linest2d ready for arbitrary shaped beds.
This commit is contained in:
parent
4e901a9db7
commit
d136d61edd
8 changed files with 275 additions and 77 deletions
|
@ -544,57 +544,126 @@ void arrangeRectangles() {
|
|||
// input.insert(input.end(), proba.begin(), proba.end());
|
||||
// input.insert(input.end(), crasher.begin(), crasher.end());
|
||||
|
||||
Box bin(250*SCALE, 210*SCALE);
|
||||
// Box bin(250*SCALE, 210*SCALE);
|
||||
PolygonImpl bin = {
|
||||
{
|
||||
{25*SCALE, 0},
|
||||
{0, 25*SCALE},
|
||||
{0, 225*SCALE},
|
||||
{25*SCALE, 250*SCALE},
|
||||
{225*SCALE, 250*SCALE},
|
||||
{250*SCALE, 225*SCALE},
|
||||
{250*SCALE, 25*SCALE},
|
||||
{225*SCALE, 0},
|
||||
{25*SCALE, 0}
|
||||
},
|
||||
{}
|
||||
};
|
||||
|
||||
auto min_obj_distance = static_cast<Coord>(0*SCALE);
|
||||
|
||||
using Placer = NfpPlacer;
|
||||
using Placer = strategies::_NofitPolyPlacer<PolygonImpl, PolygonImpl>;
|
||||
using Packer = Arranger<Placer, FirstFitSelection>;
|
||||
|
||||
Packer arrange(bin, min_obj_distance);
|
||||
|
||||
Packer::PlacementConfig pconf;
|
||||
pconf.alignment = Placer::Config::Alignment::CENTER;
|
||||
pconf.starting_point = Placer::Config::Alignment::BOTTOM_LEFT;
|
||||
pconf.starting_point = Placer::Config::Alignment::CENTER;
|
||||
pconf.rotations = {0.0/*, Pi/2.0, Pi, 3*Pi/2*/};
|
||||
pconf.accuracy = 1.0;
|
||||
|
||||
double norm_2 = std::nan("");
|
||||
pconf.object_function = [&bin, &norm_2](Placer::Pile pile, const Item& item,
|
||||
auto bincenter = ShapeLike::boundingBox(bin).center();
|
||||
pconf.object_function = [&bin, bincenter](
|
||||
Placer::Pile pile, const Item& item,
|
||||
double /*area*/, double norm, double penality) {
|
||||
|
||||
using pl = PointLike;
|
||||
|
||||
auto bb = ShapeLike::boundingBox(pile);
|
||||
static const double BIG_ITEM_TRESHOLD = 0.2;
|
||||
static const double GRAVITY_RATIO = 0.5;
|
||||
static const double DENSITY_RATIO = 1.0 - GRAVITY_RATIO;
|
||||
|
||||
// We will treat big items (compared to the print bed) differently
|
||||
NfpPlacer::Pile bigs;
|
||||
bigs.reserve(pile.size());
|
||||
for(auto& p : pile) {
|
||||
auto pbb = ShapeLike::boundingBox(p);
|
||||
auto na = std::sqrt(pbb.width()*pbb.height())/norm;
|
||||
if(na > BIG_ITEM_TRESHOLD) bigs.emplace_back(p);
|
||||
}
|
||||
|
||||
// Candidate item bounding box
|
||||
auto ibb = item.boundingBox();
|
||||
auto minc = ibb.minCorner();
|
||||
auto maxc = ibb.maxCorner();
|
||||
|
||||
if(std::isnan(norm_2)) norm_2 = pow(norm, 2);
|
||||
// Calculate the full bounding box of the pile with the candidate item
|
||||
pile.emplace_back(item.transformedShape());
|
||||
auto fullbb = ShapeLike::boundingBox(pile);
|
||||
pile.pop_back();
|
||||
|
||||
// We get the distance of the reference point from the center of the
|
||||
// heat bed
|
||||
auto cc = bb.center();
|
||||
auto top_left = PointImpl{getX(minc), getY(maxc)};
|
||||
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
||||
// The bounding box of the big items (they will accumulate in the center
|
||||
// of the pile
|
||||
auto bigbb = bigs.empty()? fullbb : ShapeLike::boundingBox(bigs);
|
||||
|
||||
auto a = pl::distance(ibb.maxCorner(), cc);
|
||||
auto b = pl::distance(ibb.minCorner(), cc);
|
||||
auto c = pl::distance(ibb.center(), cc);
|
||||
auto d = pl::distance(top_left, cc);
|
||||
auto e = pl::distance(bottom_right, cc);
|
||||
// The size indicator of the candidate item. This is not the area,
|
||||
// but almost...
