined for the current material.
float maximum_time_after_slowdown(bool slowdown_external_perimeters) {
float time_total = 0.f; float time_total = 0.f;
for (const CoolingLine &line : lines) for (const CoolingLine &line : lines)
if (line.adjustable(slowdown_external_perimeters)) { if (line.adjustable(slowdown_external_perimeters)) {
@ -102,6 +103,7 @@ struct PerExtruderAdjustments
time_total += line.time; time_total += line.time;
return time_total; return time_total;
} }
// Calculate the adjustable part of the total time.
float adjustable_time(bool slowdown_external_perimeters) { float adjustable_time(bool slowdown_external_perimeters) {
float time_total = 0.f; float time_total = 0.f;
for (const CoolingLine &line : lines) for (const CoolingLine &line : lines)
@ -117,7 +119,9 @@ struct PerExtruderAdjustments
time_total += line.time; time_total += line.time;
return time_total; return time_total;
} }
float slow_down_maximum(bool slowdown_external_perimeters) { // Slow down the adjustable extrusions to the minimum feedrate allowed for the current extruder material.
// Used by both proportional and non-proportional slow down.
float slowdown_to_minimum_feedrate(bool slowdown_external_perimeters) {
float time_total = 0.f; float time_total = 0.f;
for (CoolingLine &line : lines) { for (CoolingLine &line : lines) {
if (line.adjustable(slowdown_external_perimeters)) { if (line.adjustable(slowdown_external_perimeters)) {
@ -130,6 +134,8 @@ struct PerExtruderAdjustments
} }
return time_total; return time_total;
} }
// Slow down each adjustable G-code line proportionally by a factor.
// Used by the proportional slow down.
float slow_down_proportional(float factor, bool slowdown_external_perimeters) { float slow_down_proportional(float factor, bool slowdown_external_perimeters) {
assert(factor >= 1.f); assert(factor >= 1.f);
float time_total = 0.f; float time_total = 0.f;
@ -144,9 +150,8 @@ struct PerExtruderAdjustments
return time_total; return time_total;
} }
bool operator<(const PerExtruderAdjustments &rhs) const { return this->extruder_id < rhs.extruder_id; }
// Sort the lines, adjustable first, higher feedrate first. // Sort the lines, adjustable first, higher feedrate first.
// Used by non-proportional slow down.
void sort_lines_by_decreasing_feedrate() { void sort_lines_by_decreasing_feedrate() {
std::sort(lines.begin(), lines.end(), [](const CoolingLine &l1, const CoolingLine &l2) { std::sort(lines.begin(), lines.end(), [](const CoolingLine &l1, const CoolingLine &l2) {
bool adj1 = l1.adjustable(); bool adj1 = l1.adjustable();
@ -161,21 +166,25 @@ struct PerExtruderAdjustments
time_non_adjustable += lines[i].time; time_non_adjustable += lines[i].time;
} }
// Calculate the maximum time when slowing down. // Calculate the maximum time stretch when slowing down to min_feedrate.
float time_stretch_when_slowing_down_to(float min_feedrate) { // Slowdown to min_feedrate shall be allowed for this extruder's material.
// Used by non-proportional slow down.
float time_stretch_when_slowing_down_to_feedrate(float min_feedrate) {
float time_stretch = 0.f; float time_stretch = 0.f;
if (this->min_print_speed < min_feedrate + EPSILON) { assert(this->min_print_speed < min_feedrate + EPSILON);
for (size_t i = 0; i < n_lines_adjustable; ++ i) { for (size_t i = 0; i < n_lines_adjustable; ++ i) {
const CoolingLine &line = lines[i]; const CoolingLine &line = lines[i];
if (line.feedrate > min_feedrate) if (line.feedrate > min_feedrate)
time_stretch += line.time * (line.feedrate / min_feedrate - 1.f); time_stretch += line.time * (line.feedrate / min_feedrate - 1.f);
} }
}
return time_stretch; return time_stretch;
} }
void slow_down_to(float min_feedrate) { // Slow down all adjustable lines down to min_feedrate.
if (this->min_print_speed < min_feedrate + EPSILON) { // Slowdown to min_feedrate shall be allowed for this extruder's material.
