New BuildVolume class was created, which detects build volume type (rectangular,

circular, convex, concave) and performs efficient collision detection agains these build
volumes. As of now, collision detection is performed against a convex
hull of a concave build volume for efficency.

GCodeProcessor::Result renamed out of GCodeProcessor to GCodeProcessorResult,
so it could be forward declared.

Plater newly exports BuildVolume, not Bed3D. Bed3D is a rendering class,
while BuildVolume is a purely geometric class.

Reduced usage of global wxGetApp, the Bed3D is passed as a parameter
to View3D/Preview/GLCanvas.

Convex hull code was extracted from Geometry.cpp/hpp to Geometry/ConvexHulll.cpp,hpp.
New test inside_convex_polygon().
New efficent point inside polygon test: Decompose convex hull
to bottom / top parts and use the decomposition to detect point inside
a convex polygon in O(log n). decompose_convex_polygon_top_bottom(),
inside_convex_polygon().

New Circle constructing functions: circle_ransac() and circle_taubin_newton().

New polygon_is_convex() test with unit tests.
This commit is contained in:
Vojtech Bubnik 2021-11-16 10:15:51 +01:00
parent b431fd1f7e
commit cc44089440
51 changed files with 1544 additions and 1594 deletions

View File

@ -111,7 +111,7 @@ public:
void translate(coordf_t x, coordf_t y, coordf_t z) { assert(this->defined); PointClass v(x, y, z); this->min += v; this->max += v; }
void translate(const Vec3d &v) { this->min += v; this->max += v; }
void offset(coordf_t delta);
BoundingBoxBase<PointClass> inflated(coordf_t delta) const throw() { BoundingBoxBase<PointClass> out(*this); out.offset(delta); return out; }
BoundingBox3Base<PointClass> inflated(coordf_t delta) const throw() { BoundingBox3Base<PointClass> out(*this); out.offset(delta); return out; }
PointClass center() const;
coordf_t max_size() const;

View File

@ -0,0 +1,405 @@
#include "BuildVolume.hpp"
#include "ClipperUtils.hpp"
#include "Geometry/ConvexHull.hpp"
#include "GCode/GCodeProcessor.hpp"
#include "Point.hpp"
namespace Slic3r {
BuildVolume::BuildVolume(const std::vector<Vec2d> &bed_shape, const double max_print_height) : m_bed_shape(bed_shape), m_max_print_height(max_print_height)
{
assert(max_print_height >= 0);
m_polygon = Polygon::new_scale(bed_shape);
// Calcuate various metrics of the input polygon.
m_convex_hull = Geometry::convex_hull(m_polygon.points);
m_bbox = get_extents(m_convex_hull);
m_area = m_polygon.area();
BoundingBoxf bboxf = get_extents(bed_shape);
m_bboxf = BoundingBoxf3{ to_3d(bboxf.min, 0.), to_3d(bboxf.max, max_print_height) };
if (bed_shape.size() >= 4 && std::abs((m_area - double(m_bbox.size().x()) * double(m_bbox.size().y()))) < sqr(SCALED_EPSILON)) {
// Square print bed, use the bounding box for collision detection.
m_type = Type::Rectangle;
m_circle.center = 0.5 * (m_bbox.min.cast<double>() + m_bbox.max.cast<double>());
m_circle.radius = 0.5 * m_bbox.size().cast<double>().norm();
} else if (bed_shape.size() > 3) {
// Circle was discretized, formatted into text with limited accuracy, thus the circle was deformed.
// RANSAC is slightly more accurate than the iterative Taubin / Newton method with such an input.
// m_circle = Geometry::circle_taubin_newton(bed_shape);
m_circle = Geometry::circle_ransac(bed_shape);
bool is_circle = true;
#ifndef NDEBUG
// Measuring maximum absolute error of interpolating an input polygon with circle.
double max_error = 0;
#endif // NDEBUG
Vec2d prev = bed_shape.back();
for (const Vec2d &p : bed_shape) {
#ifndef NDEBUG
max_error = std::max(max_error, std::abs((p - m_circle.center).norm() - m_circle.radius));
#endif // NDEBUG
if (// Polygon vertices must lie very close the circle.
std::abs((p - m_circle.center).norm() - m_circle.radius) > 0.005 ||
// Midpoints of polygon edges must not undercat more than 3mm. This corresponds to 72 edges per circle generated by BedShapePanel::update_shape().
m_circle.radius - (0.5 * (prev + p) - m_circle.center).norm() > 3.) {
is_circle = false;
break;
}
prev = p;
}
if (is_circle) {
m_type = Type::Circle;
m_circle.center = scaled<double>(m_circle.center);
m_circle.radius = scaled<double>(m_circle.radius);
}
}
if (bed_shape.size() >= 3 && m_type == Type::Invalid) {
// Circle check is not used for Convex / Custom shapes, fill it with something reasonable.
m_circle = Geometry::smallest_enclosing_circle_welzl(m_convex_hull.points);
m_type = (m_convex_hull.area() - m_area) < sqr(SCALED_EPSILON) ? Type::Convex : Type::Custom;
// Initialize the top / bottom decomposition for inside convex polygon check. Do it with two different epsilons applied.
auto convex_decomposition = [](const Polygon &in, double epsilon) {
Polygon src = expand(in, float(epsilon)).front();
std::vector<Vec2d> pts;
pts.reserve(src.size());
for (const Point &pt : src.points)
pts.emplace_back(unscaled<double>(pt.cast<double>().eval()));
return Geometry::decompose_convex_polygon_top_bottom(pts);
};
m_top_bottom_convex_hull_decomposition_scene = convex_decomposition(m_convex_hull, SceneEpsilon);
m_top_bottom_convex_hull_decomposition_bed = convex_decomposition(m_convex_hull, BedEpsilon);
}
BOOST_LOG_TRIVIAL(debug) << "BuildVolume bed_shape clasified as: " << this->type_name();
}
#if 0
// Tests intersections of projected triangles, not just their vertices against a bounding box.
// This test also correctly evaluates collision of a non-convex object with the bounding box.
// Not used, slower than simple bounding box collision check and nobody complained about the inaccuracy of the simple test.
static inline BuildVolume::ObjectState rectangle_test(const indexed_triangle_set &its, const Transform3f &trafo, const Vec2f min, const Vec2f max, const float max_z)
{
bool inside = false;
bool outside = false;
auto sign = [](const Vec3f& pt) -> char { return pt.z() > 0 ? 1 : pt.z() < 0 ? -1 : 0; };
// Returns true if both inside and outside are set, thus early exit.
auto test_intersection = [&inside, &outside, min, max, max_z](const Vec3f& p1, const Vec3f& p2, const Vec3f& p3) -> bool {
// First test whether the triangle is completely inside or outside the bounding box.
Vec3f pmin = p1.cwiseMin(p2).cwiseMin(p3);
Vec3f pmax = p1.cwiseMax(p2).cwiseMax(p3);
bool tri_inside = false;
bool tri_outside = false;
if (pmax.x() < min.x() || pmin.x() > max.x() || pmax.y() < min.y() || pmin.y() > max.y()) {
// Separated by one of the rectangle sides.
tri_outside = true;
} else if (pmin.x() >= min.x() && pmax.x() <= max.x() && pmin.y() >= min.y() && pmax.y() <= max.y()) {
// Fully inside the rectangle.
tri_inside = true;
} else {
// Bounding boxes overlap. Test triangle sides against the bbox corners.
Vec2f v1(- p2.y() + p1.y(), p2.x() - p1.x());
Vec2f v2(- p2.y() + p2.y(), p3.x() - p2.x());
Vec2f v3(- p1.y() + p3.y(), p1.x() - p3.x());
bool ccw = cross2(v1, v2) > 0;
for (const Vec2f &p : { Vec2f{ min.x(), min.y() }, Vec2f{ min.x(), max.y() }, Vec2f{ max.x(), min.y() }, Vec2f{ max.x(), max.y() } }) {
auto dot = v1.dot(p);
if (ccw ? dot >= 0 : dot <= 0)
tri_inside = true;
else
tri_outside = true;
}
}
inside |= tri_inside;
outside |= tri_outside;
return inside && outside;
};
// Edge crosses the z plane. Calculate intersection point with the plane.
auto clip_edge = [](const Vec3f &p1, const Vec3f &p2) -> Vec3f {
const float t = (world_min_z - p1.z()) / (p2.z() - p1.z());
return { p1.x() + (p2.x() - p1.x()) * t, p1.y() + (p2.y() - p1.y()) * t, world_min_z };
};
// Clip at (p1, p2), p3 must be on the clipping plane.
// Returns true if both inside and outside are set, thus early exit.
auto clip_and_test1 = [&test_intersection, &clip_edge](const Vec3f &p1, const Vec3f &p2, const Vec3f &p3, bool p1above) -> bool {
Vec3f pa = clip_edge(p1, p2);
return p1above ? test_intersection(p1, pa, p3) : test_intersection(pa, p2, p3);
};
// Clip at (p1, p2) and (p2, p3).
// Returns true if both inside and outside are set, thus early exit.
auto clip_and_test2 = [&test_intersection, &clip_edge](const Vec3f &p1, const Vec3f &p2, const Vec3f &p3, bool p2above) -> bool {
Vec3f pa = clip_edge(p1, p2);
Vec3f pb = clip_edge(p2, p3);
return p2above ? test_intersection(pa, p2, pb) : test_intersection(p1, pa, p3) || test_intersection(p3, pa, pb);
};
for (const stl_triangle_vertex_indices &tri : its.indices) {
const Vec3f pts[3] = { trafo * its.vertices[tri(0)], trafo * its.vertices[tri(1)], trafo * its.vertices[tri(2)] };
char signs[3] = { sign(pts[0]), sign(pts[1]), sign(pts[2]) };
bool clips[3] = { signs[0] * signs[1] == -1, signs[1] * signs[2] == -1, signs[2] * signs[0] == -1 };
if (clips[0]) {
if (clips[1]) {
// Clipping at (pt0, pt1) and (pt1, pt2).
if (clip_and_test2(pts[0], pts[1], pts[2], signs[1] > 0))
break;
} else if (clips[2]) {
// Clipping at (pt0, pt1) and (pt0, pt2).
if (clip_and_test2(pts[2], pts[0], pts[1], signs[0] > 0))
break;
} else {
// Clipping at (pt0, pt1), pt2 must be on the clipping plane.
if (clip_and_test1(pts[0], pts[1], pts[2], signs[0] > 0))
break;
}
} else if (clips[1]) {
if (clips[2]) {
// Clipping at (pt1, pt2) and (pt0, pt2).
if (clip_and_test2(pts[0], pts[1], pts[2], signs[1] > 0))
break;
} else {
// Clipping at (pt1, pt2), pt0 must be on the clipping plane.
if (clip_and_test1(pts[1], pts[2], pts[0], signs[1] > 0))
break;
}
} else if (clips[2]) {
// Clipping at (pt0, pt2), pt1 must be on the clipping plane.
if (clip_and_test1(pts[2], pts[0], pts[1], signs[2] > 0))
break;
} else if (signs[0] >= 0 && signs[1] >= 0 && signs[2] >= 0) {
// The triangle is above or on the clipping plane.
if (test_intersection(pts[0], pts[1], pts[2]))
break;
}
}
return inside ? (outside ? BuildVolume::ObjectState::Colliding : BuildVolume::ObjectState::Inside) : BuildVolume::ObjectState::Outside;
}
#endif
// Trim the input transformed triangle mesh with print bed and test the remaining vertices with is_inside callback.
// Return inside / colliding / outside state.
template<typename InsideFn>
BuildVolume::ObjectState object_state_templ(const indexed_triangle_set &its, const Transform3f &trafo, bool may_be_below_bed, InsideFn is_inside)
{
size_t num_inside = 0;
size_t num_above = 0;
bool inside = false;
bool outside = false;
static constexpr const auto world_min_z = float(-BuildVolume::SceneEpsilon);
if (may_be_below_bed)
{
// Slower test, needs to clip the object edges with the print bed plane.
// 1) Allocate transformed vertices with their position with respect to print bed surface.
std::vector<char> sides;
sides.reserve(its.vertices.size());
const auto sign = [](const stl_vertex& pt) { return pt.z() > world_min_z ? 1 : pt.z() < world_min_z ? -1 : 0; };
for (const stl_vertex &v : its.vertices) {
const stl_vertex pt = trafo * v;
const int s = sign(pt);
sides.emplace_back(s);
if (s >= 0) {
// Vertex above or on print bed surface. Test whether it is inside the build volume.
++ num_above;
if (is_inside(pt))
++ num_inside;
}
}
// 2) Calculate intersections of triangle edges with the build surface.
inside = num_inside > 0;
outside = num_inside < num_above;
if (num_above < its.vertices.size() && ! (inside && outside)) {
// Not completely above the build surface and status may still change by testing edges intersecting the build platform.
for (const stl_triangle_vertex_indices &tri : its.indices) {
const int s[3] = { sides[tri(0)], sides[tri(1)], sides[tri(2)] };
if (std::min(s[0], std::min(s[1], s[2])) < 0 && std::max(s[0], std::max(s[1], s[2])) > 0) {
// Some edge of this triangle intersects the build platform. Calculate the intersection.
int iprev = 2;
for (int iedge = 0; iedge < 3; ++ iedge) {
if (s[iprev] * s[iedge] == -1) {
// edge intersects the build surface. Calculate intersection point.
const stl_vertex p1 = trafo * its.vertices[tri(iprev)];
const stl_vertex p2 = trafo * its.vertices[tri(iedge)];
assert(sign(p1) == s[iprev]);
assert(sign(p2) == s[iedge]);
assert(p1.z() * p2.z() < 0);
// Edge crosses the z plane. Calculate intersection point with the plane.
const float t = (world_min_z - p1.z()) / (p2.z() - p1.z());
(is_inside(Vec3f(p1.x() + (p2.x() - p1.x()) * t, p1.y() + (p2.y() - p1.y()) * t, world_min_z)) ? inside : outside) = true;
}
iprev = iedge;
}
if (inside && outside)
break;
}
}
}
}
else
{
// Much simpler and faster code, not clipping the object with the print bed.
assert(! may_be_below_bed);
num_above = its.vertices.size();
for (const stl_vertex &v : its.vertices) {
const stl_vertex pt = trafo * v;
assert(pt.z() >= world_min_z);
if (is_inside(pt))
++ num_inside;
}
inside = num_inside > 0;
outside = num_inside < num_above;
}
return inside ? (outside ? BuildVolume::ObjectState::Colliding : BuildVolume::ObjectState::Inside) : BuildVolume::ObjectState::Outside;
}
BuildVolume::ObjectState BuildVolume::object_state(const indexed_triangle_set &its, const Transform3f &trafo, bool may_be_below_bed) const
{
switch (m_type) {
case Type::Rectangle:
{
BoundingBox3Base<Vec3d> build_volume = this->bounding_volume().inflated(SceneEpsilon);
BoundingBox3Base<Vec3f> build_volumef(build_volume.min.cast<float>(), build_volume.max.cast<float>());
if (m_max_print_height == 0)
build_volume.max.z() = std::numeric_limits<double>::max();
// The following test correctly interprets intersection of a non-convex object with a rectangular build volume.
//return rectangle_test(its, trafo, to_2d(build_volume.min), to_2d(build_volume.max), build_volume.max.z());
//FIXME This test does NOT correctly interprets intersection of a non-convex object with a rectangular build volume.
return object_state_templ(its, trafo, may_be_below_bed, [build_volumef](const Vec3f &pt) { return build_volumef.contains(pt); });
}
case Type::Circle:
{
Geometry::Circlef circle { unscaled<float>(m_circle.center), unscaled<float>(m_circle.radius + SceneEpsilon) };
return m_max_print_height == 0 ?
object_state_templ(its, trafo, may_be_below_bed, [circle](const Vec3f &pt) { return circle.contains(to_2d(pt)); }) :
object_state_templ(its, trafo, may_be_below_bed, [circle, z = m_max_print_height + SceneEpsilon](const Vec3f &pt) { return pt.z() < z && circle.contains(to_2d(pt)); });
}
case Type::Convex:
//FIXME doing test on convex hull until we learn to do test on non-convex polygons efficiently.
case Type::Custom:
return m_max_print_height == 0 ?
object_state_templ(its, trafo, may_be_below_bed, [this](const Vec3f &pt) { return Geometry::inside_convex_polygon(m_top_bottom_convex_hull_decomposition_scene, to_2d(pt).cast<double>()); }) :
object_state_templ(its, trafo, may_be_below_bed, [this, z = m_max_print_height + SceneEpsilon](const Vec3f &pt) { return pt.z() < z && Geometry::inside_convex_polygon(m_top_bottom_convex_hull_decomposition_scene, to_2d(pt).cast<double>()); });
case Type::Invalid:
default:
return ObjectState::Inside;
}
}
BuildVolume::ObjectState BuildVolume::volume_state_bbox(const BoundingBoxf3 &volume_bbox) const
{
assert(m_type == Type::Rectangle);
BoundingBox3Base<Vec3d> build_volume = this->bounding_volume().inflated(SceneEpsilon);
if (m_max_print_height == 0)
build_volume.max.z() = std::numeric_limits<double>::max();
return build_volume.contains(volume_bbox) ? ObjectState::Inside : build_volume.intersects(volume_bbox) ? ObjectState::Colliding : ObjectState::Outside;
}
bool BuildVolume::all_paths_inside(const GCodeProcessorResult &paths, const BoundingBoxf3 &paths_bbox) const
{
auto move_valid = [](const GCodeProcessorResult::MoveVertex &move) {
return move.type == EMoveType::Extrude && move.extrusion_role != erCustom && move.width != 0.f && move.height != 0.f;
};
static constexpr const double epsilon = BedEpsilon;
switch (m_type) {
case Type::Rectangle:
{
BoundingBox3Base<Vec3d> build_volume = this->bounding_volume().inflated(epsilon);
if (m_max_print_height == 0)
build_volume.max.z() = std::numeric_limits<double>::max();
return build_volume.contains(paths_bbox);
}
case Type::Circle:
{
const Vec2f c = unscaled<float>(m_circle.center);
const float r = unscaled<double>(m_circle.radius) + epsilon;
const float r2 = sqr(r);
return m_max_print_height == 0 ?
std::all_of(paths.moves.begin(), paths.moves.end(), [move_valid, c, r2](const GCodeProcessorResult::MoveVertex &move)
{ return ! move_valid(move) || (to_2d(move.position) - c).squaredNorm() <= r2; }) :
std::all_of(paths.moves.begin(), paths.moves.end(), [move_valid, c, r2, z = m_max_print_height + epsilon](const GCodeProcessorResult::MoveVertex& move)
{ return ! move_valid(move) || ((to_2d(move.position) - c).squaredNorm() <= r2 && move.position.z() <= z); });
}
case Type::Convex:
//FIXME doing test on convex hull until we learn to do test on non-convex polygons efficiently.
case Type::Custom:
return m_max_print_height == 0 ?
std::all_of(paths.moves.begin(), paths.moves.end(), [move_valid, this](const GCodeProcessorResult::MoveVertex &move)
{ return ! move_valid(move) || Geometry::inside_convex_polygon(m_top_bottom_convex_hull_decomposition_bed, to_2d(move.position).cast<double>()); }) :
std::all_of(paths.moves.begin(), paths.moves.end(), [move_valid, this, z = m_max_print_height + epsilon](const GCodeProcessorResult::MoveVertex &move)
{ return ! move_valid(move) || (Geometry::inside_convex_polygon(m_top_bottom_convex_hull_decomposition_bed, to_2d(move.position).cast<double>()) && move.position.z() <= z); });
default:
return true;
}
}
template<typename Fn>
inline bool all_inside_vertices_normals_interleaved(const std::vector<float> &paths, Fn fn)
{
for (auto it = paths.begin(); it != paths.end(); ) {
it += 3;
if (! fn({ *it, *(it + 1), *(it + 2) }))
return false;
it += 3;
}
return true;
}
bool BuildVolume::all_paths_inside_vertices_and_normals_interleaved(const std::vector<float> &paths, const Eigen::AlignedBox<float, 3> &paths_bbox) const
{
assert(paths.size() % 6 == 0);
static constexpr const double epsilon = BedEpsilon;
switch (m_type) {
case Type::Rectangle:
{
BoundingBox3Base<Vec3d> build_volume = this->bounding_volume().inflated(epsilon);
if (m_max_print_height == 0)
build_volume.max.z() = std::numeric_limits<double>::max();
return build_volume.contains(paths_bbox.min().cast<double>()) && build_volume.contains(paths_bbox.max().cast<double>());
}
case Type::Circle:
{
const Vec2f c = unscaled<float>(m_circle.center);
const float r = unscaled<double>(m_circle.radius) + float(epsilon);
const float r2 = sqr(r);
return m_max_print_height == 0 ?
all_inside_vertices_normals_interleaved(paths, [c, r2](Vec3f p) { return (to_2d(p) - c).squaredNorm() <= r2; }) :
all_inside_vertices_normals_interleaved(paths, [c, r2, z = m_max_print_height + epsilon](Vec3f p) { return (to_2d(p) - c).squaredNorm() <= r2 && p.z() <= z; });
}
case Type::Convex:
//FIXME doing test on convex hull until we learn to do test on non-convex polygons efficiently.
case Type::Custom:
return m_max_print_height == 0 ?
all_inside_vertices_normals_interleaved(paths, [this](Vec3f p) { return Geometry::inside_convex_polygon(m_top_bottom_convex_hull_decomposition_bed, to_2d(p).cast<double>()); }) :
all_inside_vertices_normals_interleaved(paths, [this, z = m_max_print_height + epsilon](Vec3f p) { return Geometry::inside_convex_polygon(m_top_bottom_convex_hull_decomposition_bed, to_2d(p).cast<double>()) && p.z() <= z; });
default:
return true;
}
}
std::string_view BuildVolume::type_name(Type type)
{
using namespace std::literals;
switch (type) {
case Type::Invalid: return "Invalid"sv;
case Type::Rectangle: return "Rectangle"sv;
case Type::Circle: return "Circle"sv;
case Type::Convex: return "Convex"sv;
case Type::Custom: return "Custom"sv;
}
// make visual studio happy
assert(false);
return {};
}
} // namespace Slic3r

View File

@ -0,0 +1,120 @@
#ifndef slic3r_BuildVolume_hpp_
#define slic3r_BuildVolume_hpp_
#include "Point.hpp"
#include "Geometry/Circle.hpp"
#include <string_view>
namespace Slic3r {
struct GCodeProcessorResult;
// For collision detection of objects and G-code (extrusion paths) against the build volume.
class BuildVolume
{
public:
enum class Type : unsigned char
{
// Not set yet or undefined.
Invalid,
// Rectangular print bed. Most common, cheap to work with.
Rectangle,
// Circular print bed. Common on detals, cheap to work with.
Circle,
// Convex print bed. Complex to process.
Convex,
// Some non convex shape.
Custom
};
// Initialized to empty, all zeros, Invalid.
BuildVolume() {}
// Initialize from PrintConfig::bed_shape and PrintConfig::max_print_height
BuildVolume(const std::vector<Vec2d> &bed_shape, const double max_print_height);
// Source data, unscaled coordinates.
const std::vector<Vec2d>& bed_shape() const { return m_bed_shape; }
double max_print_height() const { return m_max_print_height; }
// Derived data
Type type() const { return m_type; }
// Format the type for console output.
static std::string_view type_name(Type type);
std::string_view type_name() const { return type_name(m_type); }
bool valid() const { return m_type != Type::Invalid; }
// Same as bed_shape(), but scaled coordinates.
const Polygon& polygon() const { return m_polygon; }
// Bounding box of polygon(), scaled.
const BoundingBox& bounding_box() const { return m_bbox; }
// Bounding volume of bed_shape(), max_print_height(), unscaled.
const BoundingBoxf3& bounding_volume() const { return m_bboxf; }
BoundingBoxf bounding_volume2d() const { return { to_2d(m_bboxf.min), to_2d(m_bboxf.max) }; };
// Center of the print bed, unscaled.
Vec2d bed_center() const { return to_2d(m_bboxf.center()); }
// Convex hull of polygon(), scaled.
const Polygon& convex_hull() const { return m_convex_hull; }
// Smallest enclosing circle of polygon(), scaled.
const Geometry::Circled& circle() const { return m_circle; }
enum class ObjectState : unsigned char
{
// Inside the build volume, thus printable.
Inside,
// Colliding with the build volume boundary, thus not printable and error is shown.
Colliding,
// Outside of the build volume means the object is ignored: Not printed and no error is shown.
Outside
};
// 1) Tests called on the plater.
// Using SceneEpsilon for all tests.
static constexpr const double SceneEpsilon = EPSILON;
// Called by Plater to update Inside / Colliding / Outside state of ModelObjects before slicing.
// Called from Model::update_print_volume_state() -> ModelObject::update_instances_print_volume_state()
// Using SceneEpsilon
ObjectState object_state(const indexed_triangle_set &its, const Transform3f &trafo, bool may_be_below_bed) const;
// Called by GLVolumeCollection::check_outside_state() after an object is manipulated with gizmos for example.
// Called for a rectangular bed:
ObjectState volume_state_bbox(const BoundingBoxf3 &volume_bbox) const;
// 2) Test called on G-code paths.
// Using BedEpsilon for all tests.
static constexpr const double BedEpsilon = 3. * EPSILON;
// Called on final G-code paths.
//FIXME The test does not take the thickness of the extrudates into account!
bool all_paths_inside(const GCodeProcessorResult &paths, const BoundingBoxf3 &paths_bbox) const;
// Called on initial G-code preview on OpenGL vertex buffer interleaved normals and vertices.
bool all_paths_inside_vertices_and_normals_interleaved(const std::vector<float> &paths, const Eigen::AlignedBox<float, 3> &bbox) const;
private:
// Source definition of the print bed geometry (PrintConfig::bed_shape)
std::vector<Vec2d> m_bed_shape;
// Source definition of the print volume height (PrintConfig::max_print_height)
double m_max_print_height;
// Derived values.
Type m_type { Type::Invalid };
// Geometry of the print bed, scaled copy of m_bed_shape.
Polygon m_polygon;
// Scaled snug bounding box around m_polygon.
BoundingBox m_bbox;
// 3D bounding box around m_shape, m_max_print_height.
BoundingBoxf3 m_bboxf;
// Area of m_polygon, scaled.
double m_area { 0. };
// Convex hull of m_polygon, scaled.
Polygon m_convex_hull;
// For collision detection against a convex build volume. Only filled in for m_type == Convex or Custom.
// Variant with SceneEpsilon applied.
std::pair<std::vector<Vec2d>, std::vector<Vec2d>> m_top_bottom_convex_hull_decomposition_scene;
// Variant with BedEpsilon applied.
std::pair<std::vector<Vec2d>, std::vector<Vec2d>> m_top_bottom_convex_hull_decomposition_bed;
// Smallest enclosing circle of m_polygon, scaled.
Geometry::Circled m_circle { Vec2d::Zero(), 0 };
};
} // namespace Slic3r
#endif // slic3r_BuildVolume_hpp_

