Visivalingam simplification algorithm https://github.com/slic3r/Slic3r/pull/3825
thanks to @fuchstraumer
This commit is contained in:
parent
3caba66347
commit
d13dca906b
2 changed files with 121 additions and 0 deletions
|
@ -203,6 +203,126 @@ MultiPoint::_douglas_peucker(const Points &points, const double tolerance)
|
||||||
return results;
|
return results;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Visivalingam simplification algorithm https://github.com/slic3r/Slic3r/pull/3825
|
||||||
|
// thanks to @fuchstraumer
|
||||||
|
/*
|
||||||
|
struct - vis_node
|
||||||
|
Used with the visivalignam simplification algorithm, which needs to be able to find a points
|
||||||
|
successors and predecessors to operate succesfully. Since this struct is only used in one
|
||||||
|
location, it could probably be dropped into a namespace to avoid polluting the slic3r namespace.
|
||||||
|
Source: https://github.com/shortsleeves/visvalingam_simplify
|
||||||
|
^ Provided original algorithm implementation. I've only changed things a bit to "clean" them up
|
||||||
|
(i.e be more like my personal style), and managed to do this without requiring a binheap implementation
|
||||||
|
*/
|
||||||
|
struct vis_node{
|
||||||
|
vis_node(const size_t& idx, const size_t& _prev_idx, const size_t& _next_idx, const double& _area) : pt_idx(idx), prev_idx(_prev_idx), next_idx(_next_idx), area(_area) {}
|
||||||
|
// Indices into a Points container, from which this object was constructed
|
||||||
|
size_t pt_idx, prev_idx, next_idx;
|
||||||
|
// Effective area of this "node"
|
||||||
|
double area;
|
||||||
|
// Overloaded operator used to sort the binheap
|
||||||
|
// Greater area = "more important" node. So, this node is less than the
|
||||||
|
// other node if it's area is less than the other node's area
|
||||||
|
bool operator<(const vis_node& other) { return (this->area < other.area); }
|
||||||
|
};
|
||||||
|
Points MultiPoint::visivalingam(const Points& pts, const double& tolerance)
|
||||||
|
{
|
||||||
|
// Make sure there's enough points in "pts" to bother with simplification.
|
||||||
|
assert(pts.size() >= 2);
|
||||||
|
// Result object
|
||||||
|
Points results;
|
||||||
|
// Lambda to calculate effective area spanned by a point and its immediate
|
||||||
|
// successor + predecessor.
|
||||||
|
auto effective_area = [pts](const size_t& curr_pt_idx, const size_t& prev_pt_idx, const size_t& next_pt_idx)->coordf_t {
|
||||||
|
const Point& curr = pts[curr_pt_idx];
|
||||||
|
const Point& prev = pts[prev_pt_idx];
|
||||||
|
const Point& next = pts[next_pt_idx];
|
||||||
|
// Use point objects as vector-distances
|
||||||
|
const Vec2d curr_to_next = (next - curr).cast<double>();
|
||||||
|
const Vec2d prev_to_next = (prev - curr).cast<double>();
|
||||||
|
// Take cross product of these two vector distances
|
||||||
|
return 0.50 * abs(cross2(curr_to_next, prev_to_next));
|
||||||
|
};
|
||||||
|
// We store the effective areas for each node
|
||||||
|
std::vector<coordf_t> areas;
|
||||||
|
areas.reserve(pts.size());
|
||||||
|
// Construct the initial set of nodes. We will make a heap out of the "heap" vector using
|
||||||
|
// std::make_heap. node_list is used later.
|
||||||
|
std::vector<vis_node*> node_list;
|
||||||
|
node_list.resize(pts.size());
|
||||||
|
std::vector<vis_node*> heap;
|
||||||
|
heap.reserve(pts.size());
|
||||||
|
for (size_t i = 1; i < pts.size() - 1; ++ i) {
|
||||||
|
// Get effective area of current node.
|
||||||
|
coordf_t area = effective_area(i, i - 1, i + 1);
|
||||||
|
// If area is greater than some arbitrarily small value, use it.