|
||||
auto itemnormarea = std::sqrt(ibb.width()*ibb.height())/norm;
|
||||
|
||||
auto area = bb.width() * bb.height() / norm_2;
|
||||
// Will hold the resulting score
|
||||
double score = 0;
|
||||
|
||||
auto min_dist = std::min({a, b, c, d, e}) / norm;
|
||||
if(itemnormarea > BIG_ITEM_TRESHOLD) {
|
||||
// This branch is for the bigger items..
|
||||
// Here we will use the closest point of the item bounding box to
|
||||
// the already arranged pile. So not the bb center nor the a choosen
|
||||
// corner but whichever is the closest to the center. This will
|
||||
// prevent unwanted strange arrangements.
|
||||
|
||||
// The score will be the normalized distance which will be minimized,
|
||||
// effectively creating a circle shaped pile of items
|
||||
double score = 0.8*min_dist + 0.2*area;
|
||||
auto minc = ibb.minCorner(); // bottom left corner
|
||||
auto maxc = ibb.maxCorner(); // top right corner
|
||||
|
||||
// top left and bottom right corners
|
||||
auto top_left = PointImpl{getX(minc), getY(maxc)};
|
||||
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
||||
|
||||
auto cc = fullbb.center(); // The gravity center
|
||||
|
||||
// Now the distnce of the gravity center will be calculated to the
|
||||
// five anchor points and the smallest will be chosen.
|
||||
std::array<double, 5> dists;
|
||||
dists[0] = pl::distance(minc, cc);
|
||||
dists[1] = pl::distance(maxc, cc);
|
||||
dists[2] = pl::distance(ibb.center(), cc);
|
||||
dists[3] = pl::distance(top_left, cc);
|
||||
dists[4] = pl::distance(bottom_right, cc);
|
||||
|
||||
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
|
||||
|
||||
// Density is the pack density: how big is the arranged pile
|
||||
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||
|
||||
// The score is a weighted sum of the distance from pile center
|
||||
// and the pile size
|
||||
score = GRAVITY_RATIO * dist + DENSITY_RATIO * density;
|
||||
|
||||
} else if(itemnormarea < BIG_ITEM_TRESHOLD && bigs.empty()) {
|
||||
// If there are no big items, only small, we should consider the
|
||||
// density here as well to not get silly results
|
||||
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
|
||||
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||
score = GRAVITY_RATIO * bindist + DENSITY_RATIO * density;
|
||||
} else {
|
||||
// Here there are the small items that should be placed around the
|
||||
// already processed bigger items.
|
||||
// No need to play around with the anchor points, the center will be
|
||||
// just fine for small items
|
||||
score = pl::distance(ibb.center(), bigbb.center()) / norm;
|
||||
}
|
||||
|
||||
// If it does not fit into the print bed we will beat it
|
||||
// with a large penality. If we would not do this, there would be only
|
||||
// one big pile that doesn't care whether it fits onto the print bed.