View File

@ -23,6 +23,8 @@ add_library(libslic3r STATIC
BridgeDetector.hpp
Brim.cpp
Brim.hpp
BuildVolume.cpp
BuildVolume.hpp
clipper.cpp
clipper.hpp
ClipperUtils.cpp
@ -116,6 +118,8 @@ add_library(libslic3r STATIC
Geometry.hpp
Geometry/Circle.cpp
Geometry/Circle.hpp
Geometry/ConvexHull.cpp
Geometry/ConvexHull.hpp
Geometry/MedialAxis.cpp
Geometry/MedialAxis.hpp
Geometry/Voronoi.hpp

View File

@ -542,6 +542,8 @@ static inline Polygons _clipper(ClipperLib::ClipType clipType, TSubj &&subject,
return to_polygons(clipper_do<ClipperLib::Paths>(clipType, std::forward<TSubj>(subject), std::forward<TClip>(clip), ClipperLib::pftNonZero, do_safety_offset));
}
Slic3r::Polygons diff(const Slic3r::Polygon &subject, const Slic3r::Polygon &clip, ApplySafetyOffset do_safety_offset)
{ return _clipper(ClipperLib::ctDifference, ClipperUtils::SinglePathProvider(subject.points), ClipperUtils::SinglePathProvider(clip.points), do_safety_offset); }
Slic3r::Polygons diff(const Slic3r::Polygons &subject, const Slic3r::Polygons &clip, ApplySafetyOffset do_safety_offset)
{ return _clipper(ClipperLib::ctDifference, ClipperUtils::PolygonsProvider(subject), ClipperUtils::PolygonsProvider(clip), do_safety_offset); }
Slic3r::Polygons diff(const Slic3r::Polygons &subject, const Slic3r::ExPolygons &clip, ApplySafetyOffset do_safety_offset)

View File

@ -331,6 +331,8 @@ Slic3r::ExPolygons union_safety_offset_ex(const Slic3r::Polygons &polygons);
Slic3r::ExPolygons union_safety_offset_ex(const Slic3r::ExPolygons &expolygons);
// Aliases for the various offset(...) functions, conveying the purpose of the offset.
inline Slic3r::Polygons expand(const Slic3r::Polygon &polygon, const float delta, ClipperLib::JoinType joinType = DefaultJoinType, double miterLimit = DefaultMiterLimit)
{ assert(delta > 0); return offset(polygon, delta, joinType, miterLimit); }
inline Slic3r::Polygons expand(const Slic3r::Polygons &polygons, const float delta, ClipperLib::JoinType joinType = DefaultJoinType, double miterLimit = DefaultMiterLimit)
{ assert(delta > 0); return offset(polygons, delta, joinType, miterLimit); }
inline Slic3r::ExPolygons expand_ex(const Slic3r::Polygons &polygons, const float delta, ClipperLib::JoinType joinType = DefaultJoinType, double miterLimit = DefaultMiterLimit)
@ -378,6 +380,7 @@ inline Slic3r::ExPolygons opening_ex(const Slic3r::Surfaces &surfaces, const flo
Slic3r::Lines _clipper_ln(ClipperLib::ClipType clipType, const Slic3r::Lines &subject, const Slic3r::Polygons &clip);
// Safety offset is applied to the clipping polygons only.
Slic3r::Polygons diff(const Slic3r::Polygon &subject, const Slic3r::Polygon &clip, ApplySafetyOffset do_safety_offset = ApplySafetyOffset::No);
Slic3r::Polygons diff(const Slic3r::Polygons &subject, const Slic3r::Polygons &clip, ApplySafetyOffset do_safety_offset = ApplySafetyOffset::No);
Slic3r::Polygons diff(const Slic3r::Polygons &subject, const Slic3r::ExPolygons &clip, ApplySafetyOffset do_safety_offset = ApplySafetyOffset::No);
Slic3r::Polygons diff(const Slic3r::ExPolygons &subject, const Slic3r::Polygons &clip, ApplySafetyOffset do_safety_offset = ApplySafetyOffset::No);

View File

@ -1,5 +1,5 @@
#include "ExPolygonCollection.hpp"
#include "Geometry.hpp"
#include "Geometry/ConvexHull.hpp"
namespace Slic3r {

View File

@ -4,7 +4,7 @@
#include "Exception.hpp"
#include "ExtrusionEntity.hpp"
#include "EdgeGrid.hpp"
#include "Geometry.hpp"
#include "Geometry/ConvexHull.hpp"
#include "GCode/PrintExtents.hpp"
#include "GCode/WipeTower.hpp"
#include "ShortestPath.hpp"
@ -622,7 +622,7 @@ std::vector<std::pair<coordf_t, std::vector<GCode::LayerToPrint>>> GCode::collec
namespace DoExport {
// static void update_print_estimated_times_stats(const GCodeProcessor& processor, PrintStatistics& print_statistics)
// {
// const GCodeProcessor::Result& result = processor.get_result();
// const GCodeProcessorResult& result = processor.get_result();
// print_statistics.estimated_normal_print_time = get_time_dhms(result.print_statistics.modes[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Normal)].time);
// print_statistics.estimated_silent_print_time = processor.is_stealth_time_estimator_enabled() ?
// get_time_dhms(result.print_statistics.modes[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Stealth)].time) : "N/A";
@ -630,7 +630,7 @@ namespace DoExport {
static void update_print_estimated_stats(const GCodeProcessor& processor, const std::vector<Extruder>& extruders, PrintStatistics& print_statistics)
{
const GCodeProcessor::Result& result = processor.get_result();
const GCodeProcessorResult& result = processor.get_result();
print_statistics.estimated_normal_print_time = get_time_dhms(result.print_statistics.modes[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Normal)].time);
print_statistics.estimated_silent_print_time = processor.is_stealth_time_estimator_enabled() ?
get_time_dhms(result.print_statistics.modes[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Stealth)].time) : "N/A";
@ -723,7 +723,7 @@ namespace DoExport {
}
} // namespace DoExport
void GCode::do_export(Print* print, const char* path, GCodeProcessor::Result* result, ThumbnailsGeneratorCallback thumbnail_cb)
void GCode::do_export(Print* print, const char* path, GCodeProcessorResult* result, ThumbnailsGeneratorCallback thumbnail_cb)
{
PROFILE_CLEAR();

View File

@ -143,7 +143,7 @@ public:
// throws std::runtime_exception on error,
// throws CanceledException through print->throw_if_canceled().
void do_export(Print* print, const char* path, GCodeProcessor::Result* result = nullptr, ThumbnailsGeneratorCallback thumbnail_cb = nullptr);
void do_export(Print* print, const char* path, GCodeProcessorResult* result = nullptr, ThumbnailsGeneratorCallback thumbnail_cb = nullptr);
// Exported for the helper classes (OozePrevention, Wipe) and for the Perl binding for unit tests.
const Vec2d& origin() const { return m_origin; }

View File

@ -343,7 +343,7 @@ void GCodeProcessor::TimeProcessor::reset()
machines[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Normal)].enabled = true;
}
void GCodeProcessor::TimeProcessor::post_process(const std::string& filename, std::vector<MoveVertex>& moves, std::vector<size_t>& lines_ends)
void GCodeProcessor::TimeProcessor::post_process(const std::string& filename, std::vector<GCodeProcessorResult::MoveVertex>& moves, std::vector<size_t>& lines_ends)
{
FilePtr in{ boost::nowide::fopen(filename.c_str(), "rb") };
if (in.f == nullptr)
@ -636,7 +636,7 @@ void GCodeProcessor::TimeProcessor::post_process(const std::string& filename, st
// updates moves' gcode ids which have been modified by the insertion of the M73 lines
unsigned int curr_offset_id = 0;
unsigned int total_offset = 0;
for (MoveVertex& move : moves) {
for (GCodeProcessorResult::MoveVertex& move : moves) {
while (curr_offset_id < static_cast<unsigned int>(offsets.size()) && offsets[curr_offset_id].first <= move.gcode_id) {
total_offset += offsets[curr_offset_id].second;
++curr_offset_id;
@ -716,8 +716,8 @@ void GCodeProcessor::UsedFilaments::process_caches(GCodeProcessor* processor)
}
#if ENABLE_GCODE_VIEWER_STATISTICS
void GCodeProcessor::Result::reset() {
moves = std::vector<GCodeProcessor::MoveVertex>();
void GCodeProcessorResult::reset() {
moves = std::vector<GCodeProcessorResult::MoveVertex>();
bed_shape = Pointfs();
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
max_print_height = 0.0f;
@ -731,7 +731,7 @@ void GCodeProcessor::Result::reset() {
time = 0;
}
#else
void GCodeProcessor::Result::reset() {
void GCodeProcessorResult::reset() {
moves.clear();
lines_ends.clear();
@ -1256,7 +1256,7 @@ void GCodeProcessor::process_file(const std::string& filename, std::function<voi
m_result.filename = filename;
m_result.id = ++s_result_id;
// 1st move must be a dummy move
m_result.moves.emplace_back(MoveVertex());
m_result.moves.emplace_back(GCodeProcessorResult::MoveVertex());
size_t parse_line_callback_cntr = 10000;
m_parser.parse_file(filename, [this, cancel_callback, &parse_line_callback_cntr](GCodeReader& reader, const GCodeReader::GCodeLine& line) {
if (-- parse_line_callback_cntr == 0) {
@ -1284,7 +1284,7 @@ void GCodeProcessor::initialize(const std::string& filename)
m_result.filename = filename;
m_result.id = ++s_result_id;
// 1st move must be a dummy move
m_result.moves.emplace_back(MoveVertex());
m_result.moves.emplace_back(GCodeProcessorResult::MoveVertex());
}
void GCodeProcessor::process_buffer(const std::string &buffer)
@ -1298,7 +1298,7 @@ void GCodeProcessor::process_buffer(const std::string &buffer)
void GCodeProcessor::finalize(bool post_process)
{
// update width/height of wipe moves
for (MoveVertex& move : m_result.moves) {
for (GCodeProcessorResult::MoveVertex& move : m_result.moves) {
if (move.type == EMoveType::Wipe) {
move.width = Wipe_Width;
move.height = Wipe_Height;

View File

@ -76,6 +76,65 @@ namespace Slic3r {
}
};
struct GCodeProcessorResult
{
struct SettingsIds
{
std::string print;
std::vector<std::string> filament;
std::string printer;
void reset() {
print.clear();
filament.clear();
printer.clear();
}
};
struct MoveVertex
{
unsigned int gcode_id{ 0 };
EMoveType type{ EMoveType::Noop };
ExtrusionRole extrusion_role{ erNone };
unsigned char extruder_id{ 0 };
unsigned char cp_color_id{ 0 };
Vec3f position{ Vec3f::Zero() }; // mm
float delta_extruder{ 0.0f }; // mm
float feedrate{ 0.0f }; // mm/s
float width{ 0.0f }; // mm
float height{ 0.0f }; // mm
float mm3_per_mm{ 0.0f };
float fan_speed{ 0.0f }; // percentage
float temperature{ 0.0f }; // Celsius degrees
float time{ 0.0f }; // s
float volumetric_rate() const { return feedrate * mm3_per_mm; }
};
std::string filename;
unsigned int id;
std::vector<MoveVertex> moves;
// Positions of ends of lines of the final G-code this->filename after TimeProcessor::post_process() finalizes the G-code.
std::vector<size_t> lines_ends;
Pointfs bed_shape;
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
float max_print_height;
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
SettingsIds settings_ids;
size_t extruders_count;
std::vector<std::string> extruder_colors;
std::vector<float> filament_diameters;
std::vector<float> filament_densities;
PrintEstimatedStatistics print_statistics;
std::vector<CustomGCode::Item> custom_gcode_per_print_z;
#if ENABLE_GCODE_VIEWER_STATISTICS
int64_t time{ 0 };
#endif // ENABLE_GCODE_VIEWER_STATISTICS
void reset();
};
class GCodeProcessor
{
static const std::vector<std::string> Reserved_Tags;
@ -190,26 +249,6 @@ namespace Slic3r {
float time() const;
};
struct MoveVertex
{
unsigned int gcode_id{ 0 };
EMoveType type{ EMoveType::Noop };
ExtrusionRole extrusion_role{ erNone };
unsigned char extruder_id{ 0 };
unsigned char cp_color_id{ 0 };
Vec3f position{ Vec3f::Zero() }; // mm
float delta_extruder{ 0.0f }; // mm
float feedrate{ 0.0f }; // mm/s
float width{ 0.0f }; // mm
float height{ 0.0f }; // mm
float mm3_per_mm{ 0.0f };
float fan_speed{ 0.0f }; // percentage
float temperature{ 0.0f }; // Celsius degrees
float time{ 0.0f }; // s
float volumetric_rate() const { return feedrate * mm3_per_mm; }
};
private:
struct TimeMachine
{
@ -304,7 +343,7 @@ namespace Slic3r {
// post process the file with the given filename to add remaining time lines M73
// and updates moves' gcode ids accordingly
void post_process(const std::string& filename, std::vector<MoveVertex>& moves, std::vector<size_t>& lines_ends);
void post_process(const std::string& filename, std::vector<GCodeProcessorResult::MoveVertex>& moves, std::vector<size_t>& lines_ends);
};
struct UsedFilaments // filaments per ColorChange
@ -331,43 +370,6 @@ namespace Slic3r {
};
public:
struct Result
{
struct SettingsIds
{
std::string print;
std::vector<std::string> filament;
std::string printer;
void reset() {
print.clear();
filament.clear();
printer.clear();
}
};
std::string filename;
unsigned int id;
std::vector<MoveVertex> moves;
// Positions of ends of lines of the final G-code this->filename after TimeProcessor::post_process() finalizes the G-code.
std::vector<size_t> lines_ends;
Pointfs bed_shape;
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
float max_print_height;
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
SettingsIds settings_ids;
size_t extruders_count;
std::vector<std::string> extruder_colors;
std::vector<float> filament_diameters;
std::vector<float> filament_densities;
PrintEstimatedStatistics print_statistics;
std::vector<CustomGCode::Item> custom_gcode_per_print_z;
#if ENABLE_GCODE_VIEWER_STATISTICS
int64_t time{ 0 };
#endif // ENABLE_GCODE_VIEWER_STATISTICS
void reset();
};
class SeamsDetector
{
bool m_active{ false };
@ -394,12 +396,12 @@ namespace Slic3r {
// custom gcode markes
class OptionsZCorrector
{
Result& m_result;
GCodeProcessorResult& m_result;
std::optional<size_t> m_move_id;
std::optional<size_t> m_custom_gcode_per_print_z_id;
public:
explicit OptionsZCorrector(Result& result) : m_result(result) {
explicit OptionsZCorrector(GCodeProcessorResult& result) : m_result(result) {
}
void set() {
@ -413,7 +415,7 @@ namespace Slic3r {
const Vec3f position = m_result.moves.back().position;
MoveVertex& move = m_result.moves.emplace_back(m_result.moves[*m_move_id]);
GCodeProcessorResult::MoveVertex& move = m_result.moves.emplace_back(m_result.moves[*m_move_id]);
move.position = position;
move.height = height;
m_result.moves.erase(m_result.moves.begin() + *m_move_id);
@ -562,7 +564,7 @@ namespace Slic3r {
TimeProcessor m_time_processor;
UsedFilaments m_used_filaments;
Result m_result;
GCodeProcessorResult m_result;
static unsigned int s_result_id;
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
@ -582,8 +584,8 @@ namespace Slic3r {
void enable_machine_envelope_processing(bool enabled) { m_time_processor.machine_envelope_processing_enabled = enabled; }
void reset();
const Result& get_result() const { return m_result; }
Result&& extract_result() { return std::move(m_result); }
const GCodeProcessorResult& get_result() const { return m_result; }
GCodeProcessorResult&& extract_result() { return std::move(m_result); }
// Load a G-code into a stand-alone G-code viewer.
// throws CanceledException through print->throw_if_canceled() (sent by the caller as callback).

View File

@ -24,107 +24,8 @@
#define BOOST_NO_CXX17_HDR_STRING_VIEW
#endif
#include <boost/multiprecision/integer.hpp>
namespace Slic3r { namespace Geometry {
// This implementation is based on Andrew's monotone chain 2D convex hull algorithm
Polygon convex_hull(Points pts)
{
std::sort(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a.x() < b.x() || (a.x() == b.x() && a.y() < b.y()); });
pts.erase(std::unique(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a.x() == b.x() && a.y() == b.y(); }), pts.end());
Polygon hull;
int n = (int)pts.size();
if (n >= 3) {
int k = 0;
hull.points.resize(2 * n);
// Build lower hull
for (int i = 0; i < n; ++ i) {
while (k >= 2 && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
-- k;
hull[k ++] = pts[i];
}
// Build upper hull
for (int i = n-2, t = k+1; i >= 0; i--) {
while (k >= t && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
-- k;
hull[k ++] = pts[i];
}
hull.points.resize(k);
assert(hull.points.front() == hull.points.back());
hull.points.pop_back();
}
return hull;
}
Pointf3s convex_hull(Pointf3s points)
{
assert(points.size() >= 3);
// sort input points
std::sort(points.begin(), points.end(), [](const Vec3d &a, const Vec3d &b){ return a.x() < b.x() || (a.x() == b.x() && a.y() < b.y()); });
int n = points.size(), k = 0;
Pointf3s hull;
if (n >= 3)
{
hull.resize(2 * n);
// Build lower hull
for (int i = 0; i < n; ++i)
{
Point p = Point::new_scale(points[i](0), points[i](1));
while (k >= 2)
{
Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
if (p.ccw(k2, k1) <= 0)
--k;
else
break;
}
hull[k++] = points[i];
}
// Build upper hull
for (int i = n - 2, t = k + 1; i >= 0; --i)
{
Point p = Point::new_scale(points[i](0), points[i](1));
while (k >= t)
{
Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
if (p.ccw(k2, k1) <= 0)
--k;
else
break;
}
hull[k++] = points[i];
}
hull.resize(k);
assert(hull.front() == hull.back());
hull.pop_back();
}
return hull;
}
Polygon convex_hull(const Polygons &polygons)
{
Points pp;
for (Polygons::const_iterator p = polygons.begin(); p != polygons.end(); ++p) {
pp.insert(pp.end(), p->points.begin(), p->points.end());
}
return convex_hull(std::move(pp));
}
bool directions_parallel(double angle1, double angle2, double max_diff)
{
double diff = fabs(angle1 - angle2);
@ -761,205 +662,4 @@ double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
return (axis.z() < 0) ? -angle : angle;
}
namespace rotcalip {
using int256_t = boost::multiprecision::int256_t;
using int128_t = boost::multiprecision::int128_t;
template<class Scalar = int64_t>
inline Scalar magnsq(const Point &p)
{
return Scalar(p.x()) * p.x() + Scalar(p.y()) * p.y();
}
template<class Scalar = int64_t>
inline Scalar dot(const Point &a, const Point &b)
{
return Scalar(a.x()) * b.x() + Scalar(a.y()) * b.y();
}
template<class Scalar = int64_t>
inline Scalar dotperp(const Point &a, const Point &b)
{
return Scalar(a.x()) * b.y() - Scalar(a.y()) * b.x();
}
using boost::multiprecision::abs;
// Compares the angle enclosed by vectors dir and dirA (alpha) with the angle
// enclosed by -dir and dirB (beta). Returns -1 if alpha is less than beta, 0
// if they are equal and 1 if alpha is greater than beta. Note that dir is
// reversed for beta, because it represents the opposite side of a caliper.
int cmp_angles(const Point &dir, const Point &dirA, const Point &dirB) {
int128_t dotA = dot(dir, dirA);
int128_t dotB = dot(-dir, dirB);
int256_t dcosa = int256_t(magnsq(dirB)) * int256_t(abs(dotA)) * dotA;
int256_t dcosb = int256_t(magnsq(dirA)) * int256_t(abs(dotB)) * dotB;
int256_t diff = dcosa - dcosb;
return diff > 0? -1 : (diff < 0 ? 1 : 0);
}
// A helper class to navigate on a polygon. Given a vertex index, one can
// get the edge belonging to that vertex, the coordinates of the vertex, the
// next and previous edges. Stuff that is needed in the rotating calipers algo.
class Idx
{
size_t m_idx;
const Polygon *m_poly;
public:
explicit Idx(const Polygon &p): m_idx{0}, m_poly{&p} {}
explicit Idx(size_t idx, const Polygon &p): m_idx{idx}, m_poly{&p} {}
size_t idx() const { return m_idx; }
void set_idx(size_t i) { m_idx = i; }
size_t next() const { return (m_idx + 1) % m_poly->size(); }
size_t inc() { return m_idx = (m_idx + 1) % m_poly->size(); }
Point prev_dir() const {
return pt() - (*m_poly)[(m_idx + m_poly->size() - 1) % m_poly->size()];
}
const Point &pt() const { return (*m_poly)[m_idx]; }
const Point dir() const { return (*m_poly)[next()] - pt(); }
const Point next_dir() const
{
return (*m_poly)[(m_idx + 2) % m_poly->size()] - (*m_poly)[next()];
}
const Polygon &poly() const { return *m_poly; }
};
enum class AntipodalVisitMode { Full, EdgesOnly };
// Visit all antipodal pairs starting from the initial ia, ib pair which
// has to be a valid antipodal pair (not checked). fn is called for every
// antipodal pair encountered including the initial one.
// The callback Fn has a signiture of bool(size_t i, size_t j, const Point &dir)
// where i,j are the vertex indices of the antipodal pair and dir is the
// direction of the calipers touching the i vertex.
template<AntipodalVisitMode mode = AntipodalVisitMode::Full, class Fn>
void visit_antipodals (Idx& ia, Idx &ib, Fn &&fn)
{
// Set current caliper direction to be the lower edge angle from X axis
int cmp = cmp_angles(ia.prev_dir(), ia.dir(), ib.dir());
Idx *current = cmp <= 0 ? &ia : &ib, *other = cmp <= 0 ? &ib : &ia;
Idx *initial = current;
bool visitor_continue = true;
size_t start = initial->idx();
bool finished = false;
while (visitor_continue && !finished) {
Point current_dir_a = current == &ia ? current->dir() : -current->dir();
visitor_continue = fn(ia.idx(), ib.idx(), current_dir_a);
// Parallel edges encountered. An additional pair of antipodals
// can be yielded.
if constexpr (mode == AntipodalVisitMode::Full)
if (cmp == 0 && visitor_continue) {
visitor_continue = fn(current == &ia ? ia.idx() : ia.next(),
current == &ib ? ib.idx() : ib.next(),
current_dir_a);
}
cmp = cmp_angles(current->dir(), current->next_dir(), other->dir());
current->inc();
if (cmp > 0) {
std::swap(current, other);
}
if (initial->idx() == start) finished = true;
}
}
} // namespace rotcalip
bool convex_polygons_intersect(const Polygon &A, const Polygon &B)
{
using namespace rotcalip;
// Establish starting antipodals as extremes in XY plane. Use the
// easily obtainable bounding boxes to check if A and B is disjoint
// and return false if the are.
struct BB
{
size_t xmin = 0, xmax = 0, ymin = 0, ymax = 0;
const Polygon &P;
static bool cmpy(const Point &l, const Point &u)
{
return l.y() < u.y() || (l.y() == u.y() && l.x() < u.x());
}
BB(const Polygon &poly): P{poly}
{
for (size_t i = 0; i < P.size(); ++i) {
if (P[i] < P[xmin]) xmin = i;
if (P[xmax] < P[i]) xmax = i;
if (cmpy(P[i], P[ymin])) ymin = i;
if (cmpy(P[ymax], P[i])) ymax = i;
}
}
};
BB bA{A}, bB{B};
BoundingBox bbA{{A[bA.xmin].x(), A[bA.ymin].y()}, {A[bA.xmax].x(), A[bA.ymax].y()}};
BoundingBox bbB{{B[bB.xmin].x(), B[bB.ymin].y()}, {B[bB.xmax].x(), B[bB.ymax].y()}};
// if (!bbA.overlap(bbB))
// return false;
// Establish starting antipodals as extreme vertex pairs in X or Y direction
// which reside on different polygons. If no such pair is found, the two
// polygons are certainly not disjoint.
Idx imin{bA.xmin, A}, imax{bB.xmax, B};
if (B[bB.xmin] < imin.pt()) imin = Idx{bB.xmin, B};
if (imax.pt() < A[bA.xmax]) imax = Idx{bA.xmax, A};
if (&imin.poly() == &imax.poly()) {
imin = Idx{bA.ymin, A};
imax = Idx{bB.ymax, B};
if (B[bB.ymin] < imin.pt()) imin = Idx{bB.ymin, B};
if (imax.pt() < A[bA.ymax]) imax = Idx{bA.ymax, A};
}
if (&imin.poly() == &imax.poly())
return true;
bool found_divisor = false;
visit_antipodals<AntipodalVisitMode::EdgesOnly>(
imin, imax,
[&imin, &imax, &found_divisor](size_t ia, size_t ib, const Point &dir) {
// std::cout << "A" << ia << " B" << ib << " dir " <<
// dir.x() << " " << dir.y() << std::endl;
const Polygon &A = imin.poly(), &B = imax.poly();
Point ref_a = A[(ia + 2) % A.size()], ref_b = B[(ib + 2) % B.size()];
bool is_left_a = dotperp( dir, ref_a - A[ia]) > 0;
bool is_left_b = dotperp(-dir, ref_b - B[ib]) > 0;
// If both reference points are on the left (or right) of their
// respective support lines and the opposite support line is to
// the right (or left), the divisor line is found. We only test
// the reference point, as by definition, if that is on one side,
// all the other points must be on the same side of a support
// line. If the support lines are collinear, the polygons must be
// on the same side of their respective support lines.
auto d = dotperp(dir, B[ib] - A[ia]);
if (d == 0) {
// The caliper lines are collinear, not just parallel
found_divisor = (is_left_a && is_left_b) || (!is_left_a && !is_left_b);
} else if (d > 0) { // B is to the left of (A, A+1)
found_divisor = !is_left_a && !is_left_b;
} else { // B is to the right of (A, A+1)
found_divisor = is_left_a && is_left_b;
}
return !found_divisor;
});
// Intersects if the divisor was not found
return !found_divisor;
}
}} // namespace Slic3r::Geometry