// Used by non-proportional slow down.
void slow_down_to_feedrate(float min_feedrate) {
assert(this->min_print_speed < min_feedrate + EPSILON);
for (size_t i = 0; i < n_lines_adjustable; ++ i) { for (size_t i = 0; i < n_lines_adjustable; ++ i) {
CoolingLine &line = lines[i]; CoolingLine &line = lines[i];
if (line.feedrate > min_feedrate) { if (line.feedrate > min_feedrate) {
@ -185,10 +194,13 @@ struct PerExtruderAdjustments
} }
} }
} }
}
// Extruder, for which the G-code will be adjusted. // Extruder, for which the G-code will be adjusted.
unsigned int extruder_id = 0; unsigned int extruder_id = 0;
// Is the cooling slow down logic enabled for this extruder's material?
bool cooling_slow_down_enabled = false;
// Slow down the print down to min_print_speed if the total layer time is below slowdown_below_layer_time.
float slowdown_below_layer_time = 0.f;
// Minimum print speed allowed for this extruder. // Minimum print speed allowed for this extruder.
float min_print_speed = 0.f; float min_print_speed = 0.f;
@ -199,43 +211,57 @@ struct PerExtruderAdjustments
size_t n_lines_adjustable = 0; size_t n_lines_adjustable = 0;
// Non-adjustable time of lines starting with n_lines_adjustable. // Non-adjustable time of lines starting with n_lines_adjustable.
float time_non_adjustable = 0; float time_non_adjustable = 0;
// Current total time for this extruder.
float time_total = 0;
// Maximum time for this extruder, when the maximum slow down is applied.
float time_maximum = 0;
// Temporaries for processing the slow down. Both thresholds go from 0 to n_lines_adjustable. // Temporaries for processing the slow down. Both thresholds go from 0 to n_lines_adjustable.
size_t idx_line_begin = 0; size_t idx_line_begin = 0;
size_t idx_line_end = 0; size_t idx_line_end = 0;
}; };
#define EXTRUDER_CONFIG(OPT) config.OPT.get_at(m_current_extruder)
std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_id) std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_id)
{
std::vector<PerExtruderAdjustments> per_extruder_adjustments = this->parse_layer_gcode(gcode, m_current_pos);
float layer_time_stretched = this->calculate_layer_slowdown(per_extruder_adjustments);
return this->apply_layer_cooldown(gcode, layer_id, layer_time_stretched, per_extruder_adjustments);
}
// Parse the layer G-code for the moves, which could be adjusted.
// Return the list of parsed lines, bucketed by an extruder.
std::vector<PerExtruderAdjustments> CoolingBuffer::parse_layer_gcode(const std::string &gcode, std::vector<float> &current_pos) const
{ {
const FullPrintConfig &config = m_gcodegen.config(); const FullPrintConfig &config = m_gcodegen.config();
const std::vector<Extruder> &extruders = m_gcodegen.writer().extruders(); const std::vector<Extruder> &extruders = m_gcodegen.writer().extruders();
const size_t num_extruders = extruders.size(); unsigned int num_extruders = 0;
std::vector<PerExtruderAdjustments> per_extruder_adjustments(num_extruders);
unsigned int id_extruder_max = 0;
for (const Extruder &ex : extruders) for (const Extruder &ex : extruders)
id_extruder_max = std::max(ex.id(), id_extruder_max); num_extruders = std::max(ex.id() + 1, num_extruders);
std::vector<size_t> map_extruder_to_per_extruder_adjustment(id_extruder_max + 1, 0);
for (size_t i = 0; i < num_extruders; ++ i) { std::vector<PerExtruderAdjustments> per_extruder_adjustments(extruders.size());
std::vector<size_t> map_extruder_to_per_extruder_adjustment(num_extruders, 0);
for (size_t i = 0; i < extruders.size(); ++ i) {
PerExtruderAdjustments &adj = per_extruder_adjustments[i];
unsigned int extruder_id = extruders[i].id(); unsigned int extruder_id = extruders[i].id();
per_extruder_adjustments[i].extruder_id = extruder_id; adj.extruder_id = extruder_id;
per_extruder_adjustments[i].min_print_speed = config.min_print_speed.get_at(extruder_id); adj.cooling_slow_down_enabled = config.cooling.get_at(extruder_id);
adj.slowdown_below_layer_time = config.slowdown_below_layer_time.get_at(extruder_id);
adj.min_print_speed = config.min_print_speed.get_at(extruder_id);
map_extruder_to_per_extruder_adjustment[extruder_id] = i; map_extruder_to_per_extruder_adjustment[extruder_id] = i;
} }
const std::string toolchange_prefix = m_gcodegen.writer().toolchange_prefix(); const std::string toolchange_prefix = m_gcodegen.writer().toolchange_prefix();
// Parse the layer G-code for the moves, which could be adjusted. unsigned int current_extruder = m_current_extruder;
{ PerExtruderAdjustments *adjustment = &per_extruder_adjustments[map_extruder_to_per_extruder_adjustment[current_extruder]];
PerExtruderAdjustments *adjustment = &per_extruder_adjustments[map_extruder_to_per_extruder_adjustment[m_current_extruder]];
unsigned int initial_extruder = m_current_extruder;
const char *line_start = gcode.c_str(); const char *line_start = gcode.c_str();
const char *line_end = line_start; const char *line_end = line_start;
const char extrusion_axis = config.get_extrusion_axis()[0]; const char extrusion_axis = config.get_extrusion_axis()[0];
// Index of an existing CoolingLine of the current adjustment, which holds the feedrate setting command // Index of an existing CoolingLine of the current adjustment, which holds the feedrate setting command
// for a sequence of extrusion moves. // for a sequence of extrusion moves.