|
||||
if(!NfpPlacer::wouldFit(bb, bin)) score = 2*penality - score;
|
||||
if(!NfpPlacer::wouldFit(fullbb, bin)) score = 2*penality - score;
|
||||
|
||||
return score;
|
||||
};
|
||||
|
@ -638,7 +707,7 @@ void arrangeRectangles() {
|
|||
std::vector<double> eff;
|
||||
eff.reserve(result.size());
|
||||
|
||||
auto bin_area = double(bin.height()*bin.width());
|
||||
auto bin_area = ShapeLike::area(bin);
|
||||
for(auto& r : result) {
|
||||
double a = 0;
|
||||
std::for_each(r.begin(), r.end(), [&a] (Item& e ){ a += e.area(); });
|
||||
|
@ -673,7 +742,7 @@ void arrangeRectangles() {
|
|||
SVGWriter::Config conf;
|
||||
conf.mm_in_coord_units = SCALE;
|
||||
SVGWriter svgw(conf);
|
||||
svgw.setSize(bin);
|
||||
svgw.setSize(Box(250*SCALE, 210*SCALE));
|
||||
svgw.writePackGroup(result);
|
||||
// std::for_each(input.begin(), input.end(), [&svgw](Item& item){ svgw.writeItem(item);});
|
||||
svgw.save("out");
|
||||
|
|
|
@ -358,7 +358,7 @@ inline double ShapeLike::area(const PolygonImpl& shape)
|
|||
#endif
|
||||
|
||||
template<>
|
||||
inline bool ShapeLike::isInside(const PointImpl& point,
|
||||
inline bool ShapeLike::isInside<PolygonImpl>(const PointImpl& point,
|
||||
const PolygonImpl& shape)
|
||||
{
|
||||
return boost::geometry::within(point, shape);
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
|
@ -85,6 +86,31 @@ public:
|
|||
inline TCoord<RawPoint> height() const BP2D_NOEXCEPT;
|
||||
|
||||
inline RawPoint center() const BP2D_NOEXCEPT;
|
||||
|
||||
inline double area() const BP2D_NOEXCEPT {
|
||||
return double(width()*height());
|
||||
}
|
||||
};
|
||||
|
||||
template<class RawPoint>
|
||||
class _Circle {
|
||||
RawPoint center_;
|
||||
double radius_ = 0;
|
||||
public:
|
||||
|
||||
_Circle() = default;
|
||||
|
||||
_Circle(const RawPoint& center, double r): center_(center), radius_(r) {}
|
||||
|
||||
inline const RawPoint& center() const BP2D_NOEXCEPT { return center_; }
|
||||
inline const void center(const RawPoint& c) { center_ = c; }
|
||||
|
||||
inline double radius() const BP2D_NOEXCEPT { return radius_; }
|
||||
inline void radius(double r) { radius_ = r; }
|
||||
|
||||
inline double area() const BP2D_NOEXCEPT {
|
||||
return 2.0*Pi*radius_;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
|
@ -288,8 +314,8 @@ inline RawPoint _Box<RawPoint>::center() const BP2D_NOEXCEPT {
|
|||
using Coord = TCoord<RawPoint>;
|
||||
|
||||
RawPoint ret = {
|
||||
static_cast<Coord>( std::round((getX(minc) + getX(maxc))/2.0) ),
|
||||
static_cast<Coord>( std::round((getY(minc) + getY(maxc))/2.0) )
|
||||
static_cast<Coord>( (getX(minc) + getX(maxc))/2.0 ),
|
||||
static_cast<Coord>( (getY(minc) + getY(maxc))/2.0 )
|
||||
};
|
||||
|
||||
return ret;
|
||||
|
@ -614,12 +640,34 @@ struct ShapeLike {
|
|||
return box;
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
static inline _Box<TPoint<RawShape>> boundingBox(
|
||||
const _Circle<TPoint<RawShape>>& circ)
|
||||
{
|
||||
using Coord = TCoord<TPoint<RawShape>>;
|
||||
TPoint<RawShape> pmin = {
|
||||
static_cast<Coord>(getX(circ.center()) - circ.radius()),
|
||||
static_cast<Coord>(getY(circ.center()) - circ.radius()) };
|
||||
|
||||
TPoint<RawShape> pmax = {
|
||||
static_cast<Coord>(getX(circ.center()) + circ.radius()),
|
||||
static_cast<Coord>(getY(circ.center()) + circ.radius()) };
|
||||
|
||||
return {pmin, pmax};
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
static inline double area(const _Box<TPoint<RawShape>>& box)