View File

@ -72,32 +72,6 @@ static inline bool is_ccw(const Polygon &poly)
return o == ORIENTATION_CCW;
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// returns true if the given polygons are identical
static inline bool are_approx(const Polygon& lhs, const Polygon& rhs)
{
if (lhs.points.size() != rhs.points.size())
return false;
size_t rhs_id = 0;
while (rhs_id < rhs.points.size()) {
if (rhs.points[rhs_id].isApprox(lhs.points.front()))
break;
++rhs_id;
}
if (rhs_id == rhs.points.size())
return false;
for (size_t i = 0; i < lhs.points.size(); ++i) {
if (!lhs.points[i].isApprox(rhs.points[(i + rhs_id) % lhs.points.size()]))
return false;
}
return true;
}
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
inline bool ray_ray_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
{
double denom = v1(0) * v2(1) - v2(0) * v1(1);
@ -313,10 +287,6 @@ bool liang_barsky_line_clipping(
return liang_barsky_line_clipping(x0clip, x1clip, bbox);
}
Pointf3s convex_hull(Pointf3s points);
Polygon convex_hull(Points points);
Polygon convex_hull(const Polygons &polygons);
bool directions_parallel(double angle1, double angle2, double max_diff = 0);
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
bool directions_perpendicular(double angle1, double angle2, double max_diff = 0);
@ -479,10 +449,6 @@ inline bool is_rotation_ninety_degrees(const Vec3d &rotation)
return is_rotation_ninety_degrees(rotation.x()) && is_rotation_ninety_degrees(rotation.y()) && is_rotation_ninety_degrees(rotation.z());
}
// Returns true if the intersection of the two convex polygons A and B
// is not an empty set.
bool convex_polygons_intersect(const Polygon &A, const Polygon &B);
} } // namespace Slicer::Geometry
#endif

View File

@ -3,6 +3,7 @@
#include "../Polygon.hpp"
#include <numeric>
#include <random>
#include <boost/log/trivial.hpp>
namespace Slic3r { namespace Geometry {
@ -94,4 +95,44 @@ Vec2d circle_center_taubin_newton(const Vec2ds::const_iterator& input_begin, con
return center + centroid;
}
Circled circle_taubin_newton(const Vec2ds& input, size_t cycles)
{
Circled out;
if (input.size() < 3) {
out = Circled::make_invalid();
} else {
out.center = circle_center_taubin_newton(input, cycles);
out.radius = std::accumulate(input.begin(), input.end(), 0., [&out](double acc, const Vec2d& pt) { return (pt - out.center).norm() + acc; });
out.radius /= double(input.size());
}
return out;
}
Circled circle_ransac(const Vec2ds& input, size_t iterations)
{
if (input.size() < 3)
return Circled::make_invalid();
std::mt19937 rng;
std::vector<Vec2d> samples;
Circled circle_best = Circled::make_invalid();
double err_min = std::numeric_limits<double>::max();
for (size_t iter = 0; iter < iterations; ++ iter) {
samples.clear();
std::sample(input.begin(), input.end(), std::back_inserter(samples), 3, rng);
Circled c;
c.center = Geometry::circle_center(samples[0], samples[1], samples[2], EPSILON);
c.radius = std::accumulate(input.begin(), input.end(), 0., [&c](double acc, const Vec2d& pt) { return (pt - c.center).norm() + acc; });
c.radius /= double(input.size());
double err = 0;
for (const Vec2d &pt : input)
err = std::max(err, std::abs((pt - c.center).norm() - c.radius));
if (err < err_min) {
err_min = err;
circle_best = c;
}
}
return circle_best;
}
} } // namespace Slic3r::Geometry

View File

@ -7,14 +7,6 @@
namespace Slic3r { namespace Geometry {
/// Find the center of the circle corresponding to the vector of Points as an arc.
Point circle_center_taubin_newton(const Points::const_iterator& input_start, const Points::const_iterator& input_end, size_t cycles = 20);
inline Point circle_center_taubin_newton(const Points& input, size_t cycles = 20) { return circle_center_taubin_newton(input.cbegin(), input.cend(), cycles); }
/// Find the center of the circle corresponding to the vector of Pointfs as an arc.
Vec2d circle_center_taubin_newton(const Vec2ds::const_iterator& input_start, const Vec2ds::const_iterator& input_end, size_t cycles = 20);
inline Vec2d circle_center_taubin_newton(const Vec2ds& input, size_t cycles = 20) { return circle_center_taubin_newton(input.cbegin(), input.cend(), cycles); }
// https://en.wikipedia.org/wiki/Circumscribed_circle
// Circumcenter coordinates, Cartesian coordinates
template<typename Vector>
@ -100,6 +92,18 @@ using Circled = Circle<Vec2d>;
using CircleSqf = CircleSq<Vec2f>;
using CircleSqd = CircleSq<Vec2d>;
/// Find the center of the circle corresponding to the vector of Points as an arc.
Point circle_center_taubin_newton(const Points::const_iterator& input_start, const Points::const_iterator& input_end, size_t cycles = 20);
inline Point circle_center_taubin_newton(const Points& input, size_t cycles = 20) { return circle_center_taubin_newton(input.cbegin(), input.cend(), cycles); }
/// Find the center of the circle corresponding to the vector of Pointfs as an arc.
Vec2d circle_center_taubin_newton(const Vec2ds::const_iterator& input_start, const Vec2ds::const_iterator& input_end, size_t cycles = 20);
inline Vec2d circle_center_taubin_newton(const Vec2ds& input, size_t cycles = 20) { return circle_center_taubin_newton(input.cbegin(), input.cend(), cycles); }
Circled circle_taubin_newton(const Vec2ds& input, size_t cycles = 20);
// Find circle using RANSAC randomized algorithm.
Circled circle_ransac(const Vec2ds& input, size_t iterations = 20);
// Randomized algorithm by Emo Welzl, working with squared radii for efficiency. The returned circle radius is inflated by epsilon.
template<typename Vector, typename Points>
CircleSq<Vector> smallest_enclosing_circle2_welzl(const Points &points, const typename Vector::Scalar epsilon)

View File

@ -0,0 +1,398 @@
#include "libslic3r.h"
#include "ConvexHull.hpp"
#include <boost/multiprecision/integer.hpp>
namespace Slic3r { namespace Geometry {
// This implementation is based on Andrew's monotone chain 2D convex hull algorithm
Polygon convex_hull(Points pts)
{
std::sort(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a.x() < b.x() || (a.x() == b.x() && a.y() < b.y()); });
pts.erase(std::unique(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a.x() == b.x() && a.y() == b.y(); }), pts.end());
Polygon hull;
int n = (int)pts.size();
if (n >= 3) {
int k = 0;
hull.points.resize(2 * n);
// Build lower hull
for (int i = 0; i < n; ++ i) {
while (k >= 2 && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
-- k;
hull[k ++] = pts[i];
}
// Build upper hull
for (int i = n-2, t = k+1; i >= 0; i--) {
while (k >= t && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
-- k;
hull[k ++] = pts[i];
}
hull.points.resize(k);
assert(hull.points.front() == hull.points.back());
hull.points.pop_back();
}
return hull;
}
Pointf3s convex_hull(Pointf3s points)
{
assert(points.size() >= 3);
// sort input points
std::sort(points.begin(), points.end(), [](const Vec3d &a, const Vec3d &b){ return a.x() < b.x() || (a.x() == b.x() && a.y() < b.y()); });
int n = points.size(), k = 0;
Pointf3s hull;
if (n >= 3)
{
hull.resize(2 * n);
// Build lower hull
for (int i = 0; i < n; ++i)
{
Point p = Point::new_scale(points[i](0), points[i](1));
while (k >= 2)
{
Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
if (p.ccw(k2, k1) <= 0)
--k;
else
break;
}
hull[k++] = points[i];
}
// Build upper hull
for (int i = n - 2, t = k + 1; i >= 0; --i)
{
Point p = Point::new_scale(points[i](0), points[i](1));
while (k >= t)
{
Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
if (p.ccw(k2, k1) <= 0)
--k;
else
break;
}
hull[k++] = points[i];
}
hull.resize(k);
assert(hull.front() == hull.back());
hull.pop_back();
}
return hull;
}
Polygon convex_hull(const Polygons &polygons)
{
Points pp;
for (Polygons::const_iterator p = polygons.begin(); p != polygons.end(); ++p) {
pp.insert(pp.end(), p->points.begin(), p->points.end());
}
return convex_hull(std::move(pp));
}
namespace rotcalip {
using int256_t = boost::multiprecision::int256_t;
using int128_t = boost::multiprecision::int128_t;
template<class Scalar = int64_t>
inline Scalar magnsq(const Point &p)
{
return Scalar(p.x()) * p.x() + Scalar(p.y()) * p.y();
}
template<class Scalar = int64_t>
inline Scalar dot(const Point &a, const Point &b)
{
return Scalar(a.x()) * b.x() + Scalar(a.y()) * b.y();
}
template<class Scalar = int64_t>
inline Scalar dotperp(const Point &a, const Point &b)
{
return Scalar(a.x()) * b.y() - Scalar(a.y()) * b.x();
}
using boost::multiprecision::abs;
// Compares the angle enclosed by vectors dir and dirA (alpha) with the angle
// enclosed by -dir and dirB (beta). Returns -1 if alpha is less than beta, 0
// if they are equal and 1 if alpha is greater than beta. Note that dir is
// reversed for beta, because it represents the opposite side of a caliper.
int cmp_angles(const Point &dir, const Point &dirA, const Point &dirB) {
int128_t dotA = dot(dir, dirA);
int128_t dotB = dot(-dir, dirB);
int256_t dcosa = int256_t(magnsq(dirB)) * int256_t(abs(dotA)) * dotA;
int256_t dcosb = int256_t(magnsq(dirA)) * int256_t(abs(dotB)) * dotB;
int256_t diff = dcosa - dcosb;
return diff > 0? -1 : (diff < 0 ? 1 : 0);
}
// A helper class to navigate on a polygon. Given a vertex index, one can
// get the edge belonging to that vertex, the coordinates of the vertex, the
// next and previous edges. Stuff that is needed in the rotating calipers algo.
class Idx
{
size_t m_idx;
const Polygon *m_poly;
public:
explicit Idx(const Polygon &p): m_idx{0}, m_poly{&p} {}
explicit Idx(size_t idx, const Polygon &p): m_idx{idx}, m_poly{&p} {}
size_t idx() const { return m_idx; }
void set_idx(size_t i) { m_idx = i; }
size_t next() const { return (m_idx + 1) % m_poly->size(); }
size_t inc() { return m_idx = (m_idx + 1) % m_poly->size(); }
Point prev_dir() const {
return pt() - (*m_poly)[(m_idx + m_poly->size() - 1) % m_poly->size()];
}
const Point &pt() const { return (*m_poly)[m_idx]; }
const Point dir() const { return (*m_poly)[next()] - pt(); }
const Point next_dir() const
{
return (*m_poly)[(m_idx + 2) % m_poly->size()] - (*m_poly)[next()];
}
const Polygon &poly() const { return *m_poly; }
};
enum class AntipodalVisitMode { Full, EdgesOnly };
// Visit all antipodal pairs starting from the initial ia, ib pair which
// has to be a valid antipodal pair (not checked). fn is called for every
// antipodal pair encountered including the initial one.
// The callback Fn has a signiture of bool(size_t i, size_t j, const Point &dir)
// where i,j are the vertex indices of the antipodal pair and dir is the
// direction of the calipers touching the i vertex.
template<AntipodalVisitMode mode = AntipodalVisitMode::Full, class Fn>
void visit_antipodals (Idx& ia, Idx &ib, Fn &&fn)
{
// Set current caliper direction to be the lower edge angle from X axis
int cmp = cmp_angles(ia.prev_dir(), ia.dir(), ib.dir());
Idx *current = cmp <= 0 ? &ia : &ib, *other = cmp <= 0 ? &ib : &ia;
Idx *initial = current;
bool visitor_continue = true;
size_t start = initial->idx();
bool finished = false;
while (visitor_continue && !finished) {
Point current_dir_a = current == &ia ? current->dir() : -current->dir();
visitor_continue = fn(ia.idx(), ib.idx(), current_dir_a);
// Parallel edges encountered. An additional pair of antipodals
// can be yielded.
if constexpr (mode == AntipodalVisitMode::Full)
if (cmp == 0 && visitor_continue) {
visitor_continue = fn(current == &ia ? ia.idx() : ia.next(),
current == &ib ? ib.idx() : ib.next(),
current_dir_a);
}
cmp = cmp_angles(current->dir(), current->next_dir(), other->dir());
current->inc();
if (cmp > 0) {
std::swap(current, other);
}
if (initial->idx() == start) finished = true;
}
}
} // namespace rotcalip
bool convex_polygons_intersect(const Polygon &A, const Polygon &B)
{
using namespace rotcalip;
// Establish starting antipodals as extremes in XY plane. Use the
// easily obtainable bounding boxes to check if A and B is disjoint
// and return false if the are.
struct BB
{
size_t xmin = 0, xmax = 0, ymin = 0, ymax = 0;
const Polygon &P;
static bool cmpy(const Point &l, const Point &u)
{
return l.y() < u.y() || (l.y() == u.y() && l.x() < u.x());
}
BB(const Polygon &poly): P{poly}
{
for (size_t i = 0; i < P.size(); ++i) {
if (P[i] < P[xmin]) xmin = i;
if (P[xmax] < P[i]) xmax = i;
if (cmpy(P[i], P[ymin])) ymin = i;
if (cmpy(P[ymax], P[i])) ymax = i;
}
}
};
BB bA{A}, bB{B};
BoundingBox bbA{{A[bA.xmin].x(), A[bA.ymin].y()}, {A[bA.xmax].x(), A[bA.ymax].y()}};
BoundingBox bbB{{B[bB.xmin].x(), B[bB.ymin].y()}, {B[bB.xmax].x(), B[bB.ymax].y()}};
// if (!bbA.overlap(bbB))
// return false;
// Establish starting antipodals as extreme vertex pairs in X or Y direction
// which reside on different polygons. If no such pair is found, the two
// polygons are certainly not disjoint.
Idx imin{bA.xmin, A}, imax{bB.xmax, B};
if (B[bB.xmin] < imin.pt()) imin = Idx{bB.xmin, B};
if (imax.pt() < A[bA.xmax]) imax = Idx{bA.xmax, A};
if (&imin.poly() == &imax.poly()) {
imin = Idx{bA.ymin, A};
imax = Idx{bB.ymax, B};
if (B[bB.ymin] < imin.pt()) imin = Idx{bB.ymin, B};
if (imax.pt() < A[bA.ymax]) imax = Idx{bA.ymax, A};
}
if (&imin.poly() == &imax.poly())
return true;
bool found_divisor = false;
visit_antipodals<AntipodalVisitMode::EdgesOnly>(
imin, imax,
[&imin, &imax, &found_divisor](size_t ia, size_t ib, const Point &dir) {
// std::cout << "A" << ia << " B" << ib << " dir " <<
// dir.x() << " " << dir.y() << std::endl;
const Polygon &A = imin.poly(), &B = imax.poly();
Point ref_a = A[(ia + 2) % A.size()], ref_b = B[(ib + 2) % B.size()];
bool is_left_a = dotperp( dir, ref_a - A[ia]) > 0;
bool is_left_b = dotperp(-dir, ref_b - B[ib]) > 0;
// If both reference points are on the left (or right) of their
// respective support lines and the opposite support line is to
// the right (or left), the divisor line is found. We only test
// the reference point, as by definition, if that is on one side,
// all the other points must be on the same side of a support
// line. If the support lines are collinear, the polygons must be
// on the same side of their respective support lines.
auto d = dotperp(dir, B[ib] - A[ia]);
if (d == 0) {
// The caliper lines are collinear, not just parallel
found_divisor = (is_left_a && is_left_b) || (!is_left_a && !is_left_b);
} else if (d > 0) { // B is to the left of (A, A+1)
found_divisor = !is_left_a && !is_left_b;
} else { // B is to the right of (A, A+1)
found_divisor = is_left_a && is_left_b;
}
return !found_divisor;
});
// Intersects if the divisor was not found
return !found_divisor;
}
// Decompose source convex hull points into a top / bottom chains with monotonically increasing x,
// creating an implicit trapezoidal decomposition of the source convex polygon.
// The source convex polygon has to be CCW oriented. O(n) time complexity.
std::pair<std::vector<Vec2d>, std::vector<Vec2d>> decompose_convex_polygon_top_bottom(const std::vector<Vec2d> &src)
{
std::pair<std::vector<Vec2d>, std::vector<Vec2d>> out;
std::vector<Vec2d> &bottom = out.first;
std::vector<Vec2d> &top = out.second;
// Find the minimum point.
auto left_bottom = std::min_element(src.begin(), src.end(), [](const auto &l, const auto &r) { return l.x() < r.x() || (l.x() == r.x() && l.y() < r.y()); });
auto right_top = std::max_element(src.begin(), src.end(), [](const auto &l, const auto &r) { return l.x() < r.x() || (l.x() == r.x() && l.y() < r.y()); });
if (left_bottom != src.end() && left_bottom != right_top) {
// Produce the bottom and bottom chains.
if (left_bottom < right_top) {
bottom.assign(left_bottom, right_top + 1);
size_t cnt = (src.end() - right_top) + (left_bottom + 1 - src.begin());
top.reserve(cnt);
top.assign(right_top, src.end());
top.insert(top.end(), src.begin(), left_bottom + 1);
} else {
size_t cnt = (src.end() - left_bottom) + (right_top + 1 - src.begin());
bottom.reserve(cnt);
bottom.assign(left_bottom, src.end());
bottom.insert(bottom.end(), src.begin(), right_top + 1);
top.assign(right_top, left_bottom + 1);
}
// Remove strictly vertical segments at the end.
if (bottom.size() > 1) {
auto it = bottom.end();
for (-- it; it != bottom.begin() && (it - 1)->x() == bottom.back().x(); -- it) ;
bottom.erase(it + 1, bottom.end());
}
if (top.size() > 1) {
auto it = top.end();
for (-- it; it != top.begin() && (it - 1)->x() == top.back().x(); -- it) ;
top.erase(it + 1, top.end());
}
std::reverse(top.begin(), top.end());
}
if (top.size() < 2 || bottom.size() < 2) {
// invalid
top.clear();
bottom.clear();
}
return out;
}
// Convex polygon check using a top / bottom chain decomposition with O(log n) time complexity.
bool inside_convex_polygon(const std::pair<std::vector<Vec2d>, std::vector<Vec2d>> &top_bottom_decomposition, const Vec2d &pt)
{
auto it_bottom = std::lower_bound(top_bottom_decomposition.first.begin(), top_bottom_decomposition.first.end(), pt, [](const auto &l, const auto &r){ return l.x() < r.x(); });
auto it_top = std::lower_bound(top_bottom_decomposition.second.begin(), top_bottom_decomposition.second.end(), pt, [](const auto &l, const auto &r){ return l.x() < r.x(); });
if (it_bottom == top_bottom_decomposition.first.end()) {
// Above max x.
assert(it_top == top_bottom_decomposition.second.end());
return false;
}
if (it_bottom == top_bottom_decomposition.first.begin()) {
// Below or at min x.
if (pt.x() < it_bottom->x()) {
// Below min x.
assert(pt.x() < it_top->x());
return false;
}
// At min x.
assert(pt.x() == it_bottom->x());
assert(pt.x() == it_top->x());
assert(it_bottom->y() <= pt.y() <= it_top->y());
return pt.y() >= it_bottom->y() && pt.y() <= it_top->y();
}
// Trapezoid or a triangle.
assert(it_bottom != top_bottom_decomposition.first .begin() && it_bottom != top_bottom_decomposition.first .end());
assert(it_top != top_bottom_decomposition.second.begin() && it_top != top_bottom_decomposition.second.end());
assert(pt.x() <= it_bottom->x());
assert(pt.x() <= it_top->x());
auto it_top_prev = it_top - 1;
auto it_bottom_prev = it_bottom - 1;
assert(pt.x() >= it_top_prev->x());
assert(pt.x() >= it_bottom_prev->x());
double det = cross2(*it_bottom - *it_bottom_prev, pt - *it_bottom_prev);
if (det < 0)
return false;
det = cross2(*it_top - *it_top_prev, pt - *it_top_prev);
return det <= 0;
}
} // namespace Geometry
} // namespace Slic3r

View File

@ -0,0 +1,27 @@
#ifndef slic3r_Geometry_ConvexHull_hpp_
#define slic3r_Geometry_ConvexHull_hpp_
#include "../Polygon.hpp"
namespace Slic3r {
namespace Geometry {
Pointf3s convex_hull(Pointf3s points);
Polygon convex_hull(Points points);
Polygon convex_hull(const Polygons &polygons);
// Returns true if the intersection of the two convex polygons A and B
// is not an empty set.
bool convex_polygons_intersect(const Polygon &A, const Polygon &B);
// Decompose source convex hull points into top / bottom chains with monotonically increasing x,
// creating an implicit trapezoidal decomposition of the source convex polygon.
// The source convex polygon has to be CCW oriented. O(n) time complexity.
std::pair<std::vector<Vec2d>, std::vector<Vec2d>> decompose_convex_polygon_top_bottom(const std::vector<Vec2d> &src);
// Convex polygon check using a top / bottom chain decomposition with O(log n) time complexity.
bool inside_convex_polygon(const std::pair<std::vector<Vec2d>, std::vector<Vec2d>> &top_bottom_decomposition, const Vec2d &pt);
} } // namespace Slicer::Geometry
#endif