size_t active_speed_modifier = size_t(-1); size_t active_speed_modifier = size_t(-1);
for (; *line_start != 0; line_start = line_end) {
for (; *line_start != 0; line_start = line_end)
{
while (*line_end != '\n' && *line_end != 0) while (*line_end != '\n' && *line_end != 0)
++ line_end; ++ line_end;
// sline will not contain the trailing '\n'. // sline will not contain the trailing '\n'.
@ -253,7 +279,7 @@ std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_
if (line.type) { if (line.type) {
// G0, G1 or G92 // G0, G1 or G92
// Parse the G-code line. // Parse the G-code line.
std::vector<float> new_pos(m_current_pos); std::vector<float> new_pos(current_pos);
const char *c = sline.data() + 3; const char *c = sline.data() + 3;
for (;;) { for (;;) {
// Skip whitespaces. // Skip whitespaces.
@ -290,10 +316,10 @@ std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_
// G0 or G1. Calculate the duration. // G0 or G1. Calculate the duration.
if (config.use_relative_e_distances.value) if (config.use_relative_e_distances.value)
// Reset extruder accumulator. // Reset extruder accumulator.
m_current_pos[3] = 0.f; current_pos[3] = 0.f;
float dif[4]; float dif[4];
for (size_t i = 0; i < 4; ++ i) for (size_t i = 0; i < 4; ++ i)
dif[i] = new_pos[i] - m_current_pos[i]; dif[i] = new_pos[i] - current_pos[i];
float dxy2 = dif[0] * dif[0] + dif[1] * dif[1]; float dxy2 = dif[0] * dif[0] + dif[1] * dif[1];
float dxyz2 = dxy2 + dif[2] * dif[2]; float dxyz2 = dxy2 + dif[2] * dif[2];
if (dxyz2 > 0.f) { if (dxyz2 > 0.f) {
@ -326,7 +352,7 @@ std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_
line.type = 0; line.type = 0;
} }
} }
m_current_pos = std::move(new_pos); current_pos = std::move(new_pos);
} else if (boost::starts_with(sline, ";_EXTRUDE_END")) { } else if (boost::starts_with(sline, ";_EXTRUDE_END")) {
line.type = CoolingLine::TYPE_EXTRUDE_END; line.type = CoolingLine::TYPE_EXTRUDE_END;
active_speed_modifier = size_t(-1); active_speed_modifier = size_t(-1);
@ -334,9 +360,9 @@ std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_
// Switch the tool. // Switch the tool.
line.type = CoolingLine::TYPE_SET_TOOL; line.type = CoolingLine::TYPE_SET_TOOL;
unsigned int new_extruder = (unsigned int)atoi(sline.c_str() + toolchange_prefix.size()); unsigned int new_extruder = (unsigned int)atoi(sline.c_str() + toolchange_prefix.size());
if (new_extruder != m_current_extruder) { if (new_extruder != current_extruder) {
m_current_extruder = new_extruder; current_extruder = new_extruder;
adjustment = &per_extruder_adjustments[map_extruder_to_per_extruder_adjustment[m_current_extruder]]; adjustment = &per_extruder_adjustments[map_extruder_to_per_extruder_adjustment[current_extruder]];
} }
} else if (boost::starts_with(sline, ";_BRIDGE_FAN_START")) { } else if (boost::starts_with(sline, ";_BRIDGE_FAN_START")) {
line.type = CoolingLine::TYPE_BRIDGE_FAN_START; line.type = CoolingLine::TYPE_BRIDGE_FAN_START;
@ -354,105 +380,89 @@ std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_
if (line.type != 0) if (line.type != 0)
adjustment->lines.emplace_back(std::move(line)); adjustment->lines.emplace_back(std::move(line));
} }
m_current_extruder = initial_extruder;
}
// Sort the extruders by the increasing slowdown_below_layer_time. return per_extruder_adjustments;
std::vector<size_t> extruder_by_slowdown_time; }
extruder_by_slowdown_time.reserve(num_extruders);
// Only insert entries, which are adjustable (have cooling enabled and non-zero stretchable time).