|
||||||
|
node_list[i] = new vis_node(i, i - 1, i + 1, area);
|
||||||
|
heap.push_back(node_list[i]);
|
||||||
|
}
|
||||||
|
// Call std::make_heap, which uses the < operator by default to make "heap" into
|
||||||
|
// a binheap, sorted by the < operator we defind in the vis_node struct
|
||||||
|
std::make_heap(heap.begin(), heap.end());
|
||||||
|
// Start comparing areas. Set min_area to an outrageous value initially.
|
||||||
|
double min_area = -std::numeric_limits<double>::max();
|
||||||
|
while (!heap.empty()) {
|
||||||
|
// Get current node.
|
||||||
|
vis_node* curr = heap.front();
|
||||||
|
// Pop node we just retrieved off the heap. pop_heap moves front element in vector
|
||||||
|
// to the back, so we can call pop_back()
|
||||||
|
std::pop_heap(heap.begin(), heap.end());
|
||||||
|
heap.pop_back();
|
||||||
|
// Sanity assert check
|
||||||
|
assert(curr == node_list[curr->pt_idx]);
|
||||||
|
// If the current pt'ss area is less than that of the previous pt's area
|
||||||
|
// use the last pt's area instead. This ensures we don't elimate the current
|
||||||
|
// point without eliminating the previous
|
||||||
|
min_area = std::max(min_area, curr->area);
|
||||||
|
// Update prev
|
||||||
|
vis_node* prev = node_list[curr->prev_idx];
|
||||||
|
if(prev != nullptr){
|
||||||
|
prev->next_idx = curr->next_idx;
|
||||||
|
prev->area = effective_area(prev->pt_idx, prev->prev_idx, prev->next_idx);
|
||||||
|
// For some reason, std::make_heap() is the fastest way to resort the heap. Probably needs testing.
|
||||||
|
std::make_heap(heap.begin(), heap.end());
|
||||||
|
}
|
||||||
|
// Update next
|
||||||
|
vis_node* next = node_list[curr->next_idx];
|
||||||
|
if(next != nullptr){
|
||||||
|
next->prev_idx = curr->prev_idx;
|
||||||
|
next->area = effective_area(next->pt_idx, next->prev_idx, next->next_idx);
|
||||||
|
std::make_heap(heap.begin(), heap.end());
|
||||||
|
}
|
||||||
|
areas[curr->pt_idx] = min_area;
|
||||||
|
node_list[curr->pt_idx] = nullptr;
|
||||||
|
delete curr;
|
||||||
|
}
|
||||||
|
// Clear node list and shrink_to_fit() (to free actual memory). Not necessary. Could be removed.
|
||||||
|
node_list.clear();
|
||||||
|
node_list.shrink_to_fit();
|
||||||
|
// This lambda is how we test whether or not to keep a point.
|
||||||
|
auto use_point = [areas, tolerance](const size_t& idx)->bool {
|
||||||
|
assert(idx < areas.size());
|
||||||
|
// Return true at front/back of path/areas
|
||||||
|
if(idx == 0 || idx == areas.size() - 1){
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
// Return true if area at idx is greater than minimum area to consider "valid"
|
||||||
|
else{
|
||||||
|
return areas[idx] > tolerance;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
// Use previously defined lambda to build results.
|
||||||
|
for (size_t i = 0; i < pts.size(); ++i) {
|
||||||
|
if (use_point(i)){
|
||||||
|
results.push_back(pts[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Check that results has at least two points
|
||||||
|
assert(results.size() >= 2);
|
||||||
|
// Return simplified vector of points
|
||||||
|
return results;
|
||||||
|
}
|
||||||
|
|
||||||
void MultiPoint3::translate(double x, double y)
|
void MultiPoint3::translate(double x, double y)
|
||||||
{
|
{
|
||||||
for (Vec3crd &p : points) {
|
for (Vec3crd &p : points) {
|
||||||
|
|
|
@ -81,6 +81,7 @@ public:
|
||||||
bool first_intersection(const Line& line, Point* intersection) const;
|
bool first_intersection(const Line& line, Point* intersection) const;
|
||||||
|
|
||||||
static Points _douglas_peucker(const Points &points, const double tolerance);
|
static Points _douglas_peucker(const Points &points, const double tolerance);
|
||||||
|
static Points visivalingam(const Points& pts, const double& tolerance);
|
||||||
};
|
};
|
||||||
|
|
||||||
class MultiPoint3
|
class MultiPoint3
|
||||||
|
|
Loading…
Reference in a new issue