View File

@ -1,8 +1,9 @@
#include "libslic3r.h"
#include "BuildVolume.hpp"
#include "Exception.hpp"
#include "Model.hpp"
#include "ModelArrange.hpp"
#include "Geometry.hpp"
#include "Geometry/ConvexHull.hpp"
#include "MTUtils.hpp"
#include "TriangleMeshSlicer.hpp"
#include "TriangleSelector.hpp"
@ -26,39 +27,6 @@
namespace Slic3r {
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// Using rotating callipers to check for collision of two convex polygons. Thus both printbed_shape and obj_hull_2d are convex polygons.
ModelInstanceEPrintVolumeState printbed_collision_state(const Polygon& printbed_shape, double print_volume_height, const Polygon& obj_hull_2d, double obj_min_z, double obj_max_z)
{
if (!Geometry::convex_polygons_intersect(printbed_shape, obj_hull_2d))
return ModelInstancePVS_Fully_Outside;
bool contained_xy = true;
for (const Point& p : obj_hull_2d) {
if (!printbed_shape.contains(p)) {
contained_xy = false;
break;
}
}
const bool contained_z = -1e10 < obj_min_z && obj_max_z <= print_volume_height;
return (contained_xy && contained_z) ? ModelInstancePVS_Inside : ModelInstancePVS_Partly_Outside;
}
/*
ModelInstanceEPrintVolumeState printbed_collision_state(const Polygon& printbed_shape, double print_volume_height, const BoundingBoxf3& box)
{
const Polygon box_hull_2d({
{ scale_(box.min.x()), scale_(box.min.y()) },
{ scale_(box.max.x()), scale_(box.min.y()) },
{ scale_(box.max.x()), scale_(box.max.y()) },
{ scale_(box.min.x()), scale_(box.max.y()) }
});
return printbed_collision_state(printbed_shape, print_volume_height, box_hull_2d, box.min.z(), box.max.z());
}
*/
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
Model& Model::assign_copy(const Model &rhs)
{
this->copy_id(rhs);
@ -363,24 +331,13 @@ BoundingBoxf3 Model::bounding_box() const
return bb;
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// printbed_shape is convex polygon
unsigned int Model::update_print_volume_state(const Polygon& printbed_shape, double print_volume_height)
unsigned int Model::update_print_volume_state(const BuildVolume &build_volume)
{
unsigned int num_printable = 0;
for (ModelObject* model_object : this->objects)
num_printable += model_object->check_instances_print_volume_state(printbed_shape, print_volume_height);
num_printable += model_object->update_instances_print_volume_state(build_volume);
return num_printable;
}
#else
unsigned int Model::update_print_volume_state(const BoundingBoxf3 &print_volume)
{
unsigned int num_printable = 0;
for (ModelObject *model_object : this->objects)
num_printable += model_object->check_instances_print_volume_state(print_volume);
return num_printable;
}
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
bool Model::center_instances_around_point(const Vec2d &point)
{
@ -1572,9 +1529,7 @@ double ModelObject::get_instance_max_z(size_t instance_idx) const
return max_z + inst->get_offset(Z);
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// printbed_shape is convex polygon
unsigned int ModelObject::check_instances_print_volume_state(const Polygon& printbed_shape, double print_volume_height)
unsigned int ModelObject::update_instances_print_volume_state(const BuildVolume &build_volume)
{
unsigned int num_printable = 0;
enum {
@ -1586,16 +1541,10 @@ unsigned int ModelObject::check_instances_print_volume_state(const Polygon& prin
for (const ModelVolume* vol : this->volumes)
if (vol->is_model_part()) {
const Transform3d matrix = model_instance->get_matrix() * vol->get_matrix();
const BoundingBoxf3 bb = vol->mesh().transformed_bounding_box(matrix, 0.0);
if (!bb.defined) {
// this may happen if the part is fully below the printbed, leading to a crash in the following call to its_convex_hull_2d_above()
continue;
}
const Polygon volume_hull_2d = its_convex_hull_2d_above(vol->mesh().its, matrix.cast<float>(), 0.0f);
ModelInstanceEPrintVolumeState state = printbed_collision_state(printbed_shape, print_volume_height, volume_hull_2d, bb.min.z(), bb.max.z());
if (state == ModelInstancePVS_Inside)
BuildVolume::ObjectState state = build_volume.object_state(vol->mesh().its, matrix.cast<float>(), true /* may be below print bed */);
if (state == BuildVolume::ObjectState::Inside)
inside_outside |= INSIDE;
else if (state == ModelInstancePVS_Fully_Outside)
else if (state == BuildVolume::ObjectState::Outside)
inside_outside |= OUTSIDE;
else
inside_outside |= INSIDE | OUTSIDE;
@ -1608,35 +1557,6 @@ unsigned int ModelObject::check_instances_print_volume_state(const Polygon& prin
}
return num_printable;
}
#else
unsigned int ModelObject::check_instances_print_volume_state(const BoundingBoxf3& print_volume)
{
unsigned int num_printable = 0;
enum {
INSIDE = 1,
OUTSIDE = 2
};
for (ModelInstance *model_instance : this->instances) {
unsigned int inside_outside = 0;
for (const ModelVolume *vol : this->volumes)
if (vol->is_model_part()) {
BoundingBoxf3 bb = vol->get_convex_hull().transformed_bounding_box(model_instance->get_matrix() * vol->get_matrix());
if (print_volume.contains(bb))
inside_outside |= INSIDE;
else if (print_volume.intersects(bb))
inside_outside |= INSIDE | OUTSIDE;
else
inside_outside |= OUTSIDE;
}
model_instance->print_volume_state =
(inside_outside == (INSIDE | OUTSIDE)) ? ModelInstancePVS_Partly_Outside :
(inside_outside == INSIDE) ? ModelInstancePVS_Inside : ModelInstancePVS_Fully_Outside;
if (inside_outside == INSIDE)
++ num_printable;
}
return num_printable;
}
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
void ModelObject::print_info() const
{

View File

@ -33,6 +33,7 @@ namespace cereal {
namespace Slic3r {
enum class ConversionType;
class BuildVolume;
class Model;
class ModelInstance;
class ModelMaterial;
@ -366,13 +367,6 @@ public:
double get_instance_min_z(size_t instance_idx) const;
double get_instance_max_z(size_t instance_idx) const;
// Called by Print::validate() from the UI thread.
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
unsigned int check_instances_print_volume_state(const Polygon& printbed_shape, double print_volume_height);
#else
unsigned int check_instances_print_volume_state(const BoundingBoxf3& print_volume);
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// Print object statistics to console.
void print_info() const;
@ -505,6 +499,9 @@ private:
sla_support_points, sla_points_status, sla_drain_holes, printable, origin_translation,
m_bounding_box, m_bounding_box_valid, m_raw_bounding_box, m_raw_bounding_box_valid, m_raw_mesh_bounding_box, m_raw_mesh_bounding_box_valid);
}
// Called by Print::validate() from the UI thread.
unsigned int update_instances_print_volume_state(const BuildVolume &build_volume);
};
enum class EnforcerBlockerType : int8_t {
@ -908,17 +905,6 @@ enum ModelInstanceEPrintVolumeState : unsigned char
ModelInstanceNum_BedStates
};
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// return the state of the given object's volume (extrusion along z of obj_hull_2d from obj_min_z to obj_max_z)
// with respect to the given print volume (extrusion along z of printbed_shape from zero to print_volume_height)
// Using rotating callipers to check for collision of two convex polygons.
ModelInstanceEPrintVolumeState printbed_collision_state(const Polygon& printbed_shape, double print_volume_height, const Polygon& obj_hull_2d, double obj_min_z, double obj_max_z);
// return the state of the given box
// with respect to the given print volume (extrusion along z of printbed_shape from zero to print_volume_height)
// Commented out, using rotating callipers is quite expensive for a bounding box test.
//ModelInstanceEPrintVolumeState printbed_collision_state(const Polygon& printbed_shape, double print_volume_height, const BoundingBoxf3& box);
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// A single instance of a ModelObject.
// Knows the affine transformation of an object.
class ModelInstance final : public ObjectBase
@ -1123,12 +1109,7 @@ public:
BoundingBoxf3 bounding_box() const;
// Set the print_volume_state of PrintObject::instances,
// return total number of printable objects.
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// printbed_shape is convex polygon
unsigned int update_print_volume_state(const Polygon& printbed_shape, double print_volume_height);
#else
unsigned int update_print_volume_state(const BoundingBoxf3 &print_volume);
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
unsigned int update_print_volume_state(const BuildVolume &build_volume);
// Returns true if any ModelObject was modified.
bool center_instances_around_point(const Vec2d &point);
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }

View File

@ -1,6 +1,7 @@
#include "ModelArrange.hpp"
#include <libslic3r/Model.hpp>
#include <libslic3r/Geometry/ConvexHull.hpp>
#include "MTUtils.hpp"
namespace Slic3r {

View File

@ -201,6 +201,14 @@ BoundingBox get_extents(const std::vector<Points> &pts)
return bbox;
}
BoundingBoxf get_extents(const std::vector<Vec2d> &pts)
{
BoundingBoxf bbox;
for (const Vec2d &p : pts)
bbox.merge(p);
return bbox;
}
std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf)
{
return stm << pointf(0) << "," << pointf(1);

View File

@ -16,6 +16,7 @@
namespace Slic3r {
class BoundingBox;
class BoundingBoxf;
class Line;
class MultiPoint;
class Point;
@ -133,6 +134,7 @@ public:
Point(const Eigen::MatrixBase<OtherDerived> &other) : Vec2crd(other) {}
static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }
static Point new_scale(const Vec2d &v) { return Point(coord_t(scale_(v.x())), coord_t(scale_(v.y()))); }
static Point new_scale(const Vec2f &v) { return Point(coord_t(scale_(v.x())), coord_t(scale_(v.y()))); }
// This method allows you to assign Eigen expressions to MyVectorType
template<typename OtherDerived>
@ -213,6 +215,7 @@ inline Point lerp(const Point &a, const Point &b, double t)
BoundingBox get_extents(const Points &pts);
BoundingBox get_extents(const std::vector<Points> &pts);
BoundingBoxf get_extents(const std::vector<Vec2d> &pts);
// Test for duplicate points in a vector of points.
// The points are copied, sorted and checked for duplicates globally.

View File

@ -334,6 +334,25 @@ extern std::vector<BoundingBox> get_extents_vector(const Polygons &polygons)
return out;
}
// Polygon must be valid (at least three points), collinear points and duplicate points removed.
bool polygon_is_convex(const Points &poly)
{
if (poly.size() < 3)
return false;
Point p0 = poly[poly.size() - 2];
Point p1 = poly[poly.size() - 1];
for (size_t i = 0; i < poly.size(); ++ i) {
Point p2 = poly[i];
auto det = cross2((p1 - p0).cast<int64_t>(), (p2 - p1).cast<int64_t>());
if (det < 0)
return false;
p0 = p1;
p1 = p2;
}
return true;
}
bool has_duplicate_points(const Polygons &polys)
{
#if 1

View File

@ -84,6 +84,10 @@ BoundingBox get_extents_rotated(const Polygon &poly, double angle);
BoundingBox get_extents_rotated(const Polygons &polygons, double angle);
std::vector<BoundingBox> get_extents_vector(const Polygons &polygons);
// Polygon must be valid (at least three points), collinear points and duplicate points removed.
bool polygon_is_convex(const Points &poly);
inline bool polygon_is_convex(const Polygon &poly) { return polygon_is_convex(poly.points); }
// Test for duplicate points. The points are copied, sorted and checked for duplicates globally.
inline bool has_duplicate_points(Polygon &&poly) { return has_duplicate_points(std::move(poly.points)); }
inline bool has_duplicate_points(const Polygon &poly) { return has_duplicate_points(poly.points); }

View File

@ -5,7 +5,7 @@
#include "ClipperUtils.hpp"
#include "Extruder.hpp"
#include "Flow.hpp"
#include "Geometry.hpp"
#include "Geometry/ConvexHull.hpp"
#include "I18N.hpp"
#include "ShortestPath.hpp"
#include "SupportMaterial.hpp"
@ -850,7 +850,7 @@ void Print::process()
// The export_gcode may die for various reasons (fails to process output_filename_format,
// write error into the G-code, cannot execute post-processing scripts).
// It is up to the caller to show an error message.
std::string Print::export_gcode(const std::string& path_template, GCodeProcessor::Result* result, ThumbnailsGeneratorCallback thumbnail_cb)
std::string Print::export_gcode(const std::string& path_template, GCodeProcessorResult* result, ThumbnailsGeneratorCallback thumbnail_cb)
{
// output everything to a G-code file
// The following call may die if the output_filename_format template substitution fails.

View File

@ -521,7 +521,7 @@ public:
void process() override;
// Exports G-code into a file name based on the path_template, returns the file path of the generated G-code file.
// If preview_data is not null, the preview_data is filled in for the G-code visualization (not used by the command line Slic3r).
std::string export_gcode(const std::string& path_template, GCodeProcessor::Result* result, ThumbnailsGeneratorCallback thumbnail_cb = nullptr);
std::string export_gcode(const std::string& path_template, GCodeProcessorResult* result, ThumbnailsGeneratorCallback thumbnail_cb = nullptr);
// methods for handling state
bool is_step_done(PrintStep step) const { return Inherited::is_step_done(step); }

View File

@ -4,6 +4,7 @@
#include "MeshSplitImpl.hpp"
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
#include "Geometry/ConvexHull.hpp"
#include "Point.hpp"
#include "Execution/ExecutionTBB.hpp"
#include "Execution/ExecutionSeq.hpp"
@ -436,27 +437,55 @@ BoundingBoxf3 TriangleMesh::transformed_bounding_box(const Transform3d &trafo) c
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
BoundingBoxf3 TriangleMesh::transformed_bounding_box(const Transform3d& trafo, double world_min_z) const
BoundingBoxf3 TriangleMesh::transformed_bounding_box(const Transform3d& trafod, double world_min_z) const
{
BoundingBoxf3 bbox;
const Transform3f ftrafo = trafo.cast<float>();
for (const stl_triangle_vertex_indices& tri : its.indices) {
const Vec3f pts[3] = { ftrafo * its.vertices[tri(0)], ftrafo * its.vertices[tri(1)], ftrafo * its.vertices[tri(2)] };
int iprev = 2;
for (int iedge = 0; iedge < 3; ++iedge) {
const Vec3f& p1 = pts[iprev];
const Vec3f& p2 = pts[iedge];
if ((p1.z() < world_min_z && p2.z() > world_min_z) || (p2.z() < world_min_z && p1.z() > world_min_z)) {
// Edge crosses the z plane. Calculate intersection point with the plane.
const float t = (world_min_z - p1.z()) / (p2.z() - p1.z());
bbox.merge(Vec3f(p1.x() + (p2.x() - p1.x()) * t, p1.y() + (p2.y() - p1.y()) * t, world_min_z).cast<double>());
}
if (p2.z() >= world_min_z)
bbox.merge(p2.cast<double>());
iprev = iedge;
// 1) Allocate transformed vertices with their position with respect to print bed surface.
std::vector<char> sides;
size_t num_above = 0;
Eigen::AlignedBox<float, 3> bbox;
Transform3f trafo = trafod.cast<float>();
sides.reserve(its.vertices.size());
for (const stl_vertex &v : this->its.vertices) {
const stl_vertex pt = trafo * v;
const int sign = pt.z() > world_min_z ? 1 : pt.z() < world_min_z ? -1 : 0;
sides.emplace_back(sign);
if (sign >= 0) {
// Vertex above or on print bed surface. Test whether it is inside the build volume.
++ num_above;
bbox.extend(pt);
}
}
return bbox;
// 2) Calculate intersections of triangle edges with the build surface.
if (num_above < its.vertices.size()) {
// Not completely above the build surface and status may still change by testing edges intersecting the build platform.
for (const stl_triangle_vertex_indices &tri : its.indices) {
const int s[3] = { sides[tri(0)], sides[tri(1)], sides[tri(2)] };
if (std::min(s[0], std::min(s[1], s[2])) < 0 && std::max(s[0], std::max(s[1], s[2])) > 0) {
// Some edge of this triangle intersects the build platform. Calculate the intersection.
int iprev = 2;
for (int iedge = 0; iedge < 3; ++ iedge) {
if (s[iprev] * s[iedge] == -1) {
// edge intersects the build surface. Calculate intersection point.
const stl_vertex p1 = trafo * its.vertices[tri(iprev)];
const stl_vertex p2 = trafo * its.vertices[tri(iedge)];
// Edge crosses the z plane. Calculate intersection point with the plane.
const float t = (world_min_z - p1.z()) / (p2.z() - p1.z());
bbox.extend(Vec3f(p1.x() + (p2.x() - p1.x()) * t, p1.y() + (p2.y() - p1.y()) * t, world_min_z));
}
iprev = iedge;
}
}
}
}
BoundingBoxf3 out;
if (! bbox.isEmpty()) {
out.min = bbox.min().cast<double>();
out.max = bbox.max().cast<double>();
out.defined = true;
};
return out;
}
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS

View File

@ -137,7 +137,7 @@ void Bed3D::Axes::render() const
glsafe(::glDisable(GL_DEPTH_TEST));
}
bool Bed3D::set_shape(const Pointfs& shape, const std::string& custom_texture, const std::string& custom_model, bool force_as_custom)
bool Bed3D::set_shape(const Pointfs& bed_shape, const double max_print_height, const std::string& custom_texture, const std::string& custom_model, bool force_as_custom)
{
auto check_texture = [](const std::string& texture) {
boost::system::error_code ec; // so the exists call does not throw (e.g. after a permission problem)
@ -149,17 +149,13 @@ bool Bed3D::set_shape(const Pointfs& shape, const std::string& custom_texture, c
return !model.empty() && boost::algorithm::iends_with(model, ".stl") && boost::filesystem::exists(model, ec);
};
EType type;
Type type;
std::string model;
std::string texture;
if (force_as_custom)
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
type = EType::Custom;
#else
type = Custom;
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
type = Type::Custom;
else {
auto [new_type, system_model, system_texture] = detect_type(shape);
auto [new_type, system_model, system_texture] = detect_type(bed_shape);
type = new_type;
model = system_model;
texture = system_texture;
@ -177,29 +173,18 @@ bool Bed3D::set_shape(const Pointfs& shape, const std::string& custom_texture, c
model_filename.clear();
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
EShapeType shape_type = detect_shape_type(shape);
if (m_shape == shape && m_type == type && m_shape_type == shape_type && m_texture_filename == texture_filename && m_model_filename == model_filename)
#else
if (m_shape == shape && m_type == type && m_texture_filename == texture_filename && m_model_filename == model_filename)
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
if (m_build_volume.bed_shape() == bed_shape && m_type == type && m_texture_filename == texture_filename && m_model_filename == model_filename)
// No change, no need to update the UI.
return false;
m_shape = shape;
m_type = type;
m_build_volume = BuildVolume { bed_shape, max_print_height };
m_texture_filename = texture_filename;
m_model_filename = model_filename;
m_type = type;
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
m_shape_type = shape_type;
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
m_extended_bounding_box = this->calc_extended_bounding_box();
calc_bounding_boxes();
ExPolygon poly;
for (const Vec2d& p : m_shape) {
poly.contour.append({ scale_(p(0)), scale_(p(1)) });
}
ExPolygon poly{ Polygon::new_scale(bed_shape) };
calc_triangles(poly);
@ -208,13 +193,13 @@ bool Bed3D::set_shape(const Pointfs& shape, const std::string& custom_texture, c
m_polygon = offset(poly.contour, (float)bed_bbox.radius() * 1.7f, jtRound, scale_(0.5))[0];
reset();
this->release_VBOs();
m_texture.reset();
m_model.reset();
// Set the origin and size for rendering the coordinate system axes.
m_axes.set_origin({ 0.0, 0.0, static_cast<double>(GROUND_Z) });
m_axes.set_stem_length(0.1f * static_cast<float>(m_bounding_box.max_size()));
m_axes.set_stem_length(0.1f * static_cast<float>(m_build_volume.bounding_volume().max_size()));
// Let the calee to update the UI.
return true;
@ -240,85 +225,6 @@ void Bed3D::render_for_picking(GLCanvas3D& canvas, bool bottom, float scale_fact
render_internal(canvas, bottom, scale_factor, false, false, true);
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
bool Bed3D::is_rectangle(const Pointfs& shape, Vec2d* min, Vec2d* max)
{
const Lines lines = Polygon::new_scale(shape).lines();
bool ret = lines.size() == 4 && lines[0].parallel_to(lines[2]) && lines[1].parallel_to(lines[3]) && lines[0].perpendicular_to(lines[1]);
if (ret) {
if (min != nullptr) {
*min = shape.front();
for (const Vec2d& pt : shape) {
min->x() = std::min(min->x(), pt.x());
min->y() = std::min(min->y(), pt.y());
}
}
if (max != nullptr) {
*max = shape.front();
for (const Vec2d& pt : shape) {
max->x() = std::max(max->x(), pt.x());
max->y() = std::max(max->y(), pt.y());
}
}
}
return ret;
}
bool Bed3D::is_circle(const Pointfs& shape, Vec2d* center, double* radius)
{
if (shape.size() < 3)
return false;
// Analyze the array of points.
// Do they reside on a circle ?
const Vec2d box_center = Geometry::circle_center_taubin_newton(shape);
std::vector<double> vertex_distances;
double avg_dist = 0.0;
for (const Vec2d& pt : shape) {
double distance = (pt - box_center).norm();
vertex_distances.push_back(distance);
avg_dist += distance;
}
avg_dist /= vertex_distances.size();
double tolerance = avg_dist * 0.01;
bool defined_value = true;
for (double el : vertex_distances) {
if (fabs(el - avg_dist) > tolerance)
defined_value = false;
break;
}
if (center != nullptr)
*center = box_center;
if (radius != nullptr)
*radius = avg_dist;
return defined_value;
}
bool Bed3D::is_convex(const Pointfs& shape)
{
return Polygon::new_scale(shape).convex_points().size() == shape.size();
}
Bed3D::EShapeType Bed3D::detect_shape_type(const Pointfs& shape)
{
if (shape.size() < 3)
return EShapeType::Invalid;
else if (is_rectangle(shape))
return EShapeType::Rectangle;
else if (is_circle(shape))
return EShapeType::Circle;
else
return EShapeType::Custom;
}
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
void Bed3D::render_internal(GLCanvas3D& canvas, bool bottom, float scale_factor,
bool show_axes, bool show_texture, bool picking)
{
@ -334,41 +240,31 @@ void Bed3D::render_internal(GLCanvas3D& canvas, bool bottom, float scale_factor,
switch (m_type)
{
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
case EType::System: { render_system(canvas, bottom, show_texture); break; }
case Type::System: { render_system(canvas, bottom, show_texture); break; }
default:
case EType::Custom: { render_custom(canvas, bottom, show_texture, picking); break; }
#else
case System: { render_system(canvas, bottom, show_texture); break; }
default:
case Custom: { render_custom(canvas, bottom, show_texture, picking); break; }
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
case Type::Custom: { render_custom(canvas, bottom, show_texture, picking); break; }
}
glsafe(::glDisable(GL_DEPTH_TEST));
}
void Bed3D::calc_bounding_boxes() const
// Calculate an extended bounding box from axes and current model for visualization purposes.
BoundingBoxf3 Bed3D::calc_extended_bounding_box() const
{
BoundingBoxf3* bounding_box = const_cast<BoundingBoxf3*>(&m_bounding_box);
*bounding_box = BoundingBoxf3();
for (const Vec2d& p : m_shape) {
bounding_box->merge({ p.x(), p.y(), 0.0 });
}
BoundingBoxf3* extended_bounding_box = const_cast<BoundingBoxf3*>(&m_extended_bounding_box);
*extended_bounding_box = m_bounding_box;
BoundingBoxf3 out { m_build_volume.bounding_volume() };
// Reset the build volume Z, we don't want to zoom to the top of the build volume if it is empty.
out.min.z() = 0;
out.max.z() = 0;
// extend to contain axes
extended_bounding_box->merge(m_axes.get_origin() + m_axes.get_total_length() * Vec3d::Ones());
extended_bounding_box->merge(extended_bounding_box->min + Vec3d(-Axes::DefaultTipRadius, -Axes::DefaultTipRadius, extended_bounding_box->max(2)));
out.merge(m_axes.get_origin() + m_axes.get_total_length() * Vec3d::Ones());
out.merge(out.min + Vec3d(-Axes::DefaultTipRadius, -Axes::DefaultTipRadius, out.max(2)));
// extend to contain model, if any
BoundingBoxf3 model_bb = m_model.get_bounding_box();
if (model_bb.defined) {
model_bb.translate(m_model_offset);
extended_bounding_box->merge(model_bb);
out.merge(model_bb);
}
return out;
}
void Bed3D::calc_triangles(const ExPolygon& poly)
@ -404,8 +300,9 @@ void Bed3D::calc_gridlines(const ExPolygon& poly, const BoundingBox& bed_bbox)
BOOST_LOG_TRIVIAL(error) << "Unable to create bed grid lines\n";
}
std::tuple<Bed3D::EType, std::string, std::string> Bed3D::detect_type(const Pointfs& shape) const
// Try to match the print bed shape with the shape of an active profile. If such a match exists,
// return the print bed model.
std::tuple<Bed3D::Type, std::string, std::string> Bed3D::detect_type(const Pointfs& shape)
{
auto bundle = wxGetApp().preset_bundle;
if (bundle != nullptr) {
@ -416,11 +313,7 @@ std::tuple<Bed3D::EType, std::string, std::string> Bed3D::detect_type(const Poin
std::string model_filename = PresetUtils::system_printer_bed_model(*curr);
std::string texture_filename = PresetUtils::system_printer_bed_texture(*curr);
if (!model_filename.empty() && !texture_filename.empty())
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
return { EType::System, model_filename, texture_filename };
#else
return { System, model_filename, texture_filename };
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
return { Type::System, model_filename, texture_filename };
}
}
@ -428,16 +321,12 @@ std::tuple<Bed3D::EType, std::string, std::string> Bed3D::detect_type(const Poin
}
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
return { EType::Custom, "", "" };
#else
return { Custom, "", "" };
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
return { Type::Custom, {}, {} };
}
void Bed3D::render_axes() const
{
if (!m_shape.empty())
if (m_build_volume.valid())
m_axes.render();
}
@ -596,12 +485,10 @@ void Bed3D::render_model() const
model->set_color(-1, DEFAULT_MODEL_COLOR);
// move the model so that its origin (0.0, 0.0, 0.0) goes into the bed shape center and a bit down to avoid z-fighting with the texture quad
Vec3d shift = m_bounding_box.center();
shift(2) = -0.03;
*const_cast<Vec3d*>(&m_model_offset) = shift;
*const_cast<Vec3d*>(&m_model_offset) = to_3d(m_build_volume.bounding_volume2d().center(), -0.03);
// update extended bounding box
calc_bounding_boxes();
const_cast<BoundingBoxf3&>(m_extended_bounding_box) = this->calc_extended_bounding_box();
}
if (!model->get_filename().empty()) {
@ -673,7 +560,7 @@ void Bed3D::render_default(bool bottom, bool picking) const
}
}
void Bed3D::reset()
void Bed3D::release_VBOs()
{
if (m_vbo_id > 0) {
glsafe(::glDeleteBuffers(1, &m_vbo_id));