// Collect total print time of non-adjustable extruders.
float elapsed_time_total_non_adjustable = 0.f;
for (size_t i = 0; i < num_extruders; ++ i) {
if (config.cooling.get_at(extruders[i].id())) {
extruder_by_slowdown_time.emplace_back(i);
per_extruder_adjustments[i].sort_lines_by_decreasing_feedrate();
} else
elapsed_time_total_non_adjustable += per_extruder_adjustments[i].elapsed_time_total();
}
std::sort(extruder_by_slowdown_time.begin(), extruder_by_slowdown_time.end(),
[&config, &extruders](const size_t idx1, const size_t idx2){
return config.slowdown_below_layer_time.get_at(extruders[idx1].id()) <
config.slowdown_below_layer_time.get_at(extruders[idx2].id());
});
// Elapsed time after adjustment. // Slow down an extruder range proportionally down to slowdown_below_layer_time.
float elapsed_time_total = 0.f; // Return the total time for the complete layer.
{ static inline float extruder_range_slow_down_proportional(
// Elapsed time for the already adjusted extruders. std::vector<PerExtruderAdjustments*>::iterator it_begin,
float elapsed_time_total0 = elapsed_time_total_non_adjustable; std::vector<PerExtruderAdjustments*>::iterator it_end,
for (size_t i_extruder_by_slowdown_time = 0; i_extruder_by_slowdown_time < extruder_by_slowdown_time.size(); ++ i_extruder_by_slowdown_time) { // Elapsed time for the extruders already processed.
// Idx in per_extruder_adjustments. float elapsed_time_total0,
size_t idx = extruder_by_slowdown_time[i_extruder_by_slowdown_time]; // Initial total elapsed time before slow down.
// Macro to sum or adjust all sections starting with i_extruder_by_slowdown_time. float elapsed_time_before_slowdown,
#define FORALL_UNPROCESSED(ACCUMULATOR, ACTION) \ // Target time for the complete layer (all extruders applied).
ACCUMULATOR = elapsed_time_total0;\ float slowdown_below_layer_time)
for (size_t j = i_extruder_by_slowdown_time; j < extruder_by_slowdown_time.size(); ++ j) \ {
ACCUMULATOR += per_extruder_adjustments[extruder_by_slowdown_time[j]].ACTION // Total layer time after the slow down has been applied.
// Calculate the current adjusted elapsed_time_total over the non-finalized extruders. float total_after_slowdown = elapsed_time_before_slowdown;
float total;
FORALL_UNPROCESSED(total, elapsed_time_total());
float slowdown_below_layer_time = float(config.slowdown_below_layer_time.get_at(per_extruder_adjustments[idx].extruder_id)) * 1.001f;
if (total > slowdown_below_layer_time) {
// The current total time is above the minimum threshold of the rest of the extruders, don't adjust anything.
} else {
// Adjust this and all the following (higher config.slowdown_below_layer_time) extruders.
// Sum maximum slow down time as if everything was slowed down including the external perimeters.
float max_time;
FORALL_UNPROCESSED(max_time, maximum_time(true));
if (max_time > slowdown_below_layer_time) {
// By slowing every possible movement, the layer time could be reached.
#if 0
// Now decide, whether the external perimeters shall be slowed down as well. // Now decide, whether the external perimeters shall be slowed down as well.
float max_time_nep; float max_time_nep = elapsed_time_total0;
FORALL_UNPROCESSED(max_time_nep, maximum_time(false)); for (auto it = it_begin; it != it_end; ++ it)
max_time_nep += (*it)->maximum_time_after_slowdown(false);
if (max_time_nep > slowdown_below_layer_time) { if (max_time_nep > slowdown_below_layer_time) {
// It is sufficient to slow down the non-external perimeter moves to reach the target layer time. // It is sufficient to slow down the non-external perimeter moves to reach the target layer time.
// Slow down the non-external perimeters proportionally. // Slow down the non-external perimeters proportionally.
float non_adjustable_time; float non_adjustable_time = elapsed_time_total0;
FORALL_UNPROCESSED(non_adjustable_time, non_adjustable_time(false)); for (auto it = it_begin; it != it_end; ++ it)
non_adjustable_time += (*it)->non_adjustable_time(false);
// The following step is a linear programming task due to the minimum movement speeds of the print moves. // The following step is a linear programming task due to the minimum movement speeds of the print moves.
// Run maximum 5 iterations until a good enough approximation is reached. // Run maximum 5 iterations until a good enough approximation is reached.
for (size_t iter = 0; iter < 5; ++ iter) { for (size_t iter = 0; iter < 5; ++ iter) {
float factor = (slowdown_below_layer_time - non_adjustable_time) / (total - non_adjustable_time); float factor = (slowdown_below_layer_time - non_adjustable_time) / (total_after_slowdown - non_adjustable_time);
assert(factor > 1.f); assert(factor > 1.f);
FORALL_UNPROCESSED(total, slow_down_proportional(factor, false)); total_after_slowdown = elapsed_time_total0;
if (total > 0.95f * slowdown_below_layer_time) for (auto it = it_begin; it != it_end; ++ it)
total_after_slowdown += (*it)->slow_down_proportional(factor, false);
if (total_after_slowdown > 0.95f * slowdown_below_layer_time)
break; break;
} }
} else { } else {
// Slow down everything. First slow down the non-external perimeters to maximum. // Slow down everything. First slow down the non-external perimeters to maximum.
