Visivalingam simplification algorithm https://github.com/slic3r/Slic3r/pull/3825

thanks to @fuchstraumer
This commit is contained in:
bubnikv 2018-12-05 16:11:00 +01:00
parent 3caba66347
commit d13dca906b
2 changed files with 121 additions and 0 deletions

View file

@ -203,6 +203,126 @@ MultiPoint::_douglas_peucker(const Points &points, const double tolerance)
return results;
}
// Visivalingam simplification algorithm https://github.com/slic3r/Slic3r/pull/3825
// thanks to @fuchstraumer
/*
struct - vis_node
Used with the visivalignam simplification algorithm, which needs to be able to find a points
successors and predecessors to operate succesfully. Since this struct is only used in one
location, it could probably be dropped into a namespace to avoid polluting the slic3r namespace.
Source: https://github.com/shortsleeves/visvalingam_simplify
^ Provided original algorithm implementation. I've only changed things a bit to "clean" them up
(i.e be more like my personal style), and managed to do this without requiring a binheap implementation
*/
struct vis_node{
vis_node(const size_t& idx, const size_t& _prev_idx, const size_t& _next_idx, const double& _area) : pt_idx(idx), prev_idx(_prev_idx), next_idx(_next_idx), area(_area) {}
// Indices into a Points container, from which this object was constructed
size_t pt_idx, prev_idx, next_idx;
// Effective area of this "node"
double area;
// Overloaded operator used to sort the binheap
// Greater area = "more important" node. So, this node is less than the
// other node if it's area is less than the other node's area
bool operator<(const vis_node& other) { return (this->area < other.area); }
};
Points MultiPoint::visivalingam(const Points& pts, const double& tolerance)
{
// Make sure there's enough points in "pts" to bother with simplification.
assert(pts.size() >= 2);
// Result object
Points results;
// Lambda to calculate effective area spanned by a point and its immediate
// successor + predecessor.
auto effective_area = [pts](const size_t& curr_pt_idx, const size_t& prev_pt_idx, const size_t& next_pt_idx)->coordf_t {
const Point& curr = pts[curr_pt_idx];
const Point& prev = pts[prev_pt_idx];
const Point& next = pts[next_pt_idx];
// Use point objects as vector-distances
const Vec2d curr_to_next = (next - curr).cast<double>();
const Vec2d prev_to_next = (prev - curr).cast<double>();
// Take cross product of these two vector distances
return 0.50 * abs(cross2(curr_to_next, prev_to_next));
};
// We store the effective areas for each node
std::vector<coordf_t> areas;
areas.reserve(pts.size());
// Construct the initial set of nodes. We will make a heap out of the "heap" vector using
// std::make_heap. node_list is used later.
std::vector<vis_node*> node_list;
node_list.resize(pts.size());
std::vector<vis_node*> heap;
heap.reserve(pts.size());
for (size_t i = 1; i < pts.size() - 1; ++ i) {
// Get effective area of current node.
coordf_t area = effective_area(i, i - 1, i + 1);
// If area is greater than some arbitrarily small value, use it.
node_list[i] = new vis_node(i, i - 1, i + 1, area);
heap.push_back(node_list[i]);
}
// Call std::make_heap, which uses the < operator by default to make "heap" into
// a binheap, sorted by the < operator we defind in the vis_node struct
std::make_heap(heap.begin(), heap.end());
// Start comparing areas. Set min_area to an outrageous value initially.
double min_area = -std::numeric_limits<double>::max();
while (!heap.empty()) {
// Get current node.
vis_node* curr = heap.front();
// Pop node we just retrieved off the heap. pop_heap moves front element in vector
// to the back, so we can call pop_back()
std::pop_heap(heap.begin(), heap.end());
heap.pop_back();
// Sanity assert check
assert(curr == node_list[curr->pt_idx]);
// If the current pt'ss area is less than that of the previous pt's area
// use the last pt's area instead. This ensures we don't elimate the current
// point without eliminating the previous
min_area = std::max(min_area, curr->area);
// Update prev
vis_node* prev = node_list[curr->prev_idx];
if(prev != nullptr){
prev->next_idx = curr->next_idx;
prev->area = effective_area(prev->pt_idx, prev->prev_idx, prev->next_idx);
// For some reason, std::make_heap() is the fastest way to resort the heap. Probably needs testing.
std::make_heap(heap.begin(), heap.end());
}
// Update next
vis_node* next = node_list[curr->next_idx];
if(next != nullptr){
next->prev_idx = curr->prev_idx;
next->area = effective_area(next->pt_idx, next->prev_idx, next->next_idx);
std::make_heap(heap.begin(), heap.end());
}
areas[curr->pt_idx] = min_area;
node_list[curr->pt_idx] = nullptr;
delete curr;
}
// Clear node list and shrink_to_fit() (to free actual memory). Not necessary. Could be removed.
node_list.clear();
node_list.shrink_to_fit();
// This lambda is how we test whether or not to keep a point.
auto use_point = [areas, tolerance](const size_t& idx)->bool {
assert(idx < areas.size());
// Return true at front/back of path/areas
if(idx == 0 || idx == areas.size() - 1){
return true;
}
// Return true if area at idx is greater than minimum area to consider "valid"
else{
return areas[idx] > tolerance;
}
};
// Use previously defined lambda to build results.
for (size_t i = 0; i < pts.size(); ++i) {
if (use_point(i)){
results.push_back(pts[i]);
}
}
// Check that results has at least two points
assert(results.size() >= 2);
// Return simplified vector of points
return results;
}
void MultiPoint3::translate(double x, double y)
{
for (Vec3crd &p : points) {

View file

@ -81,6 +81,7 @@ public:
bool first_intersection(const Line& line, Point* intersection) const;
static Points _douglas_peucker(const Points &points, const double tolerance);
static Points visivalingam(const Points& pts, const double& tolerance);
};
class MultiPoint3