|
||||
{
|
||||
return static_cast<double>(box.width() * box.height());
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
static inline double area(const _Circle<TPoint<RawShape>>& circ)
|
||||
{
|
||||
return circ.area();
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
static inline double area(const Shapes<RawShape>& shapes)
|
||||
{
|
||||
|
@ -629,6 +677,31 @@ struct ShapeLike {
|
|||
});
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
static bool isInside(const TPoint<RawShape>& point,
|
||||
const _Circle<TPoint<RawShape>>& circ)
|
||||
{
|
||||
return PointLike::distance(point, circ.center()) < circ.radius();
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
static bool isInside(const RawShape& sh,
|
||||
const _Circle<TPoint<RawShape>>& circ)
|
||||
{
|
||||
return std::all_of(cbegin(sh), cend(sh),
|
||||
[&circ](const TPoint<RawShape>& p){
|
||||
return isInside<RawShape>(p, circ);
|
||||
});
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
static bool isInside(const _Box<TPoint<RawShape>>& box,
|
||||
const _Circle<TPoint<RawShape>>& circ)
|
||||
{
|
||||
return isInside<RawShape>(box.minCorner(), circ) &&
|
||||
isInside<RawShape>(box.maxCorner(), circ);
|
||||
}
|
||||
|
||||
template<class RawShape> // Potential O(1) implementation may exist
|
||||
static inline TPoint<RawShape>& vertex(RawShape& sh, unsigned long idx)
|
||||
{
|
||||
|
|
|
@ -254,7 +254,13 @@ public:
|
|||
return sl::isInside(transformedShape(), sh.transformedShape());
|
||||
}
|
||||
|
||||
inline bool isInside(const RawShape& sh) const
|
||||
{
|
||||
return sl::isInside(transformedShape(), sh);
|
||||
}
|
||||
|
||||
inline bool isInside(const _Box<TPoint<RawShape>>& box) const;
|
||||
inline bool isInside(const _Circle<TPoint<RawShape>>& box) const;
|
||||
|
||||
inline void translate(const Vertex& d) BP2D_NOEXCEPT
|
||||
{
|
||||
|
@ -471,6 +477,11 @@ inline bool _Item<RawShape>::isInside(const _Box<TPoint<RawShape>>& box) const {
|
|||
return _Item<RawShape>::isInside(rect);
|
||||
}
|
||||
|
||||
template<class RawShape> inline bool
|
||||
_Item<RawShape>::isInside(const _Circle<TPoint<RawShape>>& circ) const {
|
||||
return ShapeLike::isInside<RawShape>(transformedShape(), circ);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief A wrapper interface (trait) class for any placement strategy provider.
|
||||
*
|
||||
|
|
|
@ -46,14 +46,12 @@ struct NfpPConfig {
|
|||
* function you can e.g. influence the shape of the arranged pile.
|
||||
*
|
||||
* \param shapes The first parameter is a container with all the placed
|
||||
* polygons including the current candidate. You can calculate a bounding
|
||||
* box or convex hull on this pile of polygons.
|
||||
* polygons excluding the current candidate. You can calculate a bounding
|
||||
* box or convex hull on this pile of polygons without the candidate item
|
||||
* or push back the candidate item into the container and then calculate
|
||||
* some features.
|
||||
*
|
||||
* \param item The second parameter is the candidate item. Note that
|
||||
* calling transformedShape() on this second argument returns an identical
|
||||
* shape as calling shapes.back(). These would not be the same objects only
|
||||
* identical shapes! Using the second parameter is a lot faster due to
|
||||
* caching some properties of the polygon (area, etc...)
|
||||
* \param item The second parameter is the candidate item.
