WIP: Improvement in path planning

reorder_by_three_exchanges_with_segment_flipping()
works, but it is excessively slow, with close to O(n^3) time complexity.
Commited, but not used in production until sped up.
This commit is contained in:
bubnikv 2019-11-25 15:55:59 +01:00
parent 2b17e81f13
commit d3ec53d9a6

View file

@ -1333,6 +1333,82 @@ static inline std::pair<double, size_t> minimum_crossover_cost(
return std::make_pair(cost_min, flip_min);
}
static inline std::pair<double, size_t> minimum_crossover_cost(
const std::vector<FlipEdge> &edges,
const std::pair<size_t, size_t> &span1, const ConnectionCost &cost1,
const std::pair<size_t, size_t> &span2, const ConnectionCost &cost2,
const std::pair<size_t, size_t> &span3, const ConnectionCost &cost3,
const std::pair<size_t, size_t> &span4, const ConnectionCost &cost4,
const double cost_current)
{
auto connection_cost = [&edges](
const std::pair<size_t, size_t> &span1, const ConnectionCost &cost1, bool reversed1, bool flipped1,
const std::pair<size_t, size_t> &span2, const ConnectionCost &cost2, bool reversed2, bool flipped2,
const std::pair<size_t, size_t> &span3, const ConnectionCost &cost3, bool reversed3, bool flipped3,
const std::pair<size_t, size_t> &span4, const ConnectionCost &cost4, bool reversed4, bool flipped4) {
auto first_point = [&edges](const std::pair<size_t, size_t> &span, bool flipped) { return flipped ? edges[span.first].p2 : edges[span.first].p1; };
auto last_point = [&edges](const std::pair<size_t, size_t> &span, bool flipped) { return flipped ? edges[span.second - 1].p1 : edges[span.second - 1].p2; };
auto point = [first_point, last_point](const std::pair<size_t, size_t> &span, bool start, bool flipped) { return start ? first_point(span, flipped) : last_point(span, flipped); };
auto cost = [](const ConnectionCost &acost, bool flipped) {
assert(acost.cost >= 0. && acost.cost_flipped >= 0.);
return flipped ? acost.cost_flipped : acost.cost;
};
// Ignore reversed single segment spans.
auto simple_span_ignore = [](const std::pair<size_t, size_t>& span, bool reversed) {
return span.first + 1 == span.second && reversed;
};
assert(span1.first < span1.second);
assert(span2.first < span2.second);
assert(span3.first < span3.second);
assert(span4.first < span4.second);
return
simple_span_ignore(span1, reversed1) || simple_span_ignore(span2, reversed2) || simple_span_ignore(span3, reversed3) || simple_span_ignore(span4, reversed4) ?
// Don't perform unnecessary calculations simulating reversion of single segment spans.
std::numeric_limits<double>::max() :
// Calculate the cost of reverting chains and / or flipping segment orientations.
cost(cost1, flipped1) + cost(cost2, flipped2) + cost(cost3, flipped3) + cost(cost4, flipped4) +
(point(span2, ! reversed2, flipped2) - point(span1, reversed1, flipped1)).norm() +
(point(span3, ! reversed3, flipped3) - point(span2, reversed2, flipped2)).norm() +
(point(span4, ! reversed4, flipped4) - point(span3, reversed3, flipped3)).norm();
};
#ifndef NDEBUG
{
double c = connection_cost(span1, cost1, false, false, span2, cost2, false, false, span3, cost3, false, false, span4, cost4, false, false);
assert(std::abs(c - cost_current) < SCALED_EPSILON);
}
#endif /* NDEBUG */
double cost_min = cost_current;
size_t flip_min = 0; // no flip, no improvement
for (size_t i = 0; i < (1 << 8); ++ i) {
// From the three combinations of 1,2,3 ordering, the other three are reversals of the first three.