View File

@ -5,6 +5,8 @@
#include "3DScene.hpp"
#include "GLModel.hpp"
#include <libslic3r/BuildVolume.hpp>
#include <tuple>
#include <array>
@ -62,41 +64,22 @@ class Bed3D
};
public:
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
enum class EType : unsigned char
enum class Type : unsigned char
{
// The print bed model and texture are available from some printer preset.
System,
// The print bed model is unknown, thus it is rendered procedurally.
Custom
};
enum class EShapeType : unsigned char
{
Rectangle,
Circle,
Custom,
Invalid
};
#else
enum EType : unsigned char
{
System,
Custom,
Num_Types
};
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
private:
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
EType m_type{ EType::Custom };
EShapeType m_shape_type{ EShapeType::Invalid };
#else
EType m_type{ Custom };
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
Pointfs m_shape;
BuildVolume m_build_volume;
Type m_type{ Type::Custom };
std::string m_texture_filename;
std::string m_model_filename;
BoundingBoxf3 m_bounding_box;
// Print volume bounding box exteded with axes and model.
BoundingBoxf3 m_extended_bounding_box;
// Slightly expanded print bed polygon, for collision detection.
Polygon m_polygon;
GeometryBuffer m_triangles;
GeometryBuffer m_gridlines;
@ -112,42 +95,39 @@ private:
public:
Bed3D() = default;
~Bed3D() { reset(); }
~Bed3D() { release_VBOs(); }
EType get_type() const { return m_type; }
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
EShapeType get_shape_type() const { return m_shape_type; }
bool is_custom() const { return m_type == EType::Custom; }
#else
bool is_custom() const { return m_type == Custom; }
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
const Pointfs& get_shape() const { return m_shape; }
// Update print bed model from configuration.
// Return true if the bed shape changed, so the calee will update the UI.
bool set_shape(const Pointfs& shape, const std::string& custom_texture, const std::string& custom_model, bool force_as_custom = false);
//FIXME if the build volume max print height is updated, this function still returns zero
// as this class does not use it, thus there is no need to update the UI.
bool set_shape(const Pointfs& bed_shape, const double max_print_height, const std::string& custom_texture, const std::string& custom_model, bool force_as_custom = false);
const BoundingBoxf3& get_bounding_box(bool extended) const { return extended ? m_extended_bounding_box : m_bounding_box; }
// Build volume geometry for various collision detection tasks.
const BuildVolume& build_volume() const { return m_build_volume; }
// Was the model provided, or was it generated procedurally?
Type get_type() const { return m_type; }
// Was the model generated procedurally?
bool is_custom() const { return m_type == Type::Custom; }
// Bounding box around the print bed, axes and model, for rendering.
const BoundingBoxf3& extended_bounding_box() const { return m_extended_bounding_box; }
// Check against an expanded 2d bounding box.
//FIXME shall one check against the real build volume?
bool contains(const Point& point) const;
Point point_projection(const Point& point) const;
void render(GLCanvas3D& canvas, bool bottom, float scale_factor,
bool show_axes, bool show_texture);
void render(GLCanvas3D& canvas, bool bottom, float scale_factor, bool show_axes, bool show_texture);
void render_for_picking(GLCanvas3D& canvas, bool bottom, float scale_factor);
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
static bool is_rectangle(const Pointfs& shape, Vec2d* min = nullptr, Vec2d* max = nullptr);
static bool is_circle(const Pointfs& shape, Vec2d* center = nullptr, double* radius = nullptr);
static bool is_convex(const Pointfs& shape);
static EShapeType detect_shape_type(const Pointfs& shape);
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
private:
void calc_bounding_boxes() const;
// Calculate an extended bounding box from axes and current model for visualization purposes.
BoundingBoxf3 calc_extended_bounding_box() const;
void calc_triangles(const ExPolygon& poly);
void calc_gridlines(const ExPolygon& poly, const BoundingBox& bed_bbox);
std::tuple<EType, std::string, std::string> detect_type(const Pointfs& shape) const;
static std::tuple<Type, std::string, std::string> detect_type(const Pointfs& shape);
void render_internal(GLCanvas3D& canvas, bool bottom, float scale_factor,
bool show_axes, bool show_texture, bool picking);
void render_axes() const;
@ -156,7 +136,7 @@ private:
void render_model() const;
void render_custom(GLCanvas3D& canvas, bool bottom, bool show_texture, bool picking) const;
void render_default(bool bottom, bool picking) const;
void reset();
void release_VBOs();
};
} // GUI

View File

@ -11,10 +11,8 @@
#include "GUI_App.hpp"
#include "Plater.hpp"
#include "BitmapCache.hpp"
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
#include "3DBed.hpp"
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
#include "libslic3r/BuildVolume.hpp"
#include "libslic3r/ExtrusionEntity.hpp"
#include "libslic3r/ExtrusionEntityCollection.hpp"
#include "libslic3r/Geometry.hpp"
@ -617,22 +615,6 @@ void GLVolume::render_sinking_contours()
m_sinking_contours.render();
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
void GLVolume::calc_convex_hull_3d()
{
const std::vector<float> &src = this->indexed_vertex_array.vertices_and_normals_interleaved;
std::vector<Vec3f> pts;
assert(src.size() % 6 == 0);
pts.reserve(src.size() / 6);
for (auto it = src.begin(); it != src.end(); ) {
it += 3;
pts.push_back({ *it, *(it + 1), *(it + 2) });
it += 3;
}
this->set_convex_hull(TriangleMesh(its_convex_hull(pts)));
}
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
std::vector<int> GLVolumeCollection::load_object(
const ModelObject *model_object,
int obj_idx,
@ -959,136 +941,51 @@ void GLVolumeCollection::render(GLVolumeCollection::ERenderType type, bool disab
glsafe(::glDisable(GL_BLEND));
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
bool GLVolumeCollection::check_outside_state(const DynamicPrintConfig* config, ModelInstanceEPrintVolumeState* out_state, bool as_toolpaths) const
#else
bool GLVolumeCollection::check_outside_state(const DynamicPrintConfig* config, ModelInstanceEPrintVolumeState* out_state) const
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
bool GLVolumeCollection::check_outside_state(const BuildVolume &build_volume, ModelInstanceEPrintVolumeState *out_state) const
{
if (config == nullptr)
return false;
const ConfigOptionPoints* opt = dynamic_cast<const ConfigOptionPoints*>(config->option("bed_shape"));
if (opt == nullptr)
return false;
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
const Polygon bed_poly = offset(Polygon::new_scale(opt->values), static_cast<float>(scale_(BedEpsilon))).front();
const float bed_height = config->opt_float("max_print_height");
const BoundingBox bed_box_2D = get_extents(bed_poly);
BoundingBoxf3 print_volume({ unscale<double>(bed_box_2D.min.x()), unscale<double>(bed_box_2D.min.y()), -1e10 },
{ unscale<double>(bed_box_2D.max.x()), unscale<double>(bed_box_2D.max.y()), bed_height });
auto check_against_rectangular_bed = [&print_volume](GLVolume& volume, ModelInstanceEPrintVolumeState& state) {
const BoundingBoxf3* const bb = (volume.is_sinking() && volume.object_idx() != -1 && volume.volume_idx() != -1) ? &volume.transformed_non_sinking_bounding_box() : &volume.transformed_convex_hull_bounding_box();
volume.is_outside = !print_volume.contains(*bb);
if (volume.printable) {
if (state == ModelInstancePVS_Inside && volume.is_outside)
state = ModelInstancePVS_Fully_Outside;
if (state == ModelInstancePVS_Fully_Outside && volume.is_outside && print_volume.intersects(*bb))
state = ModelInstancePVS_Partly_Outside;
}
};
auto check_against_circular_bed = [bed_height](GLVolume& volume, ModelInstanceEPrintVolumeState& state, const Vec2d& center, double radius) {
const TriangleMesh* mesh = (volume.is_sinking() && volume.object_idx() != -1 && volume.volume_idx() != -1) ? &GUI::wxGetApp().plater()->model().objects[volume.object_idx()]->volumes[volume.volume_idx()]->mesh() : volume.convex_hull();
const double sq_radius = sqr(radius);
size_t outside_count = 0;
size_t valid_count = 0;
for (const Vec3f& v : mesh->its.vertices) {
const Vec3f world_v = volume.world_matrix().cast<float>() * v;
if (0.0f <= world_v.z()) {
++valid_count;
if (sq_radius < sqr(world_v.x() - center.x()) + sqr(world_v.y() - center.y()) || bed_height < world_v.z())
++outside_count;
}
}
volume.is_outside = outside_count > 0;
if (volume.printable) {
if (state == ModelInstancePVS_Inside && volume.is_outside)
state = ModelInstancePVS_Fully_Outside;
if (state == ModelInstancePVS_Fully_Outside && volume.is_outside && outside_count < valid_count)
state = ModelInstancePVS_Partly_Outside;
}
};
auto check_against_convex_bed = [&bed_poly, bed_height](GLVolume& volume, ModelInstanceEPrintVolumeState& state) {
const TriangleMesh* mesh = (volume.is_sinking() && volume.object_idx() != -1 && volume.volume_idx() != -1) ? &GUI::wxGetApp().plater()->model().objects[volume.object_idx()]->volumes[volume.volume_idx()]->mesh() : volume.convex_hull();
const Polygon volume_hull_2d = its_convex_hull_2d_above(mesh->its, volume.world_matrix().cast<float>(), 0.0f);
const BoundingBoxf3* const bb = (volume.is_sinking() && volume.object_idx() != -1 && volume.volume_idx() != -1) ? &volume.transformed_non_sinking_bounding_box() : &volume.transformed_convex_hull_bounding_box();
// Using rotating callipers to check for collision of two convex polygons.
ModelInstanceEPrintVolumeState volume_state = printbed_collision_state(bed_poly, bed_height, volume_hull_2d, bb->min.z(), bb->max.z());
bool contained = (volume_state == ModelInstancePVS_Inside);
bool intersects = (volume_state == ModelInstancePVS_Partly_Outside);
volume.is_outside = !contained;
if (volume.printable) {
if (state == ModelInstancePVS_Inside && volume.is_outside)
state = ModelInstancePVS_Fully_Outside;
if (state == ModelInstancePVS_Fully_Outside && volume.is_outside && intersects)
state = ModelInstancePVS_Partly_Outside;
}
};
#else
const BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values));
BoundingBoxf3 print_volume({ unscale<double>(bed_box_2D.min.x()), unscale<double>(bed_box_2D.min.y()), 0.0 },
{ unscale<double>(bed_box_2D.max.x()), unscale<double>(bed_box_2D.max.y()), config->opt_float("max_print_height") });
// Allow the objects to protrude below the print bed
print_volume.min.z() = -1e10;
print_volume.min.x() -= BedEpsilon;
print_volume.min.y() -= BedEpsilon;
print_volume.max.x() += BedEpsilon;
print_volume.max.y() += BedEpsilon;
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
const Model& model = GUI::wxGetApp().plater()->model();
// Volume is partially below the print bed, thus a pre-calculated convex hull cannot be used.
auto volume_sinking = [](GLVolume& volume) -> bool
{ return volume.is_sinking() && volume.object_idx() != -1 && volume.volume_idx() != -1; };
// Cached bounding box of a volume above the print bed.
auto volume_bbox = [volume_sinking](GLVolume& volume) -> BoundingBoxf3
{ return volume_sinking(volume) ? volume.transformed_non_sinking_bounding_box() : volume.transformed_convex_hull_bounding_box(); };
// Cached 3D convex hull of a volume above the print bed.
auto volume_convex_mesh = [volume_sinking, &model](GLVolume& volume) -> const TriangleMesh&
{ return volume_sinking(volume) ? model.objects[volume.object_idx()]->volumes[volume.volume_idx()]->mesh() : *volume.convex_hull(); };
ModelInstanceEPrintVolumeState overall_state = ModelInstancePVS_Inside;
bool contained_min_one = false;
enum class BedShape { Rectangle, Circle, Convex, NonConvex };
Vec2d center;
double radius;
BedShape bed_shape =
GUI::Bed3D::is_rectangle(opt->values) ? BedShape::Rectangle :
GUI::Bed3D::is_circle(opt->values, &center, &radius) ? BedShape::Circle :
GUI::Bed3D::is_convex(opt->values) ? BedShape::Convex : BedShape::NonConvex;
for (GLVolume* volume : this->volumes) {
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
if (as_toolpaths && !volume->is_extrusion_path)
continue;
else if (!as_toolpaths && (volume->is_modifier || (!volume->shader_outside_printer_detection_enabled && (volume->is_wipe_tower || volume->composite_id.volume_id < 0))))
continue;
switch (bed_shape) {
case BedShape::Rectangle: check_against_rectangular_bed(*volume, overall_state); break;
case BedShape::Circle: check_against_circular_bed(*volume, overall_state, center, radius); break;
case BedShape::Convex: check_against_convex_bed(*volume, overall_state); break;
default: break;
for (GLVolume* volume : this->volumes)
if (! volume->is_modifier && (volume->shader_outside_printer_detection_enabled || (! volume->is_wipe_tower && volume->composite_id.volume_id >= 0))) {
BuildVolume::ObjectState state;
switch (build_volume.type()) {
case BuildVolume::Type::Rectangle:
//FIXME this test does not evaluate collision of a build volume bounding box with non-convex objects.
state = build_volume.volume_state_bbox(volume_bbox(*volume));
break;
case BuildVolume::Type::Circle:
case BuildVolume::Type::Convex:
//FIXME doing test on convex hull until we learn to do test on non-convex polygons efficiently.
case BuildVolume::Type::Custom:
state = build_volume.object_state(volume_convex_mesh(*volume).its, volume->world_matrix().cast<float>(), volume_sinking(*volume));
break;
default:
// Ignore, don't produce any collision.
state = BuildVolume::ObjectState::Inside;
break;
}
volume->is_outside = state != BuildVolume::ObjectState::Inside;
if (volume->printable) {
if (overall_state == ModelInstancePVS_Inside && volume->is_outside)
overall_state = ModelInstancePVS_Fully_Outside;
if (overall_state == ModelInstancePVS_Fully_Outside && volume->is_outside && state == BuildVolume::ObjectState::Colliding)
overall_state = ModelInstancePVS_Partly_Outside;
contained_min_one |= !volume->is_outside;
}
}
contained_min_one |= !volume->is_outside;
#else
if (volume->is_modifier || (!volume->shader_outside_printer_detection_enabled && (volume->is_wipe_tower || volume->composite_id.volume_id < 0)))
continue;
const BoundingBoxf3& bb = volume->transformed_convex_hull_bounding_box();
bool contained = print_volume.contains(bb);
volume->is_outside = !contained;
if (!volume->printable)
continue;
contained_min_one |= contained;
if (overall_state == ModelInstancePVS_Inside && volume->is_outside)
overall_state = ModelInstancePVS_Fully_Outside;
if (overall_state == ModelInstancePVS_Fully_Outside && volume->is_outside && print_volume.intersects(bb))
overall_state = ModelInstancePVS_Partly_Outside;
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
}
if (out_state != nullptr)
*out_state = overall_state;

View File

@ -31,6 +31,7 @@
namespace Slic3r {
class SLAPrintObject;
enum SLAPrintObjectStep : unsigned int;
class BuildVolume;
class DynamicPrintConfig;
class ExtrusionPath;
class ExtrusionMultiPath;
@ -281,10 +282,8 @@ private:
std::shared_ptr<const TriangleMesh> m_convex_hull;
// Bounding box of this volume, in unscaled coordinates.
std::optional<BoundingBoxf3> m_transformed_convex_hull_bounding_box;
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// Bounding box of the non sinking part of this volume, in unscaled coordinates.
std::optional<BoundingBoxf3> m_transformed_non_sinking_bounding_box;
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
class SinkingContours
{
@ -475,12 +474,10 @@ public:
BoundingBoxf3 transformed_convex_hull_bounding_box(const Transform3d &trafo) const;
// caching variant
const BoundingBoxf3& transformed_convex_hull_bounding_box() const;
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// non-caching variant
BoundingBoxf3 transformed_non_sinking_bounding_box(const Transform3d& trafo) const;
// caching variant
const BoundingBoxf3& transformed_non_sinking_bounding_box() const;
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// convex hull
const TriangleMesh* convex_hull() const { return m_convex_hull.get(); }
@ -493,15 +490,11 @@ public:
void finalize_geometry(bool opengl_initialized) { this->indexed_vertex_array.finalize_geometry(opengl_initialized); }
void release_geometry() { this->indexed_vertex_array.release_geometry(); }
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
void set_bounding_boxes_as_dirty() {
m_transformed_bounding_box.reset();
m_transformed_convex_hull_bounding_box.reset();
m_transformed_non_sinking_bounding_box.reset();
}
#else
void set_bounding_boxes_as_dirty() { m_transformed_bounding_box.reset(); m_transformed_convex_hull_bounding_box.reset(); }
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
bool is_sla_support() const;
bool is_sla_pad() const;
@ -518,12 +511,6 @@ public:
// Return an estimate of the memory held by GPU vertex buffers.
size_t gpu_memory_used() const { return this->indexed_vertex_array.gpu_memory_used(); }
size_t total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); }
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// calculates the 3D convex hull from indexed_vertex_array.vertices_and_normals_interleaved
// must be called before calling indexed_vertex_array.finalize_geometry();
void calc_convex_hull_3d();
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
};
typedef std::vector<GLVolume*> GLVolumePtrs;
@ -540,7 +527,6 @@ public:
All
};
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
struct PrintVolume
{
// see: Bed3D::EShapeType
@ -554,16 +540,9 @@ public:
// [0] = min z, [1] = max z
std::array<float, 2> zs;
};
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
private:
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
PrintVolume m_print_volume;
#else
// min and max vertex of the print box volume
float m_print_box_min[3];
float m_print_box_max[3];
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// z range for clipping in shaders
float m_z_range[2];
@ -635,14 +614,7 @@ public:
bool empty() const { return volumes.empty(); }
void set_range(double low, double high) { for (GLVolume *vol : this->volumes) vol->set_range(low, high); }
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
void set_print_volume(const PrintVolume& print_volume) { m_print_volume = print_volume; }
#else
void set_print_box(float min_x, float min_y, float min_z, float max_x, float max_y, float max_z) {
m_print_box_min[0] = min_x; m_print_box_min[1] = min_y; m_print_box_min[2] = min_z;
m_print_box_max[0] = max_x; m_print_box_max[1] = max_y; m_print_box_max[2] = max_z;
}
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
void set_z_range(float min_z, float max_z) { m_z_range[0] = min_z; m_z_range[1] = max_z; }
void set_clipping_plane(const double* coeffs) { m_clipping_plane[0] = coeffs[0]; m_clipping_plane[1] = coeffs[1]; m_clipping_plane[2] = coeffs[2]; m_clipping_plane[3] = coeffs[3]; }
@ -657,11 +629,7 @@ public:
// returns true if all the volumes are completely contained in the print volume
// returns the containment state in the given out_state, if non-null
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
bool check_outside_state(const DynamicPrintConfig* config, ModelInstanceEPrintVolumeState* out_state, bool as_toolpaths = false) const;
#else
bool check_outside_state(const DynamicPrintConfig* config, ModelInstanceEPrintVolumeState* out_state) const;
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
bool check_outside_state(const Slic3r::BuildVolume& build_volume, ModelInstanceEPrintVolumeState* out_state) const;
void reset_outside_state();
void update_colors_by_extruder(const DynamicPrintConfig* config);
@ -699,8 +667,6 @@ struct _3DScene
static void point3_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume);
};
static constexpr float BedEpsilon = 3.f * float(EPSILON);
}
#endif

View File

@ -86,7 +86,7 @@ public:
void set_fff_print(Print *print) { m_fff_print = print; }
void set_sla_print(SLAPrint *print) { m_sla_print = print; m_sla_print->set_printer(&m_sla_archive); }
void set_thumbnail_cb(ThumbnailsGeneratorCallback cb) { m_thumbnail_cb = cb; }
void set_gcode_result(GCodeProcessor::Result* result) { m_gcode_result = result; }
void set_gcode_result(GCodeProcessorResult* result) { m_gcode_result = result; }
// The following wxCommandEvent will be sent to the UI thread / Plater window, when the slicing is finished
// and the background processing will transition into G-code export.
@ -216,7 +216,7 @@ private:
Print *m_fff_print = nullptr;
SLAPrint *m_sla_print = nullptr;
// Data structure, to which the G-code export writes its annotations.
GCodeProcessor::Result *m_gcode_result = nullptr;
GCodeProcessorResult *m_gcode_result = nullptr;
// Callback function, used to write thumbnails into gcode.
ThumbnailsGeneratorCallback m_thumbnail_cb = nullptr;
SL1Archive m_sla_archive;

