diff --git a/lib/Slic3r/GUI/3DScene.pm b/lib/Slic3r/GUI/3DScene.pm index 81bacd290..821dc7b16 100644 --- a/lib/Slic3r/GUI/3DScene.pm +++ b/lib/Slic3r/GUI/3DScene.pm @@ -1725,19 +1725,19 @@ sub _vertex_shader_Gouraud { return <<'VERTEX'; #version 110 -#define INTENSITY_CORRECTION 0.7 +#define INTENSITY_CORRECTION 0.6 // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SPECULAR (0.5 * INTENSITY_CORRECTION) -#define LIGHT_TOP_SHININESS 50. +#define LIGHT_TOP_SPECULAR (0.25 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SHININESS 200.0 // normalized values for (1./1.43, 0.2/1.43, 1./1.43) const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) -#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION) -#define LIGHT_FRONT_SHININESS 50. +//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION) +//#define LIGHT_FRONT_SHININESS 5.0 #define INTENSITY_AMBIENT 0.3 @@ -1761,15 +1761,14 @@ varying vec3 delta_box_max; void