|
||||
*
|
||||
* \param occupied_area The third parameter is the sum of areas of the
|
||||
* items in the first parameter so you don't have to iterate through them
|
||||
|
@ -127,6 +125,8 @@ template<class RawShape> class EdgeCache {
|
|||
|
||||
std::vector<ContourCache> holes_;
|
||||
|
||||
double accuracy_ = 1.0;
|
||||
|
||||
void createCache(const RawShape& sh) {
|
||||
{ // For the contour
|
||||
auto first = ShapeLike::cbegin(sh);
|
||||
|
@ -160,11 +160,25 @@ template<class RawShape> class EdgeCache {
|
|||
}
|
||||
}
|
||||
|
||||
size_t stride(const size_t N) const {
|
||||
using std::ceil;
|
||||
using std::round;
|
||||
using std::pow;
|
||||
|
||||
return static_cast<Coord>(
|
||||
round( N/(ceil(pow(accuracy_, 2)*(N-1)) + 1) )
|
||||
);
|
||||
}
|
||||
|
||||
void fetchCorners() const {
|
||||
if(!contour_.corners.empty()) return;
|
||||
|
||||
contour_.corners.reserve(contour_.distances.size() / 3 + 1);
|
||||
for(size_t i = 0; i < contour_.distances.size() - 1; i += 3) {
|
||||
const auto N = contour_.distances.size();
|
||||
const auto S = stride(N);
|
||||
|
||||
contour_.corners.reserve(N / S + 1);
|
||||
auto N_1 = N-1;
|
||||
for(size_t i = 0; i < N_1; i += S) {
|
||||
contour_.corners.emplace_back(
|
||||
contour_.distances.at(i) / contour_.full_distance);
|
||||
}
|
||||
|
@ -174,8 +188,11 @@ template<class RawShape> class EdgeCache {
|
|||
auto& hc = holes_[hidx];
|
||||
if(!hc.corners.empty()) return;
|
||||
|
||||
hc.corners.reserve(hc.distances.size() / 3 + 1);
|
||||
for(size_t i = 0; i < hc.distances.size() - 1; i += 3) {
|
||||
const auto N = hc.distances.size();
|
||||
const auto S = stride(N);
|
||||
auto N_1 = N-1;
|
||||
hc.corners.reserve(N / S + 1);
|
||||
for(size_t i = 0; i < N_1; i += S) {
|
||||
hc.corners.emplace_back(
|
||||
hc.distances.at(i) / hc.full_distance);
|
||||
}
|
||||
|
@ -224,6 +241,9 @@ public:
|
|||
createCache(sh);
|
||||
}
|
||||
|
||||
/// Resolution of returned corners. The stride is derived from this value.
|
||||
void accuracy(double a /* within <0.0, 1.0>*/) { accuracy_ = a; }
|
||||
|
||||
/**
|
||||
* @brief Get a point on the circumference of a polygon.
|
||||
* @param distance A relative distance from the starting point to the end.
|
||||
|
@ -419,12 +439,12 @@ Nfp::Shapes<RawShape> nfp( const Container& polygons,
|
|||
// return nfps;
|
||||
}
|
||||
|
||||
template<class RawShape>
|
||||
class _NofitPolyPlacer: public PlacerBoilerplate<_NofitPolyPlacer<RawShape>,
|
||||
RawShape, _Box<TPoint<RawShape>>, NfpPConfig<RawShape>> {
|
||||
template<class RawShape, class TBin = _Box<TPoint<RawShape>>>
|
||||
class _NofitPolyPlacer: public PlacerBoilerplate<_NofitPolyPlacer<RawShape, TBin>,
|
||||
RawShape, TBin, NfpPConfig<RawShape>> {
|
||||
|
||||
using Base = PlacerBoilerplate<_NofitPolyPlacer<RawShape>,
|
||||
RawShape, _Box<TPoint<RawShape>>, NfpPConfig<RawShape>>;
|
||||
using Base = PlacerBoilerplate<_NofitPolyPlacer<RawShape, TBin>,
|
||||
RawShape, TBin, NfpPConfig<RawShape>>;