View File

@ -22,98 +22,7 @@ namespace GUI {
BedShape::BedShape(const ConfigOptionPoints& points)
{
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
if (points.size() < 3) {
m_type = Bed3D::EShapeType::Invalid;
return;
}
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// is this a rectangle ?
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
Vec2d min;
Vec2d max;
if (Bed3D::is_rectangle(points.values, &min, &max)) {
m_type = Bed3D::EShapeType::Rectangle;
m_rectSize = max - min;
m_rectOrigin = -min;
return;
}
#else
Polygon polygon = Polygon::new_scale(points.values);
if (points.size() == 4) {
auto lines = polygon.lines();
if (lines[0].parallel_to(lines[2]) && lines[1].parallel_to(lines[3])) {
// okay, it's a rectangle
// find origin
coordf_t x_min, x_max, y_min, y_max;
x_max = x_min = points.values[0](0);
y_max = y_min = points.values[0](1);
for (auto pt : points.values)
{
x_min = std::min(x_min, pt(0));
x_max = std::max(x_max, pt(0));
y_min = std::min(y_min, pt(1));
y_max = std::max(y_max, pt(1));
}
m_type = Type::Rectangular;
m_rectSize = Vec2d(x_max - x_min, y_max - y_min);
m_rectOrigin = Vec2d(-x_min, -y_min);
return;
}
}
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// is this a circle ?
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
Vec2d center;
double radius;
if (Bed3D::is_circle(points.values, &center, &radius)) {
m_type = Bed3D::EShapeType::Circle;
m_diameter = 2.0 * radius;
return;
}
// This is a custom bed shape, use the polygon provided.
m_type = Bed3D::EShapeType::Custom;
#else
{
// Analyze the array of points.Do they reside on a circle ?
auto center = polygon.bounding_box().center();
std::vector<double> vertex_distances;
double avg_dist = 0;
for (auto pt : polygon.points)
{
double distance = (pt - center).cast<double>().norm();
vertex_distances.push_back(distance);
avg_dist += distance;
}
avg_dist /= vertex_distances.size();
bool defined_value = true;
for (auto el : vertex_distances)
{
if (abs(el - avg_dist) > 10 * SCALED_EPSILON)
defined_value = false;
break;
}
if (defined_value) {
// all vertices are equidistant to center
m_type = Type::Circular;
m_diameter = unscale<double>(avg_dist * 2);
return;
}
}
if (points.size() < 3)
return;
// This is a custom bed shape, use the polygon provided.
m_type = Type::Custom;
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
m_build_volume = { points.values, 0. };
}
static std::string get_option_label(BedShape::Parameter param)
@ -122,119 +31,101 @@ static std::string get_option_label(BedShape::Parameter param)
case BedShape::Parameter::RectSize : return L("Size");
case BedShape::Parameter::RectOrigin: return L("Origin");
case BedShape::Parameter::Diameter : return L("Diameter");
default: return "";
default: assert(false); return {};
}
}
void BedShape::append_option_line(ConfigOptionsGroupShp optgroup, Parameter param)
{
ConfigOptionDef def;
if (param == Parameter::RectSize) {
t_config_option_key key;
switch (param) {
case Parameter::RectSize:
def.type = coPoints;
def.set_default_value(new ConfigOptionPoints{ Vec2d(200, 200) });
def.min = 0;
def.max = 1200;
def.label = get_option_label(param);
def.tooltip = L("Size in X and Y of the rectangular plate.");
Option option(def, "rect_size");
optgroup->append_single_option_line(option);
}
else if (param == Parameter::RectOrigin) {
key = "rect_size";
break;
case Parameter::RectOrigin:
def.type = coPoints;
def.set_default_value(new ConfigOptionPoints{ Vec2d(0, 0) });
def.min = -600;
def.max = 600;
def.label = get_option_label(param);
def.tooltip = L("Distance of the 0,0 G-code coordinate from the front left corner of the rectangle.");
Option option(def, "rect_origin");
optgroup->append_single_option_line(option);
}
else if (param == Parameter::Diameter) {
key = "rect_origin";
break;
case Parameter::Diameter:
def.type = coFloat;
def.set_default_value(new ConfigOptionFloat(200));
def.sidetext = L("mm");
def.label = get_option_label(param);
def.tooltip = L("Diameter of the print bed. It is assumed that origin (0,0) is located in the center.");
Option option(def, "diameter");
optgroup->append_single_option_line(option);
key = "diameter";
break;
default:
assert(false);
}
optgroup->append_single_option_line({ def, std::move(key) });
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
wxString BedShape::get_name(Bed3D::EShapeType type)
wxString BedShape::get_name(PageType type)
{
switch (type) {
case Bed3D::EShapeType::Rectangle: { return _L("Rectangular"); }
case Bed3D::EShapeType::Circle: { return _L("Circular"); }
case Bed3D::EShapeType::Custom: { return _L("Custom"); }
case Bed3D::EShapeType::Invalid:
default: return _L("Invalid");
case PageType::Rectangle: return _L("Rectangular");
case PageType::Circle: return _L("Circular");
case PageType::Custom: return _L("Custom");
}
// make visual studio happy
assert(false);
return {};
}
#else
wxString BedShape::get_name(Type type)
{
switch (type) {
case Type::Rectangular: return _L("Rectangular");
case Type::Circular: return _L("Circular");
case Type::Custom: return _L("Custom");
case Type::Invalid:
default: return _L("Invalid");
}
}
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
size_t BedShape::get_type()
BedShape::PageType BedShape::get_page_type()
{
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
return static_cast<size_t>(m_type == Bed3D::EShapeType::Invalid ? Bed3D::EShapeType::Rectangle : m_type);
#else
return static_cast<size_t>(m_type == Type::Invalid ? Type::Rectangular : m_type);
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
switch (m_build_volume.type()) {
case BuildVolume::Type::Rectangle:
case BuildVolume::Type::Invalid: return PageType::Rectangle;
case BuildVolume::Type::Circle: return PageType::Circle;
case BuildVolume::Type::Convex:
case BuildVolume::Type::Custom: return PageType::Custom;
}
// make visual studio happy
assert(false);
return PageType::Rectangle;
}
wxString BedShape::get_full_name_with_params()
{
wxString out = _L("Shape") + ": " + get_name(m_type);
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
if (m_type == Bed3D::EShapeType::Rectangle) {
#else
if (m_type == Type::Rectangular) {
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
out += "\n" + _(get_option_label(Parameter::RectSize)) + ": [" + ConfigOptionPoint(m_rectSize).serialize() + "]";
out += "\n" + _(get_option_label(Parameter::RectOrigin))+ ": [" + ConfigOptionPoint(m_rectOrigin).serialize() + "]";
wxString out = _L("Shape") + ": " + get_name(this->get_page_type());
switch (m_build_volume.type()) {
case BuildVolume::Type::Circle:
out += "\n" + _L(get_option_label(Parameter::Diameter)) + ": [" + double_to_string(2. * unscaled<double>(m_build_volume.circle().radius)) + "]";
break;
default:
// rectangle, convex, concave...
out += "\n" + _(get_option_label(Parameter::RectSize)) + ": [" + ConfigOptionPoint(to_2d(m_build_volume.bounding_volume().size())).serialize() + "]";
out += "\n" + _(get_option_label(Parameter::RectOrigin)) + ": [" + ConfigOptionPoint(to_2d(m_build_volume.bounding_volume().min)).serialize() + "]";
break;
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
else if (m_type == Bed3D::EShapeType::Circle)
#else
else if (m_type == Type::Circular)
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
out += "\n" + _L(get_option_label(Parameter::Diameter)) + ": [" + double_to_string(m_diameter) + "]";
return out;
}
void BedShape::apply_optgroup_values(ConfigOptionsGroupShp optgroup)
{
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
if (m_type == Bed3D::EShapeType::Rectangle || m_type == Bed3D::EShapeType::Invalid) {
#else
if (m_type == Type::Rectangular || m_type == Type::Invalid) {
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
optgroup->set_value("rect_size" , new ConfigOptionPoints{ m_rectSize });
optgroup->set_value("rect_origin" , new ConfigOptionPoints{ m_rectOrigin });
switch (m_build_volume.type()) {
case BuildVolume::Type::Circle:
optgroup->set_value("diameter", double_to_string(2. * unscaled<double>(m_build_volume.circle().radius)));
break;
default:
// rectangle, convex, concave...
optgroup->set_value("rect_size" , new ConfigOptionPoints{ to_2d(m_build_volume.bounding_volume().size()) });
optgroup->set_value("rect_origin" , new ConfigOptionPoints{ to_2d(m_build_volume.bounding_volume().min) });
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
else if (m_type == Bed3D::EShapeType::Circle)
#else
else if (m_type == Type::Circular)
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
optgroup->set_value("diameter", double_to_string(m_diameter));
}
void BedShapeDialog::build_dialog(const ConfigOptionPoints& default_pt, const ConfigOptionString& custom_texture, const ConfigOptionString& custom_model)
@ -295,28 +186,16 @@ void BedShapePanel::build_panel(const ConfigOptionPoints& default_pt, const Conf
sbsizer->Add(m_shape_options_book);
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
auto optgroup = init_shape_options_page(BedShape::get_name(Bed3D::EShapeType::Rectangle));
#else
auto optgroup = init_shape_options_page(BedShape::get_name(BedShape::Type::Rectangular));
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
auto optgroup = init_shape_options_page(BedShape::get_name(BedShape::PageType::Rectangle));
BedShape::append_option_line(optgroup, BedShape::Parameter::RectSize);
BedShape::append_option_line(optgroup, BedShape::Parameter::RectOrigin);
activate_options_page(optgroup);
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
optgroup = init_shape_options_page(BedShape::get_name(Bed3D::EShapeType::Circle));
#else
optgroup = init_shape_options_page(BedShape::get_name(BedShape::Type::Circular));
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
optgroup = init_shape_options_page(BedShape::get_name(BedShape::PageType::Circle));
BedShape::append_option_line(optgroup, BedShape::Parameter::Diameter);
activate_options_page(optgroup);
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
optgroup = init_shape_options_page(BedShape::get_name(Bed3D::EShapeType::Custom));
#else
optgroup = init_shape_options_page(BedShape::get_name(BedShape::Type::Custom));
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
optgroup = init_shape_options_page(BedShape::get_name(BedShape::PageType::Custom));
Line line{ "", "" };
line.full_width = 1;
@ -538,8 +417,8 @@ void BedShapePanel::set_shape(const ConfigOptionPoints& points)
{
BedShape shape(points);
m_shape_options_book->SetSelection(shape.get_type());
shape.apply_optgroup_values(m_optgroups[shape.get_type()]);
m_shape_options_book->SetSelection(int(shape.get_page_type()));
shape.apply_optgroup_values(m_optgroups[int(shape.get_page_type())]);
// Copy the polygon to the canvas, make a copy of the array, if custom shape is selected
if (shape.is_custom())
@ -562,17 +441,9 @@ void BedShapePanel::update_shape()
auto page_idx = m_shape_options_book->GetSelection();
auto opt_group = m_optgroups[page_idx];
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
Bed3D::EShapeType page_type = static_cast<Bed3D::EShapeType>(page_idx);
#else
BedShape::Type page_type = static_cast<BedShape::Type>(page_idx);
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
if (page_type == Bed3D::EShapeType::Rectangle) {
#else
if (page_type == BedShape::Type::Rectangular) {
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
switch (static_cast<BedShape::PageType>(page_idx)) {
case BedShape::PageType::Rectangle:
{
Vec2d rect_size(Vec2d::Zero());
Vec2d rect_origin(Vec2d::Zero());
@ -602,12 +473,10 @@ void BedShapePanel::update_shape()
Vec2d(x1, y0),
Vec2d(x1, y1),
Vec2d(x0, y1) };
break;
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
else if (page_type == Bed3D::EShapeType::Circle) {
#else
else if (page_type == BedShape::Type::Circular) {
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
case BedShape::PageType::Circle:
{
double diameter;
try { diameter = boost::any_cast<double>(opt_group->get_value("diameter")); }
catch (const std::exception & /* e */) { return; }
@ -615,6 +484,7 @@ void BedShapePanel::update_shape()
if (diameter == 0.0) return ;
auto r = diameter / 2;
auto twopi = 2 * PI;
// Don't change this value without adjusting BuildVolume constructor detecting circle diameter!
auto edges = 72;
std::vector<Vec2d> points;
for (int i = 1; i <= edges; ++i) {
@ -622,13 +492,12 @@ void BedShapePanel::update_shape()
points.push_back(Vec2d(r*cos(angle), r*sin(angle)));
}
m_shape = points;
break;
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
else if (page_type == Bed3D::EShapeType::Custom)
#else
else if (page_type == BedShape::Type::Custom)
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
case BedShape::PageType::Custom:
m_shape = m_loaded_shape;
break;
}
update_preview();
}

View File

@ -5,11 +5,10 @@
#include "GUI_Utils.hpp"
#include "2DBed.hpp"
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
#include "3DBed.hpp"
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
#include "I18N.hpp"
#include <libslic3r/BuildVolume.hpp>
#include <wx/dialog.h>
#include <wx/choicebk.h>
@ -22,14 +21,11 @@ using ConfigOptionsGroupShp = std::shared_ptr<ConfigOptionsGroup>;
struct BedShape
{
#if !ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
enum class Type {
Rectangular = 0,
Circular,
Custom,
Invalid
enum class PageType {
Rectangle,
Circle,
Custom
};
#endif // !ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
enum class Parameter {
RectSize,
@ -39,34 +35,18 @@ struct BedShape
BedShape(const ConfigOptionPoints& points);
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
bool is_custom() { return m_type == Bed3D::EShapeType::Custom; }
#else
bool is_custom() { return m_type == Type::Custom; }
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
bool is_custom() { return m_build_volume.type() == BuildVolume::Type::Convex || m_build_volume.type() == BuildVolume::Type::Custom; }
static void append_option_line(ConfigOptionsGroupShp optgroup, Parameter param);
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
static wxString get_name(Bed3D::EShapeType type);
#else
static wxString get_name(Type type);
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
static wxString get_name(PageType type);
// convert Type to size_t
size_t get_type();
PageType get_page_type();
wxString get_full_name_with_params();
void apply_optgroup_values(ConfigOptionsGroupShp optgroup);
private:
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
Bed3D::EShapeType m_type{ Bed3D::EShapeType::Invalid };
#else
Type m_type {Type::Invalid};
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
Vec2d m_rectSize {200, 200};
Vec2d m_rectOrigin {0, 0};
double m_diameter {0};
BuildVolume m_build_volume;
};
class BedShapePanel : public wxPanel

View File

@ -1,6 +1,7 @@
#include "libslic3r/libslic3r.h"
#include "GCodeViewer.hpp"
#include "libslic3r/BuildVolume.hpp"
#include "libslic3r/Print.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Model.hpp"
@ -20,9 +21,6 @@
#include "GLToolbar.hpp"
#include "GUI_Preview.hpp"
#include "GUI_ObjectManipulation.hpp"
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
#include "3DBed.hpp"
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
#include <imgui/imgui_internal.h>
@ -123,7 +121,7 @@ void GCodeViewer::IBuffer::reset()
count = 0;
}
bool GCodeViewer::Path::matches(const GCodeProcessor::MoveVertex& move) const
bool GCodeViewer::Path::matches(const GCodeProcessorResult::MoveVertex& move) const
{
auto matches_percent = [](float value1, float value2, float max_percent) {
return std::abs(value2 - value1) / value1 <= max_percent;
@ -174,7 +172,7 @@ void GCodeViewer::TBuffer::reset()
#endif // ENABLE_SEAMS_USING_MODELS
}
void GCodeViewer::TBuffer::add_path(const GCodeProcessor::MoveVertex& move, unsigned int b_id, size_t i_id, size_t s_id)
void GCodeViewer::TBuffer::add_path(const GCodeProcessorResult::MoveVertex& move, unsigned int b_id, size_t i_id, size_t s_id)
{
Path::Endpoint endpoint = { b_id, i_id, s_id, move.position };
// use rounding to reduce the number of generated paths
@ -665,7 +663,7 @@ void GCodeViewer::init()
}
#endif // ENABLE_SEAMS_USING_MODELS
void GCodeViewer::load(const GCodeProcessor::Result& gcode_result, const Print& print, bool initialized)
void GCodeViewer::load(const GCodeProcessorResult& gcode_result, const Print& print, bool initialized)
{
// avoid processing if called with the same gcode_result
if (m_last_result_id == gcode_result.id)
@ -737,7 +735,7 @@ void GCodeViewer::load(const GCodeProcessor::Result& gcode_result, const Print&
{ min.x(), max.y() } };
}
wxGetApp().plater()->set_bed_shape(bed_shape, texture, model, gcode_result.bed_shape.empty());
wxGetApp().plater()->set_bed_shape(bed_shape, gcode_result.max_print_height, texture, model, gcode_result.bed_shape.empty());
}
m_print_statistics = gcode_result.print_statistics;
@ -750,7 +748,7 @@ void GCodeViewer::load(const GCodeProcessor::Result& gcode_result, const Print&
}
}
void GCodeViewer::refresh(const GCodeProcessor::Result& gcode_result, const std::vector<std::string>& str_tool_colors)
void GCodeViewer::refresh(const GCodeProcessorResult& gcode_result, const std::vector<std::string>& str_tool_colors)
{
#if ENABLE_GCODE_VIEWER_STATISTICS
auto start_time = std::chrono::high_resolution_clock::now();
@ -779,7 +777,7 @@ void GCodeViewer::refresh(const GCodeProcessor::Result& gcode_result, const std:
if (i == 0)
continue;
const GCodeProcessor::MoveVertex& curr = gcode_result.moves[i];
const GCodeProcessorResult::MoveVertex& curr = gcode_result.moves[i];
switch (curr.type)
{
@ -1210,7 +1208,7 @@ void GCodeViewer::export_toolpaths_to_obj(const char* filename) const
fclose(fp);
}
void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
void GCodeViewer::load_toolpaths(const GCodeProcessorResult& gcode_result)
{
// max index buffer size, in bytes
static const size_t IBUFFER_THRESHOLD_BYTES = 64 * 1024 * 1024;
@ -1232,23 +1230,23 @@ void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
};
// format data into the buffers to be rendered as points
auto add_vertices_as_point = [](const GCodeProcessor::MoveVertex& curr, VertexBuffer& vertices) {
auto add_vertices_as_point = [](const GCodeProcessorResult::MoveVertex& curr, VertexBuffer& vertices) {
vertices.push_back(curr.position.x());
vertices.push_back(curr.position.y());
vertices.push_back(curr.position.z());
};
auto add_indices_as_point = [](const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
auto add_indices_as_point = [](const GCodeProcessorResult::MoveVertex& curr, TBuffer& buffer,
unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
buffer.add_path(curr, ibuffer_id, indices.size(), move_id);
indices.push_back(static_cast<IBufferType>(indices.size()));
};
// format data into the buffers to be rendered as lines
auto add_vertices_as_line = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, VertexBuffer& vertices) {
auto add_vertices_as_line = [](const GCodeProcessorResult::MoveVertex& prev, const GCodeProcessorResult::MoveVertex& curr, VertexBuffer& vertices) {
// x component of the normal to the current segment (the normal is parallel to the XY plane)
const float normal_x = (curr.position - prev.position).normalized().y();
auto add_vertex = [&vertices, normal_x](const GCodeProcessor::MoveVertex& vertex) {
auto add_vertex = [&vertices, normal_x](const GCodeProcessorResult::MoveVertex& vertex) {
// add position
vertices.push_back(vertex.position.x());
vertices.push_back(vertex.position.y());
@ -1262,7 +1260,7 @@ void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
// add current vertex
add_vertex(curr);
};
auto add_indices_as_line = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, TBuffer& buffer,
auto add_indices_as_line = [](const GCodeProcessorResult::MoveVertex& prev, const GCodeProcessorResult::MoveVertex& curr, TBuffer& buffer,
unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
if (buffer.paths.empty() || prev.type != curr.type || !buffer.paths.back().matches(curr)) {
// add starting index
@ -1283,7 +1281,7 @@ void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
};
// format data into the buffers to be rendered as solid
auto add_vertices_as_solid = [](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, TBuffer& buffer, unsigned int vbuffer_id, VertexBuffer& vertices, size_t move_id) {
auto add_vertices_as_solid = [](const GCodeProcessorResult::MoveVertex& prev, const GCodeProcessorResult::MoveVertex& curr, TBuffer& buffer, unsigned int vbuffer_id, VertexBuffer& vertices, size_t move_id) {
auto store_vertex = [](VertexBuffer& vertices, const Vec3f& position, const Vec3f& normal) {
// append position
vertices.push_back(position.x());
@ -1340,7 +1338,7 @@ void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
last_path.sub_paths.back().last = { vbuffer_id, vertices.size(), move_id, curr.position };
};
auto add_indices_as_solid = [&](const GCodeProcessor::MoveVertex& prev, const GCodeProcessor::MoveVertex& curr, const GCodeProcessor::MoveVertex* next,
auto add_indices_as_solid = [&](const GCodeProcessorResult::MoveVertex& prev, const GCodeProcessorResult::MoveVertex& curr, const GCodeProcessorResult::MoveVertex* next,
TBuffer& buffer, size_t& vbuffer_size, unsigned int ibuffer_id, IndexBuffer& indices, size_t move_id) {
static Vec3f prev_dir;
static Vec3f prev_up;
@ -1482,7 +1480,7 @@ void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
#if ENABLE_SEAMS_USING_MODELS
// format data into the buffers to be rendered as instanced model
auto add_model_instance = [](const GCodeProcessor::MoveVertex& curr, InstanceBuffer& instances, InstanceIdBuffer& instances_ids, size_t move_id) {
auto add_model_instance = [](const GCodeProcessorResult::MoveVertex& curr, InstanceBuffer& instances, InstanceIdBuffer& instances_ids, size_t move_id) {
// append position
instances.push_back(curr.position.x());
instances.push_back(curr.position.y());
@ -1498,7 +1496,7 @@ void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
#if ENABLE_SEAMS_USING_BATCHED_MODELS
// format data into the buffers to be rendered as batched model
auto add_vertices_as_model_batch = [](const GCodeProcessor::MoveVertex& curr, const GLModel::InitializationData& data, VertexBuffer& vertices, InstanceBuffer& instances, InstanceIdBuffer& instances_ids, size_t move_id) {
auto add_vertices_as_model_batch = [](const GCodeProcessorResult::MoveVertex& curr, const GLModel::InitializationData& data, VertexBuffer& vertices, InstanceBuffer& instances, InstanceIdBuffer& instances_ids, size_t move_id) {
const double width = static_cast<double>(1.5f * curr.width);
const double height = static_cast<double>(1.5f * curr.height);
@ -1542,7 +1540,7 @@ void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
#if ENABLE_GCODE_VIEWER_STATISTICS
auto start_time = std::chrono::high_resolution_clock::now();
m_statistics.results_size = SLIC3R_STDVEC_MEMSIZE(gcode_result.moves, GCodeProcessor::MoveVertex);
m_statistics.results_size = SLIC3R_STDVEC_MEMSIZE(gcode_result.moves, GCodeProcessorResult::MoveVertex);
m_statistics.results_time = gcode_result.time;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
@ -1561,7 +1559,7 @@ void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
wxBusyCursor busy;
// extract approximate paths bounding box from result
for (const GCodeProcessor::MoveVertex& move : gcode_result.moves) {
for (const GCodeProcessorResult::MoveVertex& move : gcode_result.moves) {
if (wxGetApp().is_gcode_viewer())
// for the gcode viewer we need to take in account all moves to correctly size the printbed
m_paths_bounding_box.merge(move.position.cast<double>());
@ -1575,57 +1573,18 @@ void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
m_max_bounding_box = m_paths_bounding_box;
m_max_bounding_box.merge(m_paths_bounding_box.max + m_sequential_view.marker.get_bounding_box().size().z() * Vec3d::UnitZ());
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
if (wxGetApp().is_editor()) {
const Bed3D::EShapeType bed_type = wxGetApp().plater()->get_bed().get_shape_type();
if (bed_type == Bed3D::EShapeType::Rectangle) {
BoundingBoxf3 print_volume = wxGetApp().plater()->get_bed().get_bounding_box(false);
print_volume.min.z() = -1e10;
print_volume.max.z() = m_max_print_height;
print_volume.min -= Vec3f(BedEpsilon, BedEpsilon, 0.0f).cast<double>();
print_volume.max += Vec3f(BedEpsilon, BedEpsilon, 0.0f).cast<double>();
m_contained_in_bed = print_volume.contains(m_paths_bounding_box);
}
else if (bed_type == Bed3D::EShapeType::Circle) {
Vec2d center;
double radius;
Bed3D::is_circle(wxGetApp().plater()->get_bed().get_shape(), &center, &radius);
const double sq_radius = sqr(radius);
for (const GCodeProcessor::MoveVertex& move : gcode_result.moves) {
if (move.type == EMoveType::Extrude && move.extrusion_role != erCustom && move.width != 0.0f && move.height != 0.0f) {
if (sq_radius < (Vec2d(move.position.x(), move.position.y()) - center).squaredNorm()) {
m_contained_in_bed = false;
break;
}
}
}
}
else if (bed_type == Bed3D::EShapeType::Custom) {
const Pointfs& shape = wxGetApp().plater()->get_bed().get_shape();
if (Bed3D::is_convex(shape)) {
const Polygon poly = Polygon::new_scale(shape);
for (const GCodeProcessor::MoveVertex& move : gcode_result.moves) {
if (move.type == EMoveType::Extrude && move.extrusion_role != erCustom && move.width != 0.0f && move.height != 0.0f) {
if (!poly.contains(Point::new_scale(Vec2d(move.position.x(), move.position.y())))) {
m_contained_in_bed = false;
break;
}
}
}
}
}
}
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
if (wxGetApp().is_editor())
m_contained_in_bed = wxGetApp().plater()->build_volume().all_paths_inside(gcode_result, m_paths_bounding_box);
#if ENABLE_FIX_SEAMS_SYNCH
m_sequential_view.gcode_ids.clear();
for (size_t i = 0; i < gcode_result.moves.size(); ++i) {
const GCodeProcessor::MoveVertex& move = gcode_result.moves[i];
const GCodeProcessorResult::MoveVertex& move = gcode_result.moves[i];
if (move.type != EMoveType::Seam)
m_sequential_view.gcode_ids.push_back(move.gcode_id);
}
#else
for (const GCodeProcessor::MoveVertex& move : gcode_result.moves) {
for (const GCodeProcessorResult::MoveVertex& move : gcode_result.moves) {
m_sequential_view.gcode_ids.push_back(move.gcode_id);
}
#endif // ENABLE_FIX_SEAMS_SYNCH
@ -1648,7 +1607,7 @@ void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
// toolpaths data -> extract vertices from result
for (size_t i = 0; i < m_moves_count; ++i) {
const GCodeProcessor::MoveVertex& curr = gcode_result.moves[i];
const GCodeProcessorResult::MoveVertex& curr = gcode_result.moves[i];
#if ENABLE_FIX_SEAMS_SYNCH
if (curr.type == EMoveType::Seam) {
++seams_count;
@ -1662,7 +1621,7 @@ void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
if (i == 0)
continue;
const GCodeProcessor::MoveVertex& prev = gcode_result.moves[i - 1];
const GCodeProcessorResult::MoveVertex& prev = gcode_result.moves[i - 1];
// update progress dialog
++progress_count;
@ -2066,7 +2025,7 @@ void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
#endif // ENABLE_FIX_SEAMS_SYNCH
for (size_t i = 0; i < m_moves_count; ++i) {
const GCodeProcessor::MoveVertex& curr = gcode_result.moves[i];
const GCodeProcessorResult::MoveVertex& curr = gcode_result.moves[i];
#if ENABLE_FIX_SEAMS_SYNCH
if (curr.type == EMoveType::Seam)
++seams_count;
@ -2078,8 +2037,8 @@ void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
if (i == 0)
continue;
const GCodeProcessor::MoveVertex& prev = gcode_result.moves[i - 1];
const GCodeProcessor::MoveVertex* next = nullptr;
const GCodeProcessorResult::MoveVertex& prev = gcode_result.moves[i - 1];
const GCodeProcessorResult::MoveVertex* next = nullptr;
if (i < m_moves_count - 1)
next = &gcode_result.moves[i + 1];
@ -2286,7 +2245,7 @@ void GCodeViewer::load_toolpaths(const GCodeProcessor::Result& gcode_result)
seams_count = 0;
#endif // ENABLE_FIX_SEAMS_SYNCH
for (size_t i = 0; i < m_moves_count; ++i) {
const GCodeProcessor::MoveVertex& move = gcode_result.moves[i];
const GCodeProcessorResult::MoveVertex& move = gcode_result.moves[i];
#if ENABLE_FIX_SEAMS_SYNCH
if (move.type == EMoveType::Seam)
++seams_count;

View File

@ -233,7 +233,7 @@ class GCodeViewer
unsigned char cp_color_id{ 0 };
std::vector<Sub_Path> sub_paths;
bool matches(const GCodeProcessor::MoveVertex& move) const;
bool matches(const GCodeProcessorResult::MoveVertex& move) const;
size_t vertices_count() const {
return sub_paths.empty() ? 0 : sub_paths.back().last.s_id - sub_paths.front().first.s_id + 1;
}
@ -251,7 +251,7 @@ class GCodeViewer
return -1;
}
}
void add_sub_path(const GCodeProcessor::MoveVertex& move, unsigned int b_id, size_t i_id, size_t s_id) {
void add_sub_path(const GCodeProcessorResult::MoveVertex& move, unsigned int b_id, size_t i_id, size_t s_id) {
Endpoint endpoint = { b_id, i_id, s_id, move.position };
sub_paths.push_back({ endpoint , endpoint });
}
@ -361,7 +361,7 @@ class GCodeViewer
// b_id index of buffer contained in this->indices
// i_id index of first index contained in this->indices[b_id]
// s_id index of first vertex contained in this->vertices
void add_path(const GCodeProcessor::MoveVertex& move, unsigned int b_id, size_t i_id, size_t s_id);
void add_path(const GCodeProcessorResult::MoveVertex& move, unsigned int b_id, size_t i_id, size_t s_id);
unsigned int max_vertices_per_segment() const {
switch (render_primitive_type)
@ -802,7 +802,7 @@ private:
Statistics m_statistics;
#endif // ENABLE_GCODE_VIEWER_STATISTICS
std::array<float, 2> m_detected_point_sizes = { 0.0f, 0.0f };
GCodeProcessor::Result::SettingsIds m_settings_ids;
GCodeProcessorResult::SettingsIds m_settings_ids;
std::array<SequentialRangeCap, 2> m_sequential_range_caps;
std::vector<CustomGCode::Item> m_custom_gcode_per_print_z;
@ -820,9 +820,9 @@ public:
#endif // ENABLE_SEAMS_USING_MODELS
// extract rendering data from the given parameters
void load(const GCodeProcessor::Result& gcode_result, const Print& print, bool initialized);
void load(const GCodeProcessorResult& gcode_result, const Print& print, bool initialized);
// recalculate ranges in dependence of what is visible and sets tool/print colors
void refresh(const GCodeProcessor::Result& gcode_result, const std::vector<std::string>& str_tool_colors);
void refresh(const GCodeProcessorResult& gcode_result, const std::vector<std::string>& str_tool_colors);
void refresh_render_paths();
void update_shells_color_by_extruder(const DynamicPrintConfig* config);
@ -870,7 +870,7 @@ public:
size_t get_extruders_count() { return m_extruders_count; }
private:
void load_toolpaths(const GCodeProcessor::Result& gcode_result);
void load_toolpaths(const GCodeProcessorResult& gcode_result);
void load_shells(const Print& print, bool initialized);
void refresh_render_paths(bool keep_sequential_current_first, bool keep_sequential_current_last) const;
void render_toolpaths();

