Optimized the projection of painted triangles in multi-material segmentation. Added heuristics to skip most of the expensive calculations in cases where it is certain that performing these calculations would be useless.

This commit is contained in:
Lukáš Hejl 2021-06-25 18:20:17 +02:00
parent 48789e5ae1
commit ce738102c6

View File

@ -89,28 +89,37 @@ struct PaintedLineVisitor
bool operator()(coord_t iy, coord_t ix)
{
// Called with a row and column of the grid cell, which is intersected by a line.
auto cell_data_range = grid.cell_data_range(iy, ix);
const Vec2d v1 = line_to_test.vector().cast<double>();
auto cell_data_range = grid.cell_data_range(iy, ix);
const Vec2d v1 = line_to_test.vector().cast<double>();
const double v1_sqr_norm = v1.squaredNorm();
const double heuristic_thr_part = line_to_test.length() + append_threshold;
for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) {
Line grid_line = grid.line(*it_contour_and_segment);
const Vec2d v2 = grid_line.vector().cast<double>();
Line grid_line = grid.line(*it_contour_and_segment);
const Vec2d v2 = grid_line.vector().cast<double>();
double heuristic_thr_sqr = Slic3r::sqr(heuristic_thr_part + grid_line.length());
// An inexpensive heuristic to test whether line_to_test and grid_line can be somewhere close enough to each other.
// This helps filter out cases when the following expensive calculations are useless.
if ((grid_line.a - line_to_test.a).cast<double>().squaredNorm() > heuristic_thr_sqr ||
(grid_line.b - line_to_test.a).cast<double>().squaredNorm() > heuristic_thr_sqr ||
(grid_line.a - line_to_test.b).cast<double>().squaredNorm() > heuristic_thr_sqr ||
(grid_line.b - line_to_test.b).cast<double>().squaredNorm() > heuristic_thr_sqr)
continue;
// When lines have too different length, it is necessary to normalize them
if (Slic3r::sqr(v1.dot(v2)) > cos_threshold2 * v1.squaredNorm() * v2.squaredNorm()) {
if (Slic3r::sqr(v1.dot(v2)) > cos_threshold2 * v1_sqr_norm * v2.squaredNorm()) {
// The two vectors are nearly collinear (their mutual angle is lower than 30 degrees)
if (painted_lines_set.find(*it_contour_and_segment) == painted_lines_set.end()) {
double dist_1 = grid_line.distance_to(line_to_test.a);
double dist_2 = grid_line.distance_to(line_to_test.b);
double dist_3 = line_to_test.distance_to(grid_line.a);
double dist_4 = line_to_test.distance_to(grid_line.b);
double total_dist = std::min(std::min(dist_1, dist_2), std::min(dist_3, dist_4));
if (total_dist < 50 * SCALED_EPSILON) {
if (grid_line.distance_to_squared(line_to_test.a) < append_threshold2 ||
grid_line.distance_to_squared(line_to_test.b) < append_threshold2 ||
line_to_test.distance_to_squared(grid_line.a) < append_threshold2 ||
line_to_test.distance_to_squared(grid_line.b) < append_threshold2) {
Line line_to_test_projected;
project_line_on_line(grid_line, line_to_test, &line_to_test_projected);
if (Line(grid_line.a, line_to_test_projected.a).length() > Line(grid_line.a, line_to_test_projected.b).length()) {
if ((line_to_test_projected.a - grid_line.a).cast<double>().squaredNorm() > (line_to_test_projected.b - grid_line.a).cast<double>().squaredNorm())
line_to_test_projected.reverse();
}
painted_lines.push_back({it_contour_and_segment->first, it_contour_and_segment->second, line_to_test_projected, this->color});
painted_lines_set.insert(*it_contour_and_segment);
}
@ -125,9 +134,11 @@ struct PaintedLineVisitor
std::vector<PaintedLine> &painted_lines;
Line line_to_test;
std::unordered_set<std::pair<size_t, size_t>, boost::hash<std::pair<size_t, size_t>>> painted_lines_set;
int color = -1;
int color = -1;
static inline const double cos_threshold2 = Slic3r::sqr(cos(M_PI * 30. / 180.));
static inline const double cos_threshold2 = Slic3r::sqr(cos(M_PI * 30. / 180.));
static inline const double append_threshold = 50 * SCALED_EPSILON;
static inline const double append_threshold2 = Slic3r::sqr(append_threshold);
};
static std::vector<ColoredLine> to_colored_lines(const Polygon &polygon, int color)