size_t permutation = 0;
for (double c : {
(i == 0) ? cost_current :
connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, cost2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, cost3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, cost2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, cost4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, cost3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, cost3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, cost2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, cost3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, cost4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span2, cost2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span4, cost4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, cost2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, cost3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span4, cost4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, cost3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span2, cost2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
connection_cost(span2, cost2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, cost1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, cost3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
connection_cost(span2, cost2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, cost1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, cost4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, cost3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
connection_cost(span2, cost2, (i & 1) != 0, (i & (1 << 1)) != 0, span3, cost3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, cost1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
connection_cost(span2, cost2, (i & 1) != 0, (i & (1 << 1)) != 0, span4, cost4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, cost1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, cost3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
connection_cost(span3, cost3, (i & 1) != 0, (i & (1 << 1)) != 0, span1, cost1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, cost2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
connection_cost(span3, cost3, (i & 1) != 0, (i & (1 << 1)) != 0, span2, cost2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, cost1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0)
}) {
if (c < cost_min) {
cost_min = c;
flip_min = i + (permutation << 8);
}
++ permutation;
}
}
return std::make_pair(cost_min, flip_min);
}
static inline void do_crossover(const std::vector<FlipEdge> &edges_in, std::vector<FlipEdge> &edges_out,
const std::pair<size_t, size_t> &span1, const std::pair<size_t, size_t> &span2, const std::pair<size_t, size_t> &span3,
size_t i)
@ -1374,6 +1450,79 @@ static inline void do_crossover(const std::vector<FlipEdge> &edges_in, std::vect
assert(edges_in.size() == edges_out.size());
}
static inline void do_crossover(const std::vector<FlipEdge> &edges_in, std::vector<FlipEdge> &edges_out,
const std::pair<size_t, size_t> &span1, const std::pair<size_t, size_t> &span2, const std::pair<size_t, size_t> &span3, const std::pair<size_t, size_t> &span4,
size_t i)
{
assert(edges_in.size() == edges_out.size());
auto do_it = [&edges_in, &edges_out](
const std::pair<size_t, size_t> &span1, bool reversed1, bool flipped1,
const std::pair<size_t, size_t> &span2, bool reversed2, bool flipped2,
const std::pair<size_t, size_t> &span3, bool reversed3, bool flipped3,
const std::pair<size_t, size_t> &span4, bool reversed4, bool flipped4) {
auto it_edges_out = edges_out.begin();
auto copy_span = [&edges_in, &edges_out, &it_edges_out](std::pair<size_t, size_t> span, bool reversed, bool flipped) {
assert(span.first < span.second);
auto it = it_edges_out;
if (reversed)
std::reverse_copy(edges_in.begin() + span.first, edges_in.begin() + span.second, it_edges_out);
else
std::copy (edges_in.begin() + span.first, edges_in.begin() + span.second, it_edges_out);
it_edges_out += span.second - span.first;
if (reversed != flipped) {
for (; it != it_edges_out; ++ it)
it->flip();
}
};
copy_span(span1, reversed1, flipped1);
copy_span(span2, reversed2, flipped2);
copy_span(span3, reversed3, flipped3);
copy_span(span4, reversed4, flipped4);
};
switch (i >> 8) {
case 0:
assert(i != 0); // otherwise it would be a no-op
do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
break;
case 1:
do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
break;
case 2:
do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
break;
case 3:
do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
break;
case 4:
do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
break;
case 5:
do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
break;
case 6:
do_it(span2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
break;
case 7:
do_it(span2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
break;
case 8:
do_it(span2, (i & 1) != 0, (i & (1 << 1)) != 0, span3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
break;
case 9:
do_it(span2, (i & 1) != 0, (i & (1 << 1)) != 0, span4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
break;
case 10:
do_it(span3, (i & 1) != 0, (i & (1 << 1)) != 0, span1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
break;
default:
assert((i >> 8) == 11);
do_it(span3, (i & 1) != 0, (i & (1 << 1)) != 0, span2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
break;
}
assert(edges_in.size() == edges_out.size());
}
static inline void reorder_by_two_exchanges_with_segment_flipping(std::vector<FlipEdge> &edges)
{
if (edges.size() < 2)
@ -1448,6 +1597,90 @@ static inline void reorder_by_two_exchanges_with_segment_flipping(std::vector<Fl
}
}
static inline void reorder_by_three_exchanges_with_segment_flipping(std::vector<FlipEdge> &edges)
{
if (edges.size() < 3) {
reorder_by_two_exchanges_with_segment_flipping(edges);
return;
}
std::vector<ConnectionCost> connections(edges.size());
std::vector<FlipEdge> edges_tmp(edges);
std::vector<std::pair<double, size_t>> connection_lengths(edges.size() - 1, std::pair<double, size_t>(0., 0));
std::vector<char> connection_tried(edges.size(), false);
for (size_t iter = 0; iter < edges.size(); ++ iter) {
// Initialize connection costs and connection lengths.