|
||||
|
||||
DECLARE_PLACER(Base)
|
||||
|
||||
|
@ -434,6 +454,7 @@ class _NofitPolyPlacer: public PlacerBoilerplate<_NofitPolyPlacer<RawShape>,
|
|||
const double penality_;
|
||||
|
||||
using MaxNfpLevel = Nfp::MaxNfpLevel<RawShape>;
|
||||
using sl = ShapeLike;
|
||||
|
||||
public:
|
||||
|
||||
|
@ -441,7 +462,7 @@ public:
|
|||
|
||||
inline explicit _NofitPolyPlacer(const BinType& bin):
|
||||
Base(bin),
|
||||
norm_(std::sqrt(ShapeLike::area<RawShape>(bin))),
|
||||
norm_(std::sqrt(sl::area<RawShape>(bin))),
|
||||
penality_(1e6*norm_) {}
|
||||
|
||||
_NofitPolyPlacer(const _NofitPolyPlacer&) = default;
|
||||
|
@ -452,18 +473,26 @@ public:
|
|||
_NofitPolyPlacer& operator=(_NofitPolyPlacer&&) BP2D_NOEXCEPT = default;
|
||||
#endif
|
||||
|
||||
bool static inline wouldFit(const Box& bb, const RawShape& bin) {
|
||||
auto bbin = sl::boundingBox<RawShape>(bin);
|
||||
auto d = bbin.center() - bb.center();
|
||||
_Rectangle<RawShape> rect(bb.width(), bb.height());
|
||||
rect.translate(bb.minCorner() + d);
|
||||
return sl::isInside<RawShape>(rect.transformedShape(), bin);
|
||||
}
|
||||
|
||||
bool static inline wouldFit(const RawShape& chull, const RawShape& bin) {
|
||||
auto bbch = ShapeLike::boundingBox<RawShape>(chull);
|
||||
auto bbin = ShapeLike::boundingBox<RawShape>(bin);
|
||||
auto d = bbin.minCorner() - bbch.minCorner();
|
||||
auto bbch = sl::boundingBox<RawShape>(chull);
|
||||
auto bbin = sl::boundingBox<RawShape>(bin);
|
||||
auto d = bbin.center() - bbch.center();
|
||||
auto chullcpy = chull;
|
||||
ShapeLike::translate(chullcpy, d);
|
||||
return ShapeLike::isInside<RawShape>(chullcpy, bbin);
|
||||
sl::translate(chullcpy, d);
|
||||
return sl::isInside<RawShape>(chullcpy, bin);
|
||||
}
|
||||
|
||||
bool static inline wouldFit(const RawShape& chull, const Box& bin)
|
||||
{
|
||||
auto bbch = ShapeLike::boundingBox<RawShape>(chull);
|
||||
auto bbch = sl::boundingBox<RawShape>(chull);
|
||||
return wouldFit(bbch, bin);
|
||||
}
|
||||
|
||||
|
@ -472,6 +501,17 @@ public:
|
|||
return bb.width() <= bin.width() && bb.height() <= bin.height();
|
||||
}
|
||||
|
||||
bool static inline wouldFit(const Box& bb, const _Circle<Vertex>& bin)
|
||||
{
|
||||
return sl::isInside<RawShape>(bb, bin);
|
||||
}
|
||||
|
||||
bool static inline wouldFit(const RawShape& chull,
|
||||
const _Circle<Vertex>& bin)
|
||||
{
|
||||
return sl::isInside<RawShape>(chull, bin);
|
||||
}
|
||||
|
||||
PackResult trypack(Item& item) {
|
||||
|
||||
PackResult ret;
|
||||
|
@ -510,7 +550,10 @@ public:
|
|||
std::vector<EdgeCache<RawShape>> ecache;
|
||||
ecache.reserve(nfps.size());
|
||||
|
||||
for(auto& nfp : nfps ) ecache.emplace_back(nfp);
|
||||
for(auto& nfp : nfps ) {
|
||||
ecache.emplace_back(nfp);
|
||||
ecache.back().accuracy(config_.accuracy);
|
||||
}
|
||||
|
||||
struct Optimum {
|
||||
double relpos;
|
||||
|
@ -540,14 +583,16 @@ public:
|
|||
// customizable by the library client
|
||||
auto _objfunc = config_.object_function?