FORALL_UNPROCESSED(total, slow_down_maximum(false)); for (auto it = it_begin; it != it_end; ++ it)
(*it)->slowdown_to_minimum_feedrate(false);
// Slow down the external perimeters proportionally. // Slow down the external perimeters proportionally.
float non_adjustable_time; float non_adjustable_time = elapsed_time_total0;
FORALL_UNPROCESSED(non_adjustable_time, non_adjustable_time(true)); for (auto it = it_begin; it != it_end; ++ it)
non_adjustable_time += (*it)->non_adjustable_time(true);
for (size_t iter = 0; iter < 5; ++ iter) { for (size_t iter = 0; iter < 5; ++ iter) {
float factor = (slowdown_below_layer_time - non_adjustable_time) / (total - non_adjustable_time); float factor = (slowdown_below_layer_time - non_adjustable_time) / (total_after_slowdown - non_adjustable_time);
assert(factor > 1.f); assert(factor > 1.f);
FORALL_UNPROCESSED(total, slow_down_proportional(factor, true)); total_after_slowdown = elapsed_time_total0;
if (total > 0.95f * slowdown_below_layer_time) for (auto it = it_begin; it != it_end; ++ it)
total_after_slowdown += (*it)->slow_down_proportional(factor, true);
if (total_after_slowdown > 0.95f * slowdown_below_layer_time)
break; break;
} }
} }
#else return total_after_slowdown;
}
// Slow down an extruder range to slowdown_below_layer_time.
// Return the total time for the complete layer.
static inline void extruder_range_slow_down_non_proportional(
std::vector<PerExtruderAdjustments*>::iterator it_begin,
std::vector<PerExtruderAdjustments*>::iterator it_end,
float time_stretch)
{
// Slow down. Try to equalize the feedrates. // Slow down. Try to equalize the feedrates.
std::vector<PerExtruderAdjustments*> by_min_print_speed; std::vector<PerExtruderAdjustments*> by_min_print_speed(it_begin, it_end);
by_min_print_speed.reserve(extruder_by_slowdown_time.size() - i_extruder_by_slowdown_time);
for (size_t j = i_extruder_by_slowdown_time; j < extruder_by_slowdown_time.size(); ++ j)
by_min_print_speed.emplace_back(&per_extruder_adjustments[extruder_by_slowdown_time[j]]);
// Find the next highest adjustable feedrate among the extruders. // Find the next highest adjustable feedrate among the extruders.
float feedrate = 0; float feedrate = 0;
for (PerExtruderAdjustments *adj : by_min_print_speed) for (PerExtruderAdjustments *adj : by_min_print_speed) {
if (adj->idx_line_begin < adj->n_lines_adjustable && adj->lines[adj->idx_line_begin].feedrate > feedrate) adj->idx_line_begin = 0;
adj->idx_line_end = 0;
assert(adj->idx_line_begin < adj->n_lines_adjustable);
if (adj->lines[adj->idx_line_begin].feedrate > feedrate)
feedrate = adj->lines[adj->idx_line_begin].feedrate; feedrate = adj->lines[adj->idx_line_begin].feedrate;
if (feedrate == 0) }
// No adjustable line is left. assert(feedrate > 0.f);
break;
// Sort by min_print_speed, maximum speed first. // Sort by min_print_speed, maximum speed first.
std::sort(by_min_print_speed.begin(), by_min_print_speed.end(), std::sort(by_min_print_speed.begin(), by_min_print_speed.end(),
[](const PerExtruderAdjustments *p1, const PerExtruderAdjustments *p2){ return p1->min_print_speed > p2->min_print_speed; }); [](const PerExtruderAdjustments *p1, const PerExtruderAdjustments *p2){ return p1->min_print_speed > p2->min_print_speed; });
// Slow down, fast moves first. // Slow down, fast moves first.
float time_stretch = slowdown_below_layer_time - total;
for (;;) { for (;;) {
// For each extruder, find the span of lines with a feedrate close to feedrate. // For each extruder, find the span of lines with a feedrate close to feedrate.
for (PerExtruderAdjustments *adj : by_min_print_speed) { for (PerExtruderAdjustments *adj : by_min_print_speed) {
@ -467,34 +477,32 @@ std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_
feedrate_next = adj->lines[adj->idx_line_end].feedrate; feedrate_next = adj->lines[adj->idx_line_end].feedrate;
// Slow down, limited by max(feedrate_next, min_print_speed). // Slow down, limited by max(feedrate_next, min_print_speed).
