Modified function thick_lines_to_indexed_vertex_array() to remove visual artifacts on paths in gcode preview

This commit is contained in:
Enrico Turri 2019-07-01 08:33:40 +02:00
parent 61080bcff6
commit d7c418ef84

View File

@ -1031,8 +1031,6 @@ static void thick_lines_to_indexed_vertex_array(
for (size_t ii = 0; ii < lines_end; ++ ii) { for (size_t ii = 0; ii < lines_end; ++ ii) {
size_t i = (ii == lines.size()) ? 0 : ii; size_t i = (ii == lines.size()) ? 0 : ii;
const Line &line = lines[i]; const Line &line = lines[i];
double len = unscale<double>(line.length());
double inv_len = 1.0 / len;
double bottom_z = top_z - heights[i]; double bottom_z = top_z - heights[i];
double middle_z = 0.5 * (top_z + bottom_z); double middle_z = 0.5 * (top_z + bottom_z);
double width = widths[i]; double width = widths[i];
@ -1041,8 +1039,7 @@ static void thick_lines_to_indexed_vertex_array(
bool is_last = (ii == lines_end - 1); bool is_last = (ii == lines_end - 1);
bool is_closing = closed && is_last; bool is_closing = closed && is_last;
Vec2d v = unscale(line.vector()); Vec2d v = unscale(line.vector()).normalized();
v *= inv_len;
Vec2d a = unscale(line.a); Vec2d a = unscale(line.a);
Vec2d b = unscale(line.b); Vec2d b = unscale(line.b);
@ -1061,9 +1058,7 @@ static void thick_lines_to_indexed_vertex_array(
} }
// calculate new XY normals // calculate new XY normals
Vector n = line.normal(); Vec2d xy_right_normal = unscale(line.normal()).normalized();
Vec3d xy_right_normal = unscale(n(0), n(1), 0);
xy_right_normal *= inv_len;
int idx_a[4]; int idx_a[4];
int idx_b[4]; int idx_b[4];
@ -1091,9 +1086,9 @@ static void thick_lines_to_indexed_vertex_array(
idx_a[BOTTOM] = idx_last ++; idx_a[BOTTOM] = idx_last ++;
volume.push_geometry(a(0), a(1), bottom_z, 0., 0., -1.); volume.push_geometry(a(0), a(1), bottom_z, 0., 0., -1.);
idx_a[LEFT ] = idx_last ++; idx_a[LEFT ] = idx_last ++;
volume.push_geometry(a2(0), a2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), -xy_right_normal(2)); volume.push_geometry(a2(0), a2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), 0.0);
idx_a[RIGHT] = idx_last ++; idx_a[RIGHT] = idx_last ++;
volume.push_geometry(a1(0), a1(1), middle_z, xy_right_normal(0), xy_right_normal(1), xy_right_normal(2)); volume.push_geometry(a1(0), a1(1), middle_z, xy_right_normal(0), xy_right_normal(1), 0.0);
} }
else { else {
idx_a[BOTTOM] = idx_prev[BOTTOM]; idx_a[BOTTOM] = idx_prev[BOTTOM];
@ -1108,18 +1103,29 @@ static void thick_lines_to_indexed_vertex_array(
// Continuing a previous segment. // Continuing a previous segment.
// Share left / right vertices if possible. // Share left / right vertices if possible.
double v_dot = v_prev.dot(v); double v_dot = v_prev.dot(v);
bool sharp = v_dot < 0.707; // sin(45 degrees) bool sharp = v_dot < 0.9999; // v_dot < 0.9999; // cos(1 degree)
if (sharp) { if (sharp) {
if (!bottom_z_different) if (!bottom_z_different)
{ {
// Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn. // Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn.
idx_a[RIGHT] = idx_last++; idx_a[RIGHT] = idx_last++;
volume.push_geometry(a1(0), a1(1), middle_z, xy_right_normal(0), xy_right_normal(1), xy_right_normal(2)); volume.push_geometry(a1(0), a1(1), middle_z, xy_right_normal(0), xy_right_normal(1), 0.0);
idx_a[LEFT] = idx_last++; idx_a[LEFT] = idx_last++;
volume.push_geometry(a2(0), a2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), -xy_right_normal(2)); volume.push_geometry(a2(0), a2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), 0.0);
if (cross2(v_prev, v) > 0.) {
// Right turn. Fill in the right turn wedge.
volume.push_triangle(idx_prev[RIGHT], idx_a[RIGHT], idx_prev[TOP]);
volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a[RIGHT]);
}
else {
// Left turn. Fill in the left turn wedge.
volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a[LEFT]);
volume.push_triangle(idx_prev[LEFT], idx_a[LEFT], idx_prev[BOTTOM]);
} }
} }
if (v_dot > 0.9) { }
else
{
if (!bottom_z_different) if (!bottom_z_different)
{ {
// The two successive segments are nearly collinear. // The two successive segments are nearly collinear.