|
||||
config_.object_function :
|
||||
[this](Nfp::Shapes<RawShape>& pile, Item,
|
||||
[this](Nfp::Shapes<RawShape>& pile, const Item& item,
|
||||
double occupied_area, double /*norm*/,
|
||||
double penality)
|
||||
{
|
||||
auto ch = ShapeLike::convexHull(pile);
|
||||
pile.emplace_back(item.transformedShape());
|
||||
auto ch = sl::convexHull(pile);
|
||||
pile.pop_back();
|
||||
|
||||
// The pack ratio -- how much is the convex hull occupied
|
||||
double pack_rate = occupied_area/ShapeLike::area(ch);
|
||||
double pack_rate = occupied_area/sl::area(ch);
|
||||
|
||||
// ratio of waste
|
||||
double waste = 1.0 - pack_rate;
|
||||
|
@ -569,22 +614,17 @@ public:
|
|||
d += startpos;
|
||||
item.translation(d);
|
||||
|
||||
// pile.emplace_back(item.transformedShape());
|
||||
|
||||
double occupied_area = pile_area + item.area();
|
||||
|
||||
double score = _objfunc(pile, item, occupied_area,
|
||||
norm_, penality_);
|
||||
|
||||
// pile.pop_back();
|
||||
|
||||
return score;
|
||||
};
|
||||
|
||||
opt::StopCriteria stopcr;
|
||||
stopcr.max_iterations = 1000;
|
||||
stopcr.absolute_score_difference = 1e-20*norm_;
|
||||
// stopcr.relative_score_difference = 1e-20;
|
||||
opt::TOptimizer<opt::Method::L_SIMPLEX> solver(stopcr);
|
||||
|
||||
Optimum optimum(0, 0);
|
||||
|
@ -702,34 +742,35 @@ public:
|
|||
m.reserve(items_.size());
|
||||
|
||||
for(Item& item : items_) m.emplace_back(item.transformedShape());
|
||||
auto&& bb = ShapeLike::boundingBox<RawShape>(m);
|
||||
auto&& bb = sl::boundingBox<RawShape>(m);
|
||||
|
||||
Vertex ci, cb;
|
||||
auto bbin = sl::boundingBox<RawShape>(bin_);
|
||||
|
||||
switch(config_.alignment) {
|
||||
case Config::Alignment::CENTER: {
|
||||
ci = bb.center();
|
||||
cb = bin_.center();
|
||||
cb = bbin.center();
|
||||
break;
|
||||
}
|
||||
case Config::Alignment::BOTTOM_LEFT: {
|
||||
ci = bb.minCorner();
|
||||
cb = bin_.minCorner();
|
||||
cb = bbin.minCorner();
|
||||
break;
|
||||
}
|
||||
case Config::Alignment::BOTTOM_RIGHT: {
|
||||
ci = {getX(bb.maxCorner()), getY(bb.minCorner())};
|
||||
cb = {getX(bin_.maxCorner()), getY(bin_.minCorner())};
|
||||
cb = {getX(bbin.maxCorner()), getY(bbin.minCorner())};
|
||||
break;
|
||||
}
|
||||
case Config::Alignment::TOP_LEFT: {
|
||||
ci = {getX(bb.minCorner()), getY(bb.maxCorner())};
|
||||
cb = {getX(bin_.minCorner()), getY(bin_.maxCorner())};
|
||||
cb = {getX(bbin.minCorner()), getY(bbin.maxCorner())};
|
||||
break;
|
||||
}
|
||||
case Config::Alignment::TOP_RIGHT: {
|
||||
ci = bb.maxCorner();
|
||||
cb = bin_.maxCorner();
|
||||
cb = bbin.maxCorner();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -745,31 +786,32 @@ private:
|
|||
void setInitialPosition(Item& item) {
|
||||
Box&& bb = item.boundingBox();
|
||||
Vertex ci, cb;
|
||||
auto bbin = sl::boundingBox<RawShape>(bin_);
|
||||
|
||||
switch(config_.starting_point) {
|
||||
case Config::Alignment::CENTER: {