for (auto adj = by_min_print_speed.begin(); adj != by_min_print_speed.end();) { for (auto adj = by_min_print_speed.begin(); adj != by_min_print_speed.end();) {
float feedrate_limit = std::max(feedrate_next, (*adj)->min_print_speed); // Slow down at most by time_stretch.
if (feedrate_limit == 0.f) { if ((*adj)->min_print_speed == 0.f) {
float adjustable_time = 0.f; // All the adjustable speeds are now lowered to the same speed,
// and the minimum speed is set to zero.
float time_adjustable = 0.f;
for (auto it = adj; it != by_min_print_speed.end(); ++ it) for (auto it = adj; it != by_min_print_speed.end(); ++ it)
adjustable_time += (*it)->adjustable_time(true); time_adjustable += (*it)->adjustable_time(true);
float ratio = (adjustable_time + time_stretch) / adjustable_time; float rate = (time_adjustable + time_stretch) / time_adjustable;
for (auto it = adj; it != by_min_print_speed.end(); ++ it) for (auto it = adj; it != by_min_print_speed.end(); ++ it)
(*it)->slow_down_proportional(ratio, true); (*it)->slow_down_proportional(rate, true);
// Break from two levels of loops. return;
feedrate_next = 0.f;
break;
} else { } else {
float feedrate_limit = std::max(feedrate_next, (*adj)->min_print_speed);
bool done = false;
float time_stretch_max = 0.f; float time_stretch_max = 0.f;
for (auto it = adj; it != by_min_print_speed.end(); ++ it) for (auto it = adj; it != by_min_print_speed.end(); ++ it)
time_stretch_max += (*it)->time_stretch_when_slowing_down_to(feedrate_limit); time_stretch_max += (*it)->time_stretch_when_slowing_down_to_feedrate(feedrate_limit);
bool done = false; if (time_stretch_max >= time_stretch) {
if (time_stretch_max > time_stretch) {
feedrate_limit = feedrate - (feedrate - feedrate_limit) * time_stretch / time_stretch_max; feedrate_limit = feedrate - (feedrate - feedrate_limit) * time_stretch / time_stretch_max;
done = true; done = true;
} } else
for (auto it = adj; it != by_min_print_speed.end(); ++ it)
(*it)->slow_down_to(feedrate_limit);
if (done) {
// Break from two levels of loops.
feedrate_next = 0.f;
break;
}
time_stretch -= time_stretch_max; time_stretch -= time_stretch_max;
for (auto it = adj; it != by_min_print_speed.end(); ++ it)
(*it)->slow_down_to_feedrate(feedrate_limit);
if (done)
return;
} }
// Skip the other extruders with nearly the same min_print_speed, as they have been processed already. // Skip the other extruders with nearly the same min_print_speed, as they have been processed already.
auto next = adj; auto next = adj;
@ -509,25 +517,81 @@ std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_
feedrate = feedrate_next; feedrate = feedrate_next;
} }
} }
#endif }
// Calculate slow down for all the extruders.
float CoolingBuffer::calculate_layer_slowdown(std::vector<PerExtruderAdjustments> &per_extruder_adjustments)
{
// Sort the extruders by an increasing slowdown_below_layer_time.
// The layers with a lower slowdown_below_layer_time are slowed down
// together with all the other layers with slowdown_below_layer_time above.
std::vector<PerExtruderAdjustments*> by_slowdown_time;
by_slowdown_time.reserve(per_extruder_adjustments.size());
// Only insert entries, which are adjustable (have cooling enabled and non-zero stretchable time).
// Collect total print time of non-adjustable extruders.
float elapsed_time_total0 = 0.f;
for (PerExtruderAdjustments &adj : per_extruder_adjustments) {
// Curren total time for this extruder.
adj.time_total = adj.elapsed_time_total();
// Maximum time for this extruder, when all extrusion moves are slowed down to min_extrusion_speed.
adj.time_maximum = adj.maximum_time_after_slowdown(true);
if (adj.cooling_slow_down_enabled) {
by_slowdown_time.emplace_back(&adj);
if (! m_cooling_logic_proportional)
// sorts the lines, also sets adj.time_non_adjustable
adj.sort_lines_by_decreasing_feedrate();
} else
elapsed_time_total0 += adj.elapsed_time_total();
}
std::sort(by_slowdown_time.begin(), by_slowdown_time.end(),
[](const PerExtruderAdjustments *adj1, const PerExtruderAdjustments *adj2)
{ return adj1->slowdown_below_layer_time < adj2->slowdown_below_layer_time; });
for (auto cur_begin = by_slowdown_time.begin(); cur_begin != by_slowdown_time.end(); ++ cur_begin) {
PerExtruderAdjustments &adj = *(*cur_begin);
// Calculate the current adjusted elapsed_time_total over the non-finalized extruders.
float total = elapsed_time_total0;
for (auto it = cur_begin; it != by_slowdown_time.end(); ++ it)
total += (*it)->time_total;
float slowdown_below_layer_time = adj.slowdown_below_layer_time * 1.001f;
if (total > slowdown_below_layer_time) {
// The current total time is above the minimum threshold of the rest of the extruders, don't adjust anything.