View File

@ -3,16 +3,18 @@
#include <igl/unproject.h>
#include "libslic3r/BuildVolume.hpp"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/PrintConfig.hpp"
#include "libslic3r/GCode/ThumbnailData.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"
#include "libslic3r/ExtrusionEntity.hpp"
#include "libslic3r/Layer.hpp"
#include "libslic3r/Utils.hpp"
#include "libslic3r/Technologies.hpp"
#include "libslic3r/Tesselate.hpp"
#include "libslic3r/PresetBundle.hpp"
#include "slic3r/GUI/3DBed.hpp"
#include "slic3r/GUI/3DScene.hpp"
#include "slic3r/GUI/BackgroundSlicingProcess.hpp"
#include "slic3r/GUI/GLShader.hpp"
@ -20,7 +22,6 @@
#include "slic3r/GUI/Tab.hpp"
#include "slic3r/GUI/GUI_Preview.hpp"
#include "slic3r/GUI/OpenGLManager.hpp"
#include "slic3r/GUI/3DBed.hpp"
#include "slic3r/GUI/Plater.hpp"
#include "slic3r/GUI/MainFrame.hpp"
#include "slic3r/Utils/UndoRedo.hpp"
@ -957,9 +958,10 @@ PrinterTechnology GLCanvas3D::current_printer_technology() const
return m_process->current_printer_technology();
}
GLCanvas3D::GLCanvas3D(wxGLCanvas* canvas)
GLCanvas3D::GLCanvas3D(wxGLCanvas* canvas, Bed3D &bed)
: m_canvas(canvas)
, m_context(nullptr)
, m_bed(bed)
#if ENABLE_RETINA_GL
, m_retina_helper(nullptr)
#endif
@ -1115,18 +1117,10 @@ void GLCanvas3D::reset_volumes()
_set_warning_notification(EWarning::ObjectOutside, false);
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
ModelInstanceEPrintVolumeState GLCanvas3D::check_volumes_outside_state(bool as_toolpaths) const
#else
ModelInstanceEPrintVolumeState GLCanvas3D::check_volumes_outside_state() const
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
{
ModelInstanceEPrintVolumeState state;
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
m_volumes.check_outside_state(m_config, &state, as_toolpaths);
#else
m_volumes.check_outside_state(m_config, &state);
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
m_volumes.check_outside_state(m_bed.build_volume(), &state);
return state;
}
@ -1250,13 +1244,11 @@ BoundingBoxf3 GLCanvas3D::volumes_bounding_box() const
BoundingBoxf3 GLCanvas3D::scene_bounding_box() const
{
BoundingBoxf3 bb = volumes_bounding_box();
bb.merge(wxGetApp().plater()->get_bed().get_bounding_box(true));
if (m_config != nullptr) {
double h = m_config->opt_float("max_print_height");
bb.min(2) = std::min(bb.min(2), -h);
bb.max(2) = std::max(bb.max(2), h);
}
bb.merge(m_bed.extended_bounding_box());
double h = m_bed.build_volume().max_print_height();
//FIXME why -h?
bb.min.z() = std::min(bb.min.z(), -h);
bb.max.z() = std::max(bb.max.z(), h);
return bb;
}
@ -1362,7 +1354,7 @@ void GLCanvas3D::allow_multisample(bool allow)
void GLCanvas3D::zoom_to_bed()
{
_zoom_to_box(wxGetApp().plater()->get_bed().get_bounding_box(false));
_zoom_to_box(m_bed.build_volume().bounding_volume());
}
void GLCanvas3D::zoom_to_volumes()
@ -1423,7 +1415,7 @@ void GLCanvas3D::render()
m_gcode_viewer.init();
#endif // ENABLE_SEAMS_USING_MODELS
if (wxGetApp().plater()->get_bed().get_shape().empty()) {
if (! m_bed.build_volume().valid()) {
// this happens at startup when no data is still saved under <>\AppData\Roaming\Slic3rPE
post_event(SimpleEvent(EVT_GLCANVAS_UPDATE_BED_SHAPE));
return;
@ -2057,7 +2049,7 @@ void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_re
// checks for geometry outside the print volume to render it accordingly
if (!m_volumes.empty()) {
ModelInstanceEPrintVolumeState state;
const bool contained_min_one = m_volumes.check_outside_state(m_config, &state);
const bool contained_min_one = m_volumes.check_outside_state(m_bed.build_volume(), &state);
const bool partlyOut = (state == ModelInstanceEPrintVolumeState::ModelInstancePVS_Partly_Outside);
const bool fullyOut = (state == ModelInstanceEPrintVolumeState::ModelInstancePVS_Fully_Outside);
@ -2109,7 +2101,7 @@ static void reserve_new_volume_finalize_old_volume(GLVolume& vol_new, GLVolume&
vol_old.finalize_geometry(gl_initialized);
}
void GLCanvas3D::load_gcode_preview(const GCodeProcessor::Result& gcode_result, const std::vector<std::string>& str_tool_colors)
void GLCanvas3D::load_gcode_preview(const GCodeProcessorResult& gcode_result, const std::vector<std::string>& str_tool_colors)
{
m_gcode_viewer.load(gcode_result, *this->fff_print(), m_initialized);
@ -2138,10 +2130,6 @@ void GLCanvas3D::load_sla_preview()
// Release OpenGL data before generating new data.
reset_volumes();
_load_sla_shells();
#if !ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
const BoundingBoxf3& bed_bb = wxGetApp().plater()->get_bed().get_bounding_box(false);
m_volumes.set_print_box(float(bed_bb.min.x()) - BedEpsilon, float(bed_bb.min.y()) - BedEpsilon, 0.0f, float(bed_bb.max.x()) + BedEpsilon, float(bed_bb.max.y()) + BedEpsilon, (float)m_config->opt_float("max_print_height"));
#endif // !ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
_update_sla_shells_outside_state();
_set_warning_notification_if_needed(EWarning::SlaSupportsOutside);
}
@ -2158,20 +2146,12 @@ void GLCanvas3D::load_preview(const std::vector<std::string>& str_tool_colors, c
// Release OpenGL data before generating new data.
this->reset_volumes();
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
bool requires_convex_hulls = wxGetApp().plater()->get_bed().get_shape_type() != Bed3D::EShapeType::Rectangle;
_load_print_toolpaths(requires_convex_hulls);
_load_wipe_tower_toolpaths(str_tool_colors, requires_convex_hulls);
const BuildVolume &build_volume = m_bed.build_volume();
_load_print_toolpaths(build_volume);
_load_wipe_tower_toolpaths(build_volume, str_tool_colors);
for (const PrintObject* object : print->objects())
_load_print_object_toolpaths(*object, str_tool_colors, color_print_values, requires_convex_hulls);
#else
_load_print_toolpaths();
_load_wipe_tower_toolpaths(str_tool_colors);
for (const PrintObject* object : print->objects())
_load_print_object_toolpaths(*object, str_tool_colors, color_print_values);
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
_load_print_object_toolpaths(*object, build_volume, str_tool_colors, color_print_values);
_update_toolpath_volumes_outside_state();
_set_warning_notification_if_needed(EWarning::ToolpathOutside);
}
@ -3770,7 +3750,7 @@ Linef3 GLCanvas3D::mouse_ray(const Point& mouse_pos)
double GLCanvas3D::get_size_proportional_to_max_bed_size(double factor) const
{
return factor * wxGetApp().plater()->get_bed().get_bounding_box(false).max_size();
return factor * m_bed.build_volume().bounding_volume().max_size();
}
void GLCanvas3D::set_cursor(ECursorType type)
@ -4161,7 +4141,7 @@ void GLCanvas3D::_render_thumbnail_internal(ThumbnailData& thumbnail_data, const
}
else
// This happens for empty projects
volumes_box = wxGetApp().plater()->get_bed().get_bounding_box(true);
volumes_box = m_bed.extended_bounding_box();
#endif // ENABLE_SAVE_COMMANDS_ALWAYS_ENABLED
Camera camera;
@ -4178,7 +4158,7 @@ void GLCanvas3D::_render_thumbnail_internal(ThumbnailData& thumbnail_data, const
// extends the near and far z of the frustrum to avoid the bed being clipped
// box in eye space
BoundingBoxf3 t_bed_box = wxGetApp().plater()->get_bed().get_bounding_box(true).transformed(camera.get_view_matrix());
BoundingBoxf3 t_bed_box = m_bed.extended_bounding_box().transformed(camera.get_view_matrix());
near_z = -t_bed_box.max.z();
far_z = -t_bed_box.min.z();
}
@ -4861,7 +4841,7 @@ BoundingBoxf3 GLCanvas3D::_max_bounding_box(bool include_gizmos, bool include_be
bb.merge(BoundingBoxf3(sel_bb_center - extend_by, sel_bb_center + extend_by));
}
bb.merge(wxGetApp().plater()->get_bed().get_bounding_box(include_bed_model));
bb.merge(include_bed_model ? m_bed.extended_bounding_box() : m_bed.build_volume().bounding_volume());
if (!m_main_toolbar.is_enabled())
bb.merge(m_gcode_viewer.get_max_bounding_box());
@ -5035,25 +5015,6 @@ void GLCanvas3D::_rectangular_selection_picking_pass()
_update_volumes_hover_state();
}
#if !ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
static BoundingBoxf3 print_volume(const DynamicPrintConfig& config)
{
// tolerance to avoid false detection at bed edges
const double tolerance_x = 0.05;
const double tolerance_y = 0.05;
BoundingBoxf3 ret;
const ConfigOptionPoints* opt = dynamic_cast<const ConfigOptionPoints*>(config.option("bed_shape"));
if (opt != nullptr) {
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values));
ret = BoundingBoxf3(Vec3d(unscale<double>(bed_box_2D.min(0)) - tolerance_x, unscale<double>(bed_box_2D.min(1)) - tolerance_y, 0.0), Vec3d(unscale<double>(bed_box_2D.max(0)) + tolerance_x, unscale<double>(bed_box_2D.max(1)) + tolerance_y, config.opt_float("max_print_height")));
// Allow the objects to protrude below the print bed
ret.min(2) = -1e10;
}
return ret;
}
#endif // !ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
void GLCanvas3D::_render_background() const
{
bool use_error_color = false;
@ -5064,15 +5025,7 @@ void GLCanvas3D::_render_background() const
if (!m_volumes.empty())
use_error_color &= _is_any_volume_outside();
else
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
use_error_color &= m_gcode_viewer.has_data() && !m_gcode_viewer.is_contained_in_bed();
#else
{
const BoundingBoxf3 test_volume = (m_config != nullptr) ? print_volume(*m_config) : BoundingBoxf3();
const BoundingBoxf3& paths_volume = m_gcode_viewer.get_paths_bounding_box();
use_error_color &= (test_volume.radius() > 0.0 && paths_volume.radius() > 0.0) ? !test_volume.contains(paths_volume) : false;
}
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
}
glsafe(::glPushMatrix());
@ -5123,7 +5076,7 @@ void GLCanvas3D::_render_bed(bool bottom, bool show_axes)
&& m_gizmos.get_current_type() != GLGizmosManager::Seam
&& m_gizmos.get_current_type() != GLGizmosManager::MmuSegmentation);
wxGetApp().plater()->get_bed().render(*this, bottom, scale_factor, show_axes, show_texture);
m_bed.render(*this, bottom, scale_factor, show_axes, show_texture);
}
void GLCanvas3D::_render_bed_for_picking(bool bottom)
@ -5133,7 +5086,7 @@ void GLCanvas3D::_render_bed_for_picking(bool bottom)
scale_factor = m_retina_helper->get_scale_factor();
#endif // ENABLE_RETINA_GL
wxGetApp().plater()->get_bed().render_for_picking(*this, bottom, scale_factor);
m_bed.render_for_picking(*this, bottom, scale_factor);
}
void GLCanvas3D::_render_objects(GLVolumeCollection::ERenderType type)
@ -5148,55 +5101,35 @@ void GLCanvas3D::_render_objects(GLVolumeCollection::ERenderType type)
if (m_picking_enabled) {
// Update the layer editing selection to the first object selected, update the current object maximum Z.
m_layers_editing.select_object(*m_model, this->is_layers_editing_enabled() ? m_selection.get_object_idx() : -1);
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
}
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
if (m_config != nullptr) {
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
Bed3D::EShapeType type = wxGetApp().plater()->get_bed().get_shape_type();
switch (type)
{
case Bed3D::EShapeType::Circle: {
Vec2d center;
double radius;
if (Bed3D::is_circle(wxGetApp().plater()->get_bed().get_shape(), &center, &radius)) {
m_volumes.set_print_volume({ static_cast<int>(type),
{ float(center.x()), float(center.y()), float(radius) + BedEpsilon, 0.0f },
{ 0.0f, float(m_config->opt_float("max_print_height")) } });
}
if (const BuildVolume &build_volume = m_bed.build_volume(); build_volume.valid()) {
switch (build_volume.type()) {
case BuildVolume::Type::Rectangle: {
const BoundingBox3Base<Vec3d> bed_bb = build_volume.bounding_volume().inflated(BuildVolume::SceneEpsilon);
m_volumes.set_print_volume({ 0, // circle
{ float(bed_bb.min.x()), float(bed_bb.min.y()), float(bed_bb.max.x()), float(bed_bb.max.y()) },
{ 0.0f, float(build_volume.max_print_height()) } });
break;
}
case Bed3D::EShapeType::Rectangle: {
const BoundingBoxf3& bed_bb = wxGetApp().plater()->get_bed().get_bounding_box(false);
m_volumes.set_print_volume({ static_cast<int>(type),
{ float(bed_bb.min.x()) - BedEpsilon, float(bed_bb.min.y()) - BedEpsilon, float(bed_bb.max.x()) + BedEpsilon, float(bed_bb.max.y()) + BedEpsilon },
{ 0.0f, float(m_config->opt_float("max_print_height")) } });
case BuildVolume::Type::Circle: {
m_volumes.set_print_volume({ 1, // rectangle
{ unscaled<float>(build_volume.circle().center.x()), unscaled<float>(build_volume.circle().center.y()), unscaled<float>(build_volume.circle().radius + BuildVolume::SceneEpsilon), 0.0f },
{ 0.0f, float(build_volume.max_print_height() + BuildVolume::SceneEpsilon) } });
break;
}
default:
case Bed3D::EShapeType::Custom: {
case BuildVolume::Type::Custom: {
m_volumes.set_print_volume({ static_cast<int>(type),
{ 0.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f } });
}
}
#else
const BoundingBoxf3& bed_bb = wxGetApp().plater()->get_bed().get_bounding_box(false);
m_volumes.set_print_box((float)bed_bb.min.x() - BedEpsilon, (float)bed_bb.min.y() - BedEpsilon, 0.0f, (float)bed_bb.max.x() + BedEpsilon, (float)bed_bb.max.y() + BedEpsilon, (float)m_config->opt_float("max_print_height"));
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
if (m_requires_check_outside_state) {
m_volumes.check_outside_state(m_config, nullptr);
m_volumes.check_outside_state(build_volume, nullptr);
m_requires_check_outside_state = false;
}
#else
m_volumes.check_outside_state(m_config, nullptr);
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
}
#if !ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
}
#endif // !ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
if (m_use_clipping_planes)
m_volumes.set_z_range(-m_clipping_planes[0].get_data()[3], m_clipping_planes[1].get_data()[3]);
@ -5206,11 +5139,7 @@ void GLCanvas3D::_render_objects(GLVolumeCollection::ERenderType type)
m_volumes.set_clipping_plane(m_camera_clipping_plane.get_data());
m_volumes.set_show_sinking_contours(! m_gizmos.is_hiding_instances());
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
GLShaderProgram* shader = wxGetApp().get_shader("gouraud_mod");
#else
GLShaderProgram* shader = wxGetApp().get_shader("gouraud");
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
if (shader != nullptr) {
shader->start_using();
@ -5832,11 +5761,7 @@ void GLCanvas3D::_stop_timer()
m_timer.Stop();
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
void GLCanvas3D::_load_print_toolpaths(bool generate_convex_hulls)
#else
void GLCanvas3D::_load_print_toolpaths()
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
void GLCanvas3D::_load_print_toolpaths(const BuildVolume &build_volume)
{
const Print *print = this->fff_print();
if (print == nullptr)
@ -5889,18 +5814,11 @@ void GLCanvas3D::_load_print_toolpaths()
reserve_new_volume_finalize_old_volume(*volume, vol, m_initialized);
}
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
if (generate_convex_hulls)
volume->calc_convex_hull_3d();
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
volume->is_outside = ! build_volume.all_paths_inside_vertices_and_normals_interleaved(volume->indexed_vertex_array.vertices_and_normals_interleaved, volume->indexed_vertex_array.bounding_box());
volume->indexed_vertex_array.finalize_geometry(m_initialized);
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, const std::vector<std::string>& str_tool_colors, const std::vector<CustomGCode::Item>& color_print_values, bool generate_convex_hulls)
#else
void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, const std::vector<std::string>& str_tool_colors, const std::vector<CustomGCode::Item>& color_print_values)
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, const BuildVolume& build_volume, const std::vector<std::string>& str_tool_colors, const std::vector<CustomGCode::Item>& color_print_values)
{
std::vector<std::array<float, 4>> tool_colors = _parse_colors(str_tool_colors);
@ -6187,26 +6105,16 @@ void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, c
std::remove_if(m_volumes.volumes.begin() + volumes_cnt_initial, m_volumes.volumes.end(),
[](const GLVolume *volume) { return volume->empty(); }),
m_volumes.volumes.end());
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i) {
GLVolume* v = m_volumes.volumes[i];
if (generate_convex_hulls)
v->calc_convex_hull_3d();
v->is_outside = ! build_volume.all_paths_inside_vertices_and_normals_interleaved(v->indexed_vertex_array.vertices_and_normals_interleaved, v->indexed_vertex_array.bounding_box());
v->indexed_vertex_array.finalize_geometry(m_initialized);
}
#else
for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i)
m_volumes.volumes[i]->indexed_vertex_array.finalize_geometry(m_initialized);
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - end" << m_volumes.log_memory_info() << log_memory_info();
}
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
void GLCanvas3D::_load_wipe_tower_toolpaths(const std::vector<std::string>& str_tool_colors, bool generate_convex_hulls)
#else
void GLCanvas3D::_load_wipe_tower_toolpaths(const std::vector<std::string>& str_tool_colors)
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
void GLCanvas3D::_load_wipe_tower_toolpaths(const BuildVolume& build_volume, const std::vector<std::string>& str_tool_colors)
{
const Print *print = this->fff_print();
if (print == nullptr || print->wipe_tower_data().tool_changes.empty())
@ -6357,17 +6265,11 @@ void GLCanvas3D::_load_wipe_tower_toolpaths(const std::vector<std::string>& str_
std::remove_if(m_volumes.volumes.begin() + volumes_cnt_initial, m_volumes.volumes.end(),
[](const GLVolume *volume) { return volume->empty(); }),
m_volumes.volumes.end());
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i) {
GLVolume* v = m_volumes.volumes[i];
if (generate_convex_hulls)
v->calc_convex_hull_3d();
v->is_outside = ! build_volume.all_paths_inside_vertices_and_normals_interleaved(v->indexed_vertex_array.vertices_and_normals_interleaved, v->indexed_vertex_array.bounding_box());
v->indexed_vertex_array.finalize_geometry(m_initialized);
}
#else
for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i)
m_volumes.volumes[i]->indexed_vertex_array.finalize_geometry(m_initialized);
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - end" << m_volumes.log_memory_info() << log_memory_info();
}
@ -6427,28 +6329,9 @@ void GLCanvas3D::_load_sla_shells()
update_volumes_colors_by_extruder();
}
void GLCanvas3D::_update_toolpath_volumes_outside_state()
{
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
check_volumes_outside_state(true);
#else
BoundingBoxf3 test_volume = (m_config != nullptr) ? print_volume(*m_config) : BoundingBoxf3();
for (GLVolume* volume : m_volumes.volumes) {
volume->is_outside = (test_volume.radius() > 0.0 && volume->is_extrusion_path) ? !test_volume.contains(volume->bounding_box()) : false;
}
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
}
void GLCanvas3D::_update_sla_shells_outside_state()
{
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
check_volumes_outside_state();
#else
BoundingBoxf3 test_volume = (m_config != nullptr) ? print_volume(*m_config) : BoundingBoxf3();
for (GLVolume* volume : m_volumes.volumes) {
volume->is_outside = (test_volume.radius() > 0.0 && volume->shader_outside_printer_detection_enabled) ? !test_volume.contains(volume->transformed_convex_hull_bounding_box()) : false;
}
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
}
void GLCanvas3D::_set_warning_notification_if_needed(EWarning warning)

View File

@ -39,6 +39,7 @@ class wxGLContext;
namespace Slic3r {
class BackgroundSlicingProcess;
class BuildVolume;
struct ThumbnailData;
struct ThumbnailsParams;
class ModelObject;
@ -50,6 +51,8 @@ namespace CustomGCode { struct Item; }
namespace GUI {
class Bed3D;
#if ENABLE_RETINA_GL
class RetinaHelper;
#endif
@ -446,6 +449,7 @@ public:
private:
wxGLCanvas* m_canvas;
wxGLContext* m_context;
Bed3D &m_bed;
#if ENABLE_RETINA_GL
std::unique_ptr<RetinaHelper> m_retina_helper;
#endif
@ -600,7 +604,7 @@ private:
m_gizmo_highlighter;
public:
explicit GLCanvas3D(wxGLCanvas* canvas);
explicit GLCanvas3D(wxGLCanvas* canvas, Bed3D &bed);
~GLCanvas3D();
bool is_initialized() const { return m_initialized; }
@ -621,11 +625,7 @@ public:
unsigned int get_volumes_count() const;
const GLVolumeCollection& get_volumes() const { return m_volumes; }
void reset_volumes();
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
ModelInstanceEPrintVolumeState check_volumes_outside_state(bool as_toolpaths = false) const;
#else
ModelInstanceEPrintVolumeState check_volumes_outside_state() const;
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
#if ENABLE_SEAMS_USING_MODELS
void init_gcode_viewer() { m_gcode_viewer.init(); }
@ -736,7 +736,7 @@ public:
void reload_scene(bool refresh_immediately, bool force_full_scene_refresh = false);
void load_gcode_preview(const GCodeProcessor::Result& gcode_result, const std::vector<std::string>& str_tool_colors);
void load_gcode_preview(const GCodeProcessorResult& gcode_result, const std::vector<std::string>& str_tool_colors);
void refresh_gcode_preview_render_paths();
void set_gcode_view_preview_type(GCodeViewer::EViewType type) { return m_gcode_viewer.set_view_type(type); }
GCodeViewer::EViewType get_gcode_view_preview_type() const { return m_gcode_viewer.get_view_type(); }
@ -955,33 +955,19 @@ private:
void _start_timer();
void _stop_timer();
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// Create 3D thick extrusion lines for a skirt and brim.
// Adds a new Slic3r::GUI::3DScene::Volume to volumes.
void _load_print_toolpaths(bool generate_convex_hulls = false);
// Adds a new Slic3r::GUI::3DScene::Volume to volumes, updates collision with the build_volume.
void _load_print_toolpaths(const BuildVolume &build_volume);
// Create 3D thick extrusion lines for object forming extrusions.
// Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes,
// one for perimeters, one for infill and one for supports.
void _load_print_object_toolpaths(const PrintObject& print_object, const std::vector<std::string>& str_tool_colors,
const std::vector<CustomGCode::Item>& color_print_values, bool generate_convex_hulls = false);
// Create 3D thick extrusion lines for wipe tower extrusions
void _load_wipe_tower_toolpaths(const std::vector<std::string>& str_tool_colors, bool generate_convex_hulls = false);
#else
// Create 3D thick extrusion lines for a skirt and brim.
// Adds a new Slic3r::GUI::3DScene::Volume to volumes.
void _load_print_toolpaths();
// Create 3D thick extrusion lines for object forming extrusions.
// Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes,
// one for perimeters, one for infill and one for supports.
void _load_print_object_toolpaths(const PrintObject& print_object, const std::vector<std::string>& str_tool_colors,
const std::vector<CustomGCode::Item>& color_print_values);
// Create 3D thick extrusion lines for wipe tower extrusions
void _load_wipe_tower_toolpaths(const std::vector<std::string>& str_tool_colors);
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
// one for perimeters, one for infill and one for supports, updates collision with the build_volume.
void _load_print_object_toolpaths(const PrintObject& print_object, const BuildVolume &build_volume,
const std::vector<std::string>& str_tool_colors, const std::vector<CustomGCode::Item>& color_print_values);
// Create 3D thick extrusion lines for wipe tower extrusions, updates collision with the build_volume.
void _load_wipe_tower_toolpaths(const BuildVolume &build_volume, const std::vector<std::string>& str_tool_colors);
// Load SLA objects and support structures for objects, for which the slaposSliceSupports step has been finished.
void _load_sla_shells();
void _update_toolpath_volumes_outside_state();
void _update_sla_shells_outside_state();
void _set_warning_notification_if_needed(EWarning warning);

View File

@ -2652,6 +2652,11 @@ Plater* GUI_App::plater()
return plater_;
}
const Plater* GUI_App::plater() const
{
return plater_;
}
Model& GUI_App::model()
{
return plater_->model();

View File

@ -281,6 +281,7 @@ public:
ObjectList* obj_list();
ObjectLayers* obj_layers();
Plater* plater();
const Plater* plater() const;
Model& model();
NotificationManager * notification_manager();