|
||||
ci = bb.center();
|
||||
cb = bin_.center();
|
||||
cb = bbin.center();
|
||||
break;
|
||||
}
|
||||
case Config::Alignment::BOTTOM_LEFT: {
|
||||
ci = bb.minCorner();
|
||||
cb = bin_.minCorner();
|
||||
cb = bbin.minCorner();
|
||||
break;
|
||||
}
|
||||
case Config::Alignment::BOTTOM_RIGHT: {
|
||||
ci = {getX(bb.maxCorner()), getY(bb.minCorner())};
|
||||
cb = {getX(bin_.maxCorner()), getY(bin_.minCorner())};
|
||||
cb = {getX(bbin.maxCorner()), getY(bbin.minCorner())};
|
||||
break;
|
||||
}
|
||||
case Config::Alignment::TOP_LEFT: {
|
||||
ci = {getX(bb.minCorner()), getY(bb.maxCorner())};
|
||||
cb = {getX(bin_.minCorner()), getY(bin_.maxCorner())};
|
||||
cb = {getX(bbin.minCorner()), getY(bbin.maxCorner())};
|
||||
break;
|
||||
}
|
||||
case Config::Alignment::TOP_RIGHT: {
|
||||
ci = bb.maxCorner();
|
||||
cb = bin_.maxCorner();
|
||||
cb = bbin.maxCorner();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -780,7 +822,7 @@ private:
|
|||
|
||||
void placeOutsideOfBin(Item& item) {
|
||||
auto&& bb = item.boundingBox();
|
||||
Box binbb = ShapeLike::boundingBox<RawShape>(bin_);
|
||||
Box binbb = sl::boundingBox<RawShape>(bin_);
|
||||
|
||||
Vertex v = { getX(bb.maxCorner()), getY(bb.minCorner()) };
|
||||
|
||||
|
|
|
@ -535,7 +535,7 @@ public:
|
|||
// then it should be removed from the not_packed list
|
||||
{ auto it = store_.begin();
|
||||
while (it != store_.end()) {
|
||||
Placer p(bin);
|
||||
Placer p(bin); p.configure(pconfig);
|
||||
if(!p.pack(*it)) {
|
||||
it = store_.erase(it);
|
||||
} else it++;
|
||||
|
|
|
@ -59,7 +59,7 @@ public:
|
|||
// then it should be removed from the list
|
||||
{ auto it = store_.begin();
|
||||
while (it != store_.end()) {
|
||||
Placer p(bin);
|
||||
Placer p(bin); p.configure(pconfig);
|
||||
if(!p.pack(*it)) {
|
||||
it = store_.erase(it);
|
||||
} else it++;
|
||||
|
|
|
@ -530,6 +530,9 @@ bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
|
|||
// arranger.useMinimumBoundigBoxRotation();
|
||||
pcfg.rotations = { 0.0 };
|
||||
|
||||
// The accuracy of optimization. Goes from 0.0 to 1.0 and scales performance
|
||||
pcfg.accuracy = 0.8;
|
||||
|
||||
// Magic: we will specify what is the goal of arrangement... In this case
|
||||
// we override the default object function to make the larger items go into
|
||||
// the center of the pile and smaller items orbit it so the resulting pile
|
||||
|
@ -539,7 +542,7 @@ bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
|
|||
// calculate the convex hulls)
|
||||
pcfg.object_function = [bin, hasbin](
|
||||
NfpPlacer::Pile& pile, // The currently arranged pile
|
||||
Item item,
|
||||
const Item &item,
|
||||
double /*area*/, // Sum area of items (not needed)
|
||||
double norm, // A norming factor for physical dimensions
|
||||
double penality) // Min penality in case of bad arrangement
|
||||
|
|
Loading…
Reference in a new issue