} else {
// Adjust this and all the following (higher config.slowdown_below_layer_time) extruders.
// Sum maximum slow down time as if everything was slowed down including the external perimeters.
float max_time = elapsed_time_total0;
for (auto it = cur_begin; it != by_slowdown_time.end(); ++ it)
max_time += (*it)->time_maximum;
if (max_time > slowdown_below_layer_time) {
if (m_cooling_logic_proportional)
extruder_range_slow_down_proportional(cur_begin, by_slowdown_time.end(), elapsed_time_total0, total, slowdown_below_layer_time);
else
extruder_range_slow_down_non_proportional(cur_begin, by_slowdown_time.end(), slowdown_below_layer_time - total);
} else { } else {
// Slow down to maximum possible. // Slow down to maximum possible.
FORALL_UNPROCESSED(total, slow_down_maximum(true)); for (auto it = cur_begin; it != by_slowdown_time.end(); ++ it)
(*it)->slowdown_to_minimum_feedrate(true);
} }
} }
#undef FORALL_UNPROCESSED elapsed_time_total0 += adj.elapsed_time_total();
// Sum the final elapsed time for all extruders up to i_extruder_by_slowdown_time.
if (i_extruder_by_slowdown_time + 1 == extruder_by_slowdown_time.size())
// Optimization for single extruder prints.
elapsed_time_total0 = total;
else
elapsed_time_total0 += per_extruder_adjustments[idx].elapsed_time_total();
}
elapsed_time_total = elapsed_time_total0;
} }
// Transform the G-code. return elapsed_time_total0;
// First sort the adjustment lines by their position in the source G-code. }
// Apply slow down over G-code lines stored in per_extruder_adjustments, enable fan if needed.
// Returns the adjusted G-code.
std::string CoolingBuffer::apply_layer_cooldown(
// Source G-code for the current layer.
const std::string &gcode,
// ID of the current layer, used to disable fan for the first n layers.
size_t layer_id,
// Total time of this layer after slow down, used to control the fan.
float layer_time,
// Per extruder list of G-code lines and their cool down attributes.
std::vector<PerExtruderAdjustments> &per_extruder_adjustments)
{
// First sort the adjustment lines by of multiple extruders by their position in the source G-code.
std::vector<const CoolingLine*> lines; std::vector<const CoolingLine*> lines;
{ {
size_t n_lines = 0; size_t n_lines = 0;
@ -545,8 +609,9 @@ std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_
int fan_speed = -1; int fan_speed = -1;
bool bridge_fan_control = false; bool bridge_fan_control = false;
int bridge_fan_speed = 0; int bridge_fan_speed = 0;
auto change_extruder_set_fan = [ this, layer_id, elapsed_time_total, &new_gcode, &fan_speed, &bridge_fan_control, &bridge_fan_speed ]() { auto change_extruder_set_fan = [ this, layer_id, layer_time, &new_gcode, &fan_speed, &bridge_fan_control, &bridge_fan_speed ]() {
const FullPrintConfig &config = m_gcodegen.config(); const FullPrintConfig &config = m_gcodegen.config();
#define EXTRUDER_CONFIG(OPT) config.OPT.get_at(m_current_extruder)
int min_fan_speed = EXTRUDER_CONFIG(min_fan_speed); int min_fan_speed = EXTRUDER_CONFIG(min_fan_speed);
int fan_speed_new = EXTRUDER_CONFIG(fan_always_on) ? min_fan_speed : 0; int fan_speed_new = EXTRUDER_CONFIG(fan_always_on) ? min_fan_speed : 0;
if (layer_id >= EXTRUDER_CONFIG(disable_fan_first_layers)) { if (layer_id >= EXTRUDER_CONFIG(disable_fan_first_layers)) {
@ -554,17 +619,18 @@ std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_
float slowdown_below_layer_time = float(EXTRUDER_CONFIG(slowdown_below_layer_time)); float slowdown_below_layer_time = float(EXTRUDER_CONFIG(slowdown_below_layer_time));
float fan_below_layer_time = float(EXTRUDER_CONFIG(fan_below_layer_time)); float fan_below_layer_time = float(EXTRUDER_CONFIG(fan_below_layer_time));
if (EXTRUDER_CONFIG(cooling)) { if (EXTRUDER_CONFIG(cooling)) {
if (elapsed_time_total < slowdown_below_layer_time) { if (layer_time < slowdown_below_layer_time) {
// Layer time very short. Enable the fan to a full throttle. // Layer time very short. Enable the fan to a full throttle.