@ -1127,45 +1133,6 @@ static void thick_lines_to_indexed_vertex_array(
idx_a[RIGHT] = idx_prev[RIGHT]; idx_a[RIGHT] = idx_prev[RIGHT];
} }
} }
else if (!sharp) {
if (!bottom_z_different)
{
// Create a sharp corner with an overshot and average the left / right normals.
// At the crease angle of 45 degrees, the overshot at the corner will be less than (1-1/cos(PI/8)) = 8.2% over an arc.
Vec2d intersection(Vec2d::Zero());
Geometry::ray_ray_intersection(b1_prev, v_prev, a1, v, intersection);
a1 = intersection;
a2 = 2. * a - intersection;
assert((a - a1).norm() < width);
assert((a - a2).norm() < width);
float *n_left_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT ] * 6;
float *p_left_prev = n_left_prev + 3;
float *n_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6;
float *p_right_prev = n_right_prev + 3;
p_left_prev [0] = float(a2(0));
p_left_prev [1] = float(a2(1));
p_right_prev[0] = float(a1(0));
p_right_prev[1] = float(a1(1));
xy_right_normal(0) += n_right_prev[0];
xy_right_normal(1) += n_right_prev[1];
xy_right_normal *= 1. / xy_right_normal.norm();
n_left_prev [0] = float(-xy_right_normal(0));
n_left_prev [1] = float(-xy_right_normal(1));
n_right_prev[0] = float( xy_right_normal(0));
n_right_prev[1] = float( xy_right_normal(1));
idx_a[LEFT ] = idx_prev[LEFT ];
idx_a[RIGHT] = idx_prev[RIGHT];
}
}
else if (cross2(v_prev, v) > 0.) {
// Right turn. Fill in the right turn wedge.
volume.push_triangle(idx_prev[RIGHT], idx_a [RIGHT], idx_prev[TOP] );
volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a [RIGHT] );
} else {
// Left turn. Fill in the left turn wedge.
volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a [LEFT] );
volume.push_triangle(idx_prev[LEFT], idx_a [LEFT], idx_prev[BOTTOM]);
}
if (is_closing) { if (is_closing) {
if (!sharp) { if (!sharp) {
if (!bottom_z_different) if (!bottom_z_different)
@ -1204,9 +1171,9 @@ static void thick_lines_to_indexed_vertex_array(
} }
// Generate new vertices for the end of this line segment. // Generate new vertices for the end of this line segment.
idx_b[LEFT ] = idx_last ++; idx_b[LEFT ] = idx_last ++;
volume.push_geometry(b2(0), b2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), -xy_right_normal(2)); volume.push_geometry(b2(0), b2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), 0.0);
idx_b[RIGHT ] = idx_last ++; idx_b[RIGHT ] = idx_last ++;
volume.push_geometry(b1(0), b1(1), middle_z, xy_right_normal(0), xy_right_normal(1), xy_right_normal(2)); volume.push_geometry(b1(0), b1(1), middle_z, xy_right_normal(0), xy_right_normal(1), 0.0);
memcpy(idx_prev, idx_b, 4 * sizeof(int)); memcpy(idx_prev, idx_b, 4 * sizeof(int));
bottom_z_prev = bottom_z; bottom_z_prev = bottom_z;
@ -1289,18 +1256,19 @@ static void thick_lines_to_indexed_vertex_array(const Lines3& lines,
Vec3d n_top = Vec3d::Zero(); Vec3d n_top = Vec3d::Zero();
Vec3d n_right = Vec3d::Zero(); Vec3d n_right = Vec3d::Zero();
Vec3d unit_positive_z(0.0, 0.0, 1.0);
if ((line.a(0) == line.b(0)) && (line.a(1) == line.b(1))) if ((line.a(0) == line.b(0)) && (line.a(1) == line.b(1)))
{ {
// vertical segment // vertical segment
n_right = (line.a(2) < line.b(2)) ? Vec3d(-1.0, 0.0, 0.0) : Vec3d(1.0, 0.0, 0.0); n_top = Vec3d::UnitY();
n_top = Vec3d(0.0, 1.0, 0.0); n_right = Vec3d::UnitX();
if (line.a(2) < line.b(2))
n_right = -n_right;
} }
else else
{ {
// generic segment // horizontal segment
n_right = unit_v.cross(unit_positive_z).normalized(); n_right = unit_v.cross(Vec3d::UnitZ()).normalized();
n_top = n_right.cross(unit_v).normalized(); n_top = n_right.cross(unit_v).normalized();
} }
@ -1361,7 +1329,7 @@ static void thick_lines_to_indexed_vertex_array(const Lines3& lines,
// Continuing a previous segment. // Continuing a previous segment.