for (size_t i = 1; i < edges.size(); ++ i) {
const FlipEdge &e1 = edges[i - 1];
const FlipEdge &e2 = edges[i];
ConnectionCost &c = connections[i];
c = connections[i - 1];
double l = (e2.p1 - e1.p2).norm();
c.cost += l;
c.cost_flipped += (e2.p2 - e1.p1).norm();
connection_lengths[i - 1] = std::make_pair(l, i);
}
std::sort(connection_lengths.begin(), connection_lengths.end(), [](const std::pair<double, size_t> &l, const std::pair<double, size_t> &r) { return l.first > r.first; });
std::fill(connection_tried.begin(), connection_tried.end(), false);
size_t crossover1_pos_final = std::numeric_limits<size_t>::max();
size_t crossover2_pos_final = std::numeric_limits<size_t>::max();
size_t crossover3_pos_final = std::numeric_limits<size_t>::max();
size_t crossover_flip_final = 0;
for (const std::pair<double, size_t> &first_crossover_candidate : connection_lengths) {
double longest_connection_length = first_crossover_candidate.first;
size_t longest_connection_idx = first_crossover_candidate.second;
connection_tried[longest_connection_idx] = true;
// Find the second crossover connection with the lowest total chain cost.
size_t crossover_pos_min = std::numeric_limits<size_t>::max();
double crossover_cost_min = connections.back().cost;
for (size_t j = 1; j < connections.size(); ++ j)
if (! connection_tried[j]) {
for (size_t k = j + 1; k < connections.size(); ++ k)
if (! connection_tried[k]) {
size_t a = longest_connection_idx;
size_t b = j;
size_t c = k;
if (a > c)
std::swap(a, c);
if (a > b)
std::swap(a, b);
if (b > c)
std::swap(b, c);
std::pair<double, size_t> cost_and_flip = minimum_crossover_cost(edges,
std::make_pair(size_t(0), a), connections[a - 1], std::make_pair(a, b), connections[b - 1] - connections[a],
std::make_pair(b, c), connections[c - 1] - connections[b], std::make_pair(c, edges.size()), connections.back() - connections[c],
connections.back().cost);
if (cost_and_flip.second > 0 && cost_and_flip.first < crossover_cost_min) {
crossover_cost_min = cost_and_flip.first;
crossover1_pos_final = a;
crossover2_pos_final = b;
crossover3_pos_final = c;
crossover_flip_final = cost_and_flip.second;
assert(crossover_cost_min < connections.back().cost + EPSILON);
}
}
}
if (crossover_flip_final > 0) {
// The cost of the chain with the proposed two crossovers has a lower total cost than the current chain. Apply the crossover.
break;
} else {
// Continue with another long candidate edge.
}
}
if (crossover_flip_final > 0) {
// Pair of cross over positions and flip / reverse constellation has been found, which improves the total cost of the connection.
// Perform a crossover.
do_crossover(edges, edges_tmp, std::make_pair(size_t(0), crossover1_pos_final), std::make_pair(crossover1_pos_final, crossover2_pos_final),
std::make_pair(crossover2_pos_final, crossover3_pos_final), std::make_pair(crossover3_pos_final, edges.size()), crossover_flip_final);
edges.swap(edges_tmp);
} else {
// No valid pair of cross over positions was found improving the total cost. Giving up.
break;
}
}
}
// Flip the sequences of polylines to lower the total length of connecting lines.
static inline void improve_ordering_by_two_exchanges_with_segment_flipping(Polylines &polylines, bool fixed_start)
{
@ -1471,7 +1704,11 @@ static inline void improve_ordering_by_two_exchanges_with_segment_flipping(Polyl
edges.reserve(polylines.size());
std::transform(polylines.begin(), polylines.end(), std::back_inserter(edges),
[&polylines](const Polyline &pl){ return FlipEdge(pl.first_point().cast<double>(), pl.last_point().cast<double>(), &pl - polylines.data()); });
#if 1
reorder_by_two_exchanges_with_segment_flipping(edges);
#else
reorder_by_three_exchanges_with_segment_flipping(edges);
#endif
Polylines out;
out.reserve(polylines.size());
for (const FlipEdge &edge : edges) {