fan_speed_new = max_fan_speed; fan_speed_new = max_fan_speed;
} else if (elapsed_time_total < fan_below_layer_time) { } else if (layer_time < fan_below_layer_time) {
// Layer time quite short. Enable the fan proportionally according to the current layer time. // Layer time quite short. Enable the fan proportionally according to the current layer time.
assert(elapsed_time_total >= slowdown_below_layer_time); assert(layer_time >= slowdown_below_layer_time);
double t = (elapsed_time_total - slowdown_below_layer_time) / (fan_below_layer_time - slowdown_below_layer_time); double t = (layer_time - slowdown_below_layer_time) / (fan_below_layer_time - slowdown_below_layer_time);
fan_speed_new = int(floor(t * min_fan_speed + (1. - t) * max_fan_speed) + 0.5); fan_speed_new = int(floor(t * min_fan_speed + (1. - t) * max_fan_speed) + 0.5);
} }
} }
bridge_fan_speed = EXTRUDER_CONFIG(bridge_fan_speed); bridge_fan_speed = EXTRUDER_CONFIG(bridge_fan_speed);
#undef EXTRUDER_CONFIG
bridge_fan_control = bridge_fan_speed > fan_speed_new; bridge_fan_control = bridge_fan_speed > fan_speed_new;
} else { } else {
bridge_fan_control = false; bridge_fan_control = false;
@ -576,10 +642,11 @@ std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_
new_gcode += m_gcodegen.writer().set_fan(fan_speed); new_gcode += m_gcodegen.writer().set_fan(fan_speed);
} }
}; };
change_extruder_set_fan();
const char *pos = gcode.c_str(); const char *pos = gcode.c_str();
int current_feedrate = 0; int current_feedrate = 0;
const std::string toolchange_prefix = m_gcodegen.writer().toolchange_prefix();
change_extruder_set_fan();
for (const CoolingLine *line : lines) { for (const CoolingLine *line : lines) {
const char *line_start = gcode.c_str() + line->line_start; const char *line_start = gcode.c_str() + line->line_start;
const char *line_end = gcode.c_str() + line->line_end; const char *line_end = gcode.c_str() + line->line_end;

View File

@ -9,13 +9,17 @@ namespace Slic3r {
class GCode; class GCode;
class Layer; class Layer;
class PerExtruderAdjustments;
/* // A standalone G-code filter, to control cooling of the print.
A standalone G-code filter, to control cooling of the print. // The G-code is processed per layer. Once a layer is collected, fan start / stop commands are edited
The G-code is processed per layer. Once a layer is collected, fan start / stop commands are edited // and the print is modified to stretch over a minimum layer time.
and the print is modified to stretch over a minimum layer time. //
*/ // The simple it sounds, the actual implementation is significantly more complex.
// Namely, for a multi-extruder print, each material may require a different cooling logic.
// For example, some materials may not like to print too slowly, while with some materials
// we may slow down significantly.
//
class CoolingBuffer { class CoolingBuffer {
public: public:
CoolingBuffer(GCode &gcodegen); CoolingBuffer(GCode &gcodegen);
@ -25,7 +29,12 @@ public:
GCode* gcodegen() { return &m_gcodegen; } GCode* gcodegen() { return &m_gcodegen; }
private: private:
CoolingBuffer& operator=(const CoolingBuffer&); CoolingBuffer& operator=(const CoolingBuffer&) = delete;
std::vector<PerExtruderAdjustments> parse_layer_gcode(const std::string &gcode, std::vector<float> &current_pos) const;
float calculate_layer_slowdown(std::vector<PerExtruderAdjustments> &per_extruder_adjustments);
// Apply slow down over G-code lines stored in per_extruder_adjustments, enable fan if needed.
// Returns the adjusted G-code.
std::string apply_layer_cooldown(const std::string &gcode, size_t layer_id, float layer_time, std::vector<PerExtruderAdjustments> &per_extruder_adjustments);
GCode& m_gcodegen; GCode& m_gcodegen;
std::string m_gcode; std::string m_gcode;
@ -34,6 +43,9 @@ private:
std::vector<char> m_axis; std::vector<char> m_axis;
std::vector<float> m_current_pos; std::vector<float> m_current_pos;
unsigned int m_current_extruder; unsigned int m_current_extruder;
// Old logic: proportional.
bool m_cooling_logic_proportional = false;
}; };
} }