// Share left / right vertices if possible. // Share left / right vertices if possible.
double v_dot = unit_v_prev.dot(unit_v); double v_dot = unit_v_prev.dot(unit_v);
bool is_sharp = v_dot < 0.707; // sin(45 degrees) bool is_sharp = v_dot < 0.9999; // v_dot < 0.9999; // cos(1 degree)
bool is_right_turn = n_top_prev.dot(unit_v_prev.cross(unit_v)) > 0.0; bool is_right_turn = n_top_prev.dot(unit_v_prev.cross(unit_v)) > 0.0;
if (is_sharp) if (is_sharp)
@ -1371,54 +1339,8 @@ static void thick_lines_to_indexed_vertex_array(const Lines3& lines,
volume.push_geometry(a[RIGHT], n_right); volume.push_geometry(a[RIGHT], n_right);
idx_a[LEFT] = idx_last++; idx_a[LEFT] = idx_last++;
volume.push_geometry(a[LEFT], n_left); volume.push_geometry(a[LEFT], n_left);
}
if (v_dot > 0.9) if (is_right_turn)
{
// The two successive segments are nearly collinear.
idx_a[LEFT] = idx_prev[LEFT];
idx_a[RIGHT] = idx_prev[RIGHT];
}
else if (!is_sharp)
{
// Create a sharp corner with an overshot and average the left / right normals.
// At the crease angle of 45 degrees, the overshot at the corner will be less than (1-1/cos(PI/8)) = 8.2% over an arc.
// averages normals
Vec3d average_n_right = 0.5 * (n_right + n_right_prev).normalized();
Vec3d average_n_left = -average_n_right;
Vec3d average_rl_displacement = 0.5 * width * average_n_right;
// updates vertices around a
a[RIGHT] = l_a + average_rl_displacement;
a[LEFT] = l_a - average_rl_displacement;
// updates previous line normals
float* normal_left_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT] * 6;
normal_left_prev[0] = float(average_n_left(0));
normal_left_prev[1] = float(average_n_left(1));
normal_left_prev[2] = float(average_n_left(2));
float* normal_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6;
normal_right_prev[0] = float(average_n_right(0));
normal_right_prev[1] = float(average_n_right(1));
normal_right_prev[2] = float(average_n_right(2));
// updates previous line's vertices around b
float* b_left_prev = normal_left_prev + 3;
b_left_prev[0] = float(a[LEFT](0));
b_left_prev[1] = float(a[LEFT](1));
b_left_prev[2] = float(a[LEFT](2));
float* b_right_prev = normal_right_prev + 3;
b_right_prev[0] = float(a[RIGHT](0));
b_right_prev[1] = float(a[RIGHT](1));
b_right_prev[2] = float(a[RIGHT](2));
idx_a[LEFT] = idx_prev[LEFT];
idx_a[RIGHT] = idx_prev[RIGHT];
}
else if (is_right_turn)
{ {
// Right turn. Fill in the right turn wedge. // Right turn. Fill in the right turn wedge.
volume.push_triangle(idx_prev[RIGHT], idx_a[RIGHT], idx_prev[TOP]); volume.push_triangle(idx_prev[RIGHT], idx_a[RIGHT], idx_prev[TOP]);
@ -1430,6 +1352,13 @@ static void thick_lines_to_indexed_vertex_array(const Lines3& lines,
volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a[LEFT]); volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a[LEFT]);
volume.push_triangle(idx_prev[LEFT], idx_a[LEFT], idx_prev[BOTTOM]); volume.push_triangle(idx_prev[LEFT], idx_a[LEFT], idx_prev[BOTTOM]);
} }
}
else
{
// The two successive segments are nearly collinear.
idx_a[LEFT] = idx_prev[LEFT];
idx_a[RIGHT] = idx_prev[RIGHT];
}
if (ii == lines.size()) if (ii == lines.size())
{ {