View File

@ -1758,12 +1758,9 @@ void ObjectList::load_mesh_object(const TriangleMesh &mesh, const wxString &name
new_object->invalidate_bounding_box();
new_object->translate(-bb.center());
if (center) {
const BoundingBoxf bed_shape = wxGetApp().plater()->bed_shape_bb();
new_object->instances[0]->set_offset(Slic3r::to_3d(bed_shape.center().cast<double>(), -new_object->origin_translation.z()));
} else {
new_object->instances[0]->set_offset(bb.center());
}
new_object->instances[0]->set_offset(center ?
to_3d(wxGetApp().plater()->build_volume().bounding_volume2d().center(), -new_object->origin_translation.z()) :
bb.center());
new_object->ensure_on_bed();

View File

@ -37,11 +37,11 @@
namespace Slic3r {
namespace GUI {
View3D::View3D(wxWindow* parent, Model* model, DynamicPrintConfig* config, BackgroundSlicingProcess* process)
View3D::View3D(wxWindow* parent, Bed3D& bed, Model* model, DynamicPrintConfig* config, BackgroundSlicingProcess* process)
: m_canvas_widget(nullptr)
, m_canvas(nullptr)
{
init(parent, model, config, process);
init(parent, bed, model, config, process);
}
View3D::~View3D()
@ -50,7 +50,7 @@ View3D::~View3D()
delete m_canvas_widget;
}
bool View3D::init(wxWindow* parent, Model* model, DynamicPrintConfig* config, BackgroundSlicingProcess* process)
bool View3D::init(wxWindow* parent, Bed3D& bed, Model* model, DynamicPrintConfig* config, BackgroundSlicingProcess* process)
{
if (!Create(parent, wxID_ANY, wxDefaultPosition, wxDefaultSize, 0 /* disable wxTAB_TRAVERSAL */))
return false;
@ -59,7 +59,7 @@ bool View3D::init(wxWindow* parent, Model* model, DynamicPrintConfig* config, Ba
if (m_canvas_widget == nullptr)
return false;
m_canvas = new GLCanvas3D(m_canvas_widget);
m_canvas = new GLCanvas3D(m_canvas_widget, bed);
m_canvas->set_context(wxGetApp().init_glcontext(*m_canvas_widget));
m_canvas->allow_multisample(OpenGLManager::can_multisample());
@ -169,18 +169,18 @@ void View3D::render()
}
Preview::Preview(
wxWindow* parent, Model* model, DynamicPrintConfig* config,
BackgroundSlicingProcess* process, GCodeProcessor::Result* gcode_result, std::function<void()> schedule_background_process_func)
wxWindow* parent, Bed3D& bed, Model* model, DynamicPrintConfig* config,
BackgroundSlicingProcess* process, GCodeProcessorResult* gcode_result, std::function<void()> schedule_background_process_func)
: m_config(config)
, m_process(process)
, m_gcode_result(gcode_result)
, m_schedule_background_process(schedule_background_process_func)
{
if (init(parent, model))
if (init(parent, bed, model))
load_print();
}
bool Preview::init(wxWindow* parent, Model* model)
bool Preview::init(wxWindow* parent, Bed3D& bed, Model* model)
{
if (!Create(parent, wxID_ANY, wxDefaultPosition, wxDefaultSize, 0 /* disable wxTAB_TRAVERSAL */))
return false;
@ -196,7 +196,7 @@ bool Preview::init(wxWindow* parent, Model* model)
if (m_canvas_widget == nullptr)
return false;
m_canvas = new GLCanvas3D(m_canvas_widget);
m_canvas = new GLCanvas3D(m_canvas_widget, bed);
m_canvas->set_context(wxGetApp().init_glcontext(*m_canvas_widget));
m_canvas->allow_multisample(OpenGLManager::can_multisample());
m_canvas->set_config(m_config);

View File

@ -44,7 +44,7 @@ class View3D : public wxPanel
GLCanvas3D* m_canvas;
public:
View3D(wxWindow* parent, Model* model, DynamicPrintConfig* config, BackgroundSlicingProcess* process);
View3D(wxWindow* parent, Bed3D& bed, Model* model, DynamicPrintConfig* config, BackgroundSlicingProcess* process);
virtual ~View3D();
wxGLCanvas* get_wxglcanvas() { return m_canvas_widget; }
@ -70,7 +70,7 @@ public:
void render();
private:
bool init(wxWindow* parent, Model* model, DynamicPrintConfig* config, BackgroundSlicingProcess* process);
bool init(wxWindow* parent, Bed3D& bed, Model* model, DynamicPrintConfig* config, BackgroundSlicingProcess* process);
};
class Preview : public wxPanel
@ -93,7 +93,7 @@ class Preview : public wxPanel
DynamicPrintConfig* m_config;
BackgroundSlicingProcess* m_process;
GCodeProcessor::Result* m_gcode_result;
GCodeProcessorResult* m_gcode_result;
#ifdef __linux__
// We are getting mysterious crashes on Linux in gtk due to OpenGL context activation GH #1874 #1955.
@ -129,8 +129,8 @@ public:
Legend
};
Preview(wxWindow* parent, Model* model, DynamicPrintConfig* config, BackgroundSlicingProcess* process,
GCodeProcessor::Result* gcode_result, std::function<void()> schedule_background_process = []() {});
Preview(wxWindow* parent, Bed3D& bed, Model* model, DynamicPrintConfig* config, BackgroundSlicingProcess* process,
GCodeProcessorResult* gcode_result, std::function<void()> schedule_background_process = []() {});
virtual ~Preview();
wxGLCanvas* get_wxglcanvas() { return m_canvas_widget; }
@ -161,7 +161,7 @@ public:
void hide_layers_slider();
private:
bool init(wxWindow* parent, Model* model);
bool init(wxWindow* parent, Bed3D& bed, Model* model);
void bind_event_handlers();
void unbind_event_handlers();

View File

@ -26,10 +26,10 @@
#include "3DScene.hpp"
#include "GLCanvas3D.hpp"
#include "Plater.hpp"
#include "3DBed.hpp"
#include "MsgDialog.hpp"
#include "libslic3r/Utils.hpp"
#include "libslic3r/AppConfig.hpp"
#include "libslic3r/BuildVolume.hpp"
#include "libslic3r/Model.hpp"
#include "libslic3r/GCode/ThumbnailData.hpp"
#include "libslic3r/Format/OBJ.hpp"
@ -270,9 +270,7 @@ static void generate_thumbnail_from_model(const std::string& filename)
model.objects[0]->center_around_origin(false);
model.objects[0]->ensure_on_bed(false);
const Vec3d bed_center_3d = wxGetApp().plater()->get_bed().get_bounding_box(false).center();
const Vec2d bed_center_2d = { bed_center_3d.x(), bed_center_3d.y()};
model.center_instances_around_point(bed_center_2d);
model.center_instances_around_point(to_2d(wxGetApp().plater()->build_volume().bounding_volume().center()));
GLVolumeCollection volumes;
volumes.volumes.push_back(new GLVolume());

View File

@ -3,6 +3,7 @@
#include "slic3r/GUI/GLCanvas3D.hpp"
#include "slic3r/GUI/Gizmos/GLGizmosCommon.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"
#include "libslic3r/Model.hpp"
#include <numeric>

View File

@ -1,5 +1,6 @@
#include "ArrangeJob.hpp"
#include "libslic3r/BuildVolume.hpp"
#include "libslic3r/MTUtils.hpp"
#include "libslic3r/Model.hpp"
@ -263,7 +264,7 @@ get_wipe_tower_arrangepoly(const Plater &plater)
}
double bed_stride(const Plater *plater) {
double bedwidth = plater->bed_shape_bb().size().x();
double bedwidth = plater->build_volume().bounding_volume().size().x();
return scaled<double>((1. + LOGICAL_BED_GAP) * bedwidth);
}

View File

@ -486,7 +486,7 @@ void MainFrame::update_layout()
case ESettingsLayout::GCodeViewer:
{
m_main_sizer->Add(m_plater, 1, wxEXPAND);
m_plater->set_bed_shape({ { 0.0, 0.0 }, { 200.0, 0.0 }, { 200.0, 200.0 }, { 0.0, 200.0 } }, "", "", true);
m_plater->set_bed_shape({ { 0.0, 0.0 }, { 200.0, 0.0 }, { 200.0, 200.0 }, { 0.0, 200.0 } }, 0, {}, {}, true);
m_plater->get_collapse_toolbar().set_enabled(false);
m_plater->collapse_sidebar(true);
m_plater->Show();

View File

@ -1554,7 +1554,7 @@ struct Plater::priv
Slic3r::SLAPrint sla_print;
Slic3r::Model model;
PrinterTechnology printer_technology = ptFFF;
Slic3r::GCodeProcessor::Result gcode_result;
Slic3r::GCodeProcessorResult gcode_result;
// GUI elements
wxSizer* panel_sizer{ nullptr };
@ -1717,8 +1717,6 @@ struct Plater::priv
void update_main_toolbar_tooltips();
// std::shared_ptr<ProgressStatusBar> statusbar();
std::string get_config(const std::string &key) const;
BoundingBoxf bed_shape_bb() const;
BoundingBox scaled_bed_shape_bb() const;
std::vector<size_t> load_files(const std::vector<fs::path>& input_files, bool load_model, bool load_config, bool used_inches = false);
std::vector<size_t> load_model_objects(const ModelObjectPtrs& model_objects, bool allow_negative_z = false);
@ -1842,7 +1840,7 @@ struct Plater::priv
// triangulate the bed and store the triangles into m_bed.m_triangles,
// fills the m_bed.m_grid_lines and sets m_bed.m_origin.
// Sets m_bed.m_polygon to limit the object placement.
void set_bed_shape(const Pointfs& shape, const std::string& custom_texture, const std::string& custom_model, bool force_as_custom = false);
void set_bed_shape(const Pointfs& shape, const double max_print_height, const std::string& custom_texture, const std::string& custom_model, bool force_as_custom = false);
bool can_delete() const;
bool can_delete_all() const;
@ -1956,8 +1954,8 @@ Plater::priv::priv(Plater *q, MainFrame *main_frame)
sla_print.set_status_callback(statuscb);
this->q->Bind(EVT_SLICING_UPDATE, &priv::on_slicing_update, this);
view3D = new View3D(q, &model, config, &background_process);
preview = new Preview(q, &model, config, &background_process, &gcode_result, [this]() { schedule_background_process(); });
view3D = new View3D(q, bed, &model, config, &background_process);
preview = new Preview(q, bed, &model, config, &background_process, &gcode_result, [this]() { schedule_background_process(); });
#ifdef __APPLE__
// set default view_toolbar icons size equal to GLGizmosManager::Default_Icons_Size
@ -2172,13 +2170,8 @@ void Plater::priv::update(unsigned int flags)
{
// the following line, when enabled, causes flickering on NVIDIA graphics cards
// wxWindowUpdateLocker freeze_guard(q);
if (get_config("autocenter") == "1") {
// auto *bed_shape_opt = config->opt<ConfigOptionPoints>("bed_shape");
// const auto bed_shape = Slic3r::Polygon::new_scale(bed_shape_opt->values);
// const BoundingBox bed_shape_bb = bed_shape.bounding_box();
const Vec2d& bed_center = bed_shape_bb().center();
model.center_instances_around_point(bed_center);
}
if (get_config("autocenter") == "1")
model.center_instances_around_point(this->bed.build_volume().bed_center());
unsigned int update_status = 0;
const bool force_background_processing_restart = this->printer_technology == ptSLA || (flags & (unsigned int)UpdateParams::FORCE_BACKGROUND_PROCESSING_UPDATE);
@ -2281,19 +2274,6 @@ std::string Plater::priv::get_config(const std::string &key) const
return wxGetApp().app_config->get(key);
}
BoundingBoxf Plater::priv::bed_shape_bb() const
{
BoundingBox bb = scaled_bed_shape_bb();
return BoundingBoxf(unscale(bb.min), unscale(bb.max));
}
BoundingBox Plater::priv::scaled_bed_shape_bb() const
{
const auto *bed_shape_opt = config->opt<ConfigOptionPoints>("bed_shape");
const auto bed_shape = Slic3r::Polygon::new_scale(bed_shape_opt->values);
return bed_shape.bounding_box();
}
std::vector<size_t> Plater::priv::load_files(const std::vector<fs::path>& input_files, bool load_model, bool load_config, bool imperial_units/* = false*/)
{
if (input_files.empty()) { return std::vector<size_t>(); }
@ -2564,7 +2544,7 @@ std::vector<size_t> Plater::priv::load_files(const std::vector<fs::path>& input_
if (one_by_one) {
if (type_3mf && !is_project_file)
model.center_instances_around_point(bed_shape_bb().center());
model.center_instances_around_point(this->bed.build_volume().bed_center());
auto loaded_idxs = load_model_objects(model.objects, is_project_file);
obj_idxs.insert(obj_idxs.end(), loaded_idxs.begin(), loaded_idxs.end());
} else {
@ -2623,8 +2603,7 @@ std::vector<size_t> Plater::priv::load_files(const std::vector<fs::path>& input_
std::vector<size_t> Plater::priv::load_model_objects(const ModelObjectPtrs& model_objects, bool allow_negative_z)
{
const BoundingBoxf bed_shape = bed_shape_bb();
const Vec3d bed_size = Slic3r::to_3d(bed_shape.size().cast<double>(), 1.0) - 2.0 * Vec3d::Ones();
const Vec3d bed_size = Slic3r::to_3d(this->bed.build_volume().bounding_volume2d().size(), 1.0) - 2.0 * Vec3d::Ones();
#ifndef AUTOPLACEMENT_ON_LOAD
// bool need_arrange = false;
@ -2652,7 +2631,7 @@ std::vector<size_t> Plater::priv::load_model_objects(const ModelObjectPtrs& mode
// add a default instance and center object around origin
object->center_around_origin(); // also aligns object to Z = 0
ModelInstance* instance = object->add_instance();
instance->set_offset(Slic3r::to_3d(bed_shape.center().cast<double>(), -object->origin_translation(2)));
instance->set_offset(Slic3r::to_3d(this->bed.build_volume().bed_center(), -object->origin_translation(2)));
#endif /* AUTOPLACEMENT_ON_LOAD */
}
@ -2989,7 +2968,7 @@ void Plater::find_new_position(const ModelInstancePtrs &instances)
if (auto wt = get_wipe_tower_arrangepoly(*this))
fixed.emplace_back(*wt);
arrangement::arrange(movable, fixed, get_bed_shape(*config()), arr_params);
arrangement::arrange(movable, fixed, this->build_volume().polygon(), arr_params);
for (auto & m : movable)
m.apply();
@ -3057,22 +3036,9 @@ void Plater::priv::schedule_background_process()
void Plater::priv::update_print_volume_state()
{
#if ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
const ConfigOptionPoints* opt = dynamic_cast<const ConfigOptionPoints*>(this->config->option("bed_shape"));
const Polygon bed_poly_convex = offset(Geometry::convex_hull(Polygon::new_scale(opt->values).points), static_cast<float>(scale_(BedEpsilon))).front();
const float bed_height = this->config->opt_float("max_print_height");
this->q->model().update_print_volume_state(bed_poly_convex, bed_height);
#else
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(this->config->opt<ConfigOptionPoints>("bed_shape")->values));
BoundingBoxf3 print_volume(unscale(bed_box_2D.min(0), bed_box_2D.min(1), 0.0), unscale(bed_box_2D.max(0), bed_box_2D.max(1), scale_(this->config->opt_float("max_print_height"))));
// Allow the objects to protrude below the print bed, only the part of the object above the print bed will be sliced.
print_volume.offset(BedEpsilon);
print_volume.min(2) = -1e10;
this->q->model().update_print_volume_state(print_volume);
#endif // ENABLE_OUT_OF_BED_DETECTION_IMPROVEMENTS
this->q->model().update_print_volume_state(this->bed.build_volume());
}
void Plater::priv::process_validation_warning(const std::string& warning) const
{
if (warning.empty())
@ -4588,9 +4554,9 @@ bool Plater::priv::can_reload_from_disk() const
return !paths.empty();
}
void Plater::priv::set_bed_shape(const Pointfs& shape, const std::string& custom_texture, const std::string& custom_model, bool force_as_custom)
void Plater::priv::set_bed_shape(const Pointfs& shape, const double max_print_height, const std::string& custom_texture, const std::string& custom_model, bool force_as_custom)
{
bool new_shape = bed.set_shape(shape, custom_texture, custom_model, force_as_custom);
bool new_shape = bed.set_shape(shape, max_print_height, custom_texture, custom_model, force_as_custom);
if (new_shape) {
if (view3D) view3D->bed_shape_changed();
if (preview) preview->bed_shape_changed();
@ -6278,13 +6244,14 @@ void Plater::on_config_change(const DynamicPrintConfig &config)
void Plater::set_bed_shape() const
{
set_bed_shape(p->config->option<ConfigOptionPoints>("bed_shape")->values,
p->config->option<ConfigOptionFloat>("max_print_height")->value,
p->config->option<ConfigOptionString>("bed_custom_texture")->value,
p->config->option<ConfigOptionString>("bed_custom_model")->value);
}
void Plater::set_bed_shape(const Pointfs& shape, const std::string& custom_texture, const std::string& custom_model, bool force_as_custom) const
void Plater::set_bed_shape(const Pointfs& shape, const double max_print_height, const std::string& custom_texture, const std::string& custom_model, bool force_as_custom) const
{
p->set_bed_shape(shape, custom_texture, custom_model, force_as_custom);
p->set_bed_shape(shape, max_print_height, custom_texture, custom_model, force_as_custom);
}
void Plater::force_filament_colors_update()
@ -6339,7 +6306,7 @@ void Plater::on_activate()
}
// Get vector of extruder colors considering filament color, if extruder color is undefined.
std::vector<std::string> Plater::get_extruder_colors_from_plater_config(const GCodeProcessor::Result* const result) const
std::vector<std::string> Plater::get_extruder_colors_from_plater_config(const GCodeProcessorResult* const result) const
{
if (wxGetApp().is_gcode_viewer() && result != nullptr)
return result->extruder_colors;
@ -6365,7 +6332,7 @@ std::vector<std::string> Plater::get_extruder_colors_from_plater_config(const GC
/* Get vector of colors used for rendering of a Preview scene in "Color print" mode
* It consists of extruder colors and colors, saved in model.custom_gcode_per_print_z
*/
std::vector<std::string> Plater::get_colors_for_color_print(const GCodeProcessor::Result* const result) const
std::vector<std::string> Plater::get_colors_for_color_print(const GCodeProcessorResult* const result) const
{
std::vector<std::string> colors = get_extruder_colors_from_plater_config(result);
colors.reserve(colors.size() + p->model.custom_gcode_per_print_z.gcodes.size());
@ -6431,11 +6398,6 @@ GLCanvas3D* Plater::get_current_canvas3D()
return p->get_current_canvas3D();
}
BoundingBoxf Plater::bed_shape_bb() const
{
return p->bed_shape_bb();
}
void Plater::arrange()
{
p->m_ui_jobs.arrange();
@ -6725,14 +6687,9 @@ unsigned int Plater::get_environment_texture_id() const
}
#endif // ENABLE_ENVIRONMENT_MAP
const Bed3D& Plater::get_bed() const
const BuildVolume& Plater::build_volume() const
{
return p->bed;
}
Bed3D& Plater::get_bed()
{
return p->bed;
return p->bed.build_volume();
}
const GLToolbar& Plater::get_view_toolbar() const

View File

@ -23,6 +23,7 @@ class wxString;
namespace Slic3r {
class BuildVolume;
class Model;
class ModelObject;
enum class ModelObjectCutAttribute : int;
@ -53,7 +54,6 @@ class GLCanvas3D;
class Mouse3DController;
class NotificationManager;
struct Camera;
class Bed3D;
class GLToolbar;
class PlaterPresetComboBox;
@ -265,8 +265,8 @@ public:
void force_print_bed_update();
// On activating the parent window.
void on_activate();
std::vector<std::string> get_extruder_colors_from_plater_config(const GCodeProcessor::Result* const result = nullptr) const;
std::vector<std::string> get_colors_for_color_print(const GCodeProcessor::Result* const result = nullptr) const;
std::vector<std::string> get_extruder_colors_from_plater_config(const GCodeProcessorResult* const result = nullptr) const;
std::vector<std::string> get_colors_for_color_print(const GCodeProcessorResult* const result = nullptr) const;
void update_menus();
void show_action_buttons(const bool is_ready_to_slice) const;
@ -282,7 +282,6 @@ public:
GLCanvas3D* canvas3D();
const GLCanvas3D * canvas3D() const;
GLCanvas3D* get_current_canvas3D();
BoundingBoxf bed_shape_bb() const;
void arrange();
void find_new_position(const ModelInstancePtrs &instances);
@ -339,8 +338,7 @@ public:
unsigned int get_environment_texture_id() const;
#endif // ENABLE_ENVIRONMENT_MAP
const Bed3D& get_bed() const;
Bed3D& get_bed();
const BuildVolume& build_volume() const;
const GLToolbar& get_view_toolbar() const;
GLToolbar& get_view_toolbar();
@ -359,7 +357,7 @@ public:
Mouse3DController& get_mouse3d_controller();
void set_bed_shape() const;
void set_bed_shape(const Pointfs& shape, const std::string& custom_texture, const std::string& custom_model, bool force_as_custom = false) const;
void set_bed_shape(const Pointfs& shape, const double max_print_height, const std::string& custom_texture, const std::string& custom_model, bool force_as_custom = false) const;
NotificationManager * get_notification_manager();
const NotificationManager * get_notification_manager() const;

View File

@ -7,6 +7,7 @@
#include "libslic3r/Line.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Geometry/Circle.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/ShortestPath.hpp"
@ -119,82 +120,28 @@ SCENARIO("Intersections of line segments", "[Geometry]"){
}
}
/*
Tests for unused methods still written in perl
{
my $polygon = Slic3r::Polygon->new(
[45919000, 515273900], [14726100, 461246400], [14726100, 348753500], [33988700, 315389800],
[43749700, 343843000], [45422300, 352251500], [52362100, 362637800], [62748400, 369577600],
[75000000, 372014700], [87251500, 369577600], [97637800, 362637800], [104577600, 352251500],
[107014700, 340000000], [104577600, 327748400], [97637800, 317362100], [87251500, 310422300],
[82789200, 309534700], [69846100, 294726100], [254081000, 294726100], [285273900, 348753500],
[285273900, 461246400], [254081000, 515273900],
);
# this points belongs to $polyline
# note: it's actually a vertex, while we should better check an intermediate point
my $point = Slic3r::Point->new(104577600, 327748400);
local $Slic3r::Geometry::epsilon = 1E-5;
is_deeply Slic3r::Geometry::polygon_segment_having_point($polygon, $point)->pp,
[ [107014700, 340000000], [104577600, 327748400] ],
'polygon_segment_having_point';
}
{
auto point = Point(736310778.185108, 5017423926.8924);
auto line = Line(Point((long int) 627484000, (long int) 3695776000), Point((long int) 750000000, (long int)3720147000));
//is Slic3r::Geometry::point_in_segment($point, $line), 0, 'point_in_segment';
}
// Possible to delete
{
//my $p1 = [10, 10];
//my $p2 = [10, 20];
//my $p3 = [10, 30];
//my $p4 = [20, 20];
//my $p5 = [0, 20];
THEN("Points in a line give the correct angles"){
//is Slic3r::Geometry::angle3points($p2, $p3, $p1), PI(), 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points';
SCENARIO("polygon_is_convex works") {
GIVEN("A square of dimension 10") {
WHEN("Polygon is convex clockwise") {
Polygon cw_square { { {0, 0}, {0,10}, {10,10}, {10,0} } };
THEN("it is not convex") {
REQUIRE(! polygon_is_convex(cw_square));
}
}
THEN("Left turns give the correct angle"){
//is Slic3r::Geometry::angle3points($p2, $p4, $p3), PI()/2, 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2, 'angle3points';
}
THEN("Right turns give the correct angle"){
//is Slic3r::Geometry::angle3points($p2, $p3, $p4), PI()/2*3, 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p5), PI()/2*3, 'angle3points';
}
//my $p1 = [30, 30];
//my $p2 = [20, 20];
//my $p3 = [10, 10];
//my $p4 = [30, 10];
//is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(), 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2*3, 'angle3points';
//is Slic3r::Geometry::angle3points($p2, $p1, $p1), 2*PI(), 'angle3points';
}
SCENARIO("polygon_is_convex works"){
GIVEN("A square of dimension 10"){
//my $cw_square = [ [0,0], [0,10], [10,10], [10,0] ];
THEN("It is not convex clockwise"){
//is polygon_is_convex($cw_square), 0, 'cw square is not convex';
}
THEN("It is convex counter-clockwise"){
//is polygon_is_convex([ reverse @$cw_square ]), 1, 'ccw square is convex';
}
}
GIVEN("A concave polygon"){
//my $convex1 = [ [0,0], [10,0], [10,10], [0,10], [0,6], [4,6], [4,4], [0,4] ];
THEN("It is concave"){
//is polygon_is_convex($convex1), 0, 'concave polygon';
WHEN("Polygon is convex counter-clockwise") {
Polygon ccw_square { { {0, 0}, {10,0}, {10,10}, {0,10} } };
THEN("it is convex") {
REQUIRE(polygon_is_convex(ccw_square));
}
}
}
}*/
GIVEN("A concave polygon") {
Polygon concave = { {0,0}, {10,0}, {10,10}, {0,10}, {0,6}, {4,6}, {4,4}, {0,4} };
THEN("It is not convex") {
REQUIRE(! polygon_is_convex(concave));
}
}
}
TEST_CASE("Creating a polyline generates the obvious lines", "[Geometry]"){
Slic3r::Polyline polyline;

View File

@ -3,6 +3,7 @@
%{
#include <xsinit.h>
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"
#include "libslic3r/ShortestPath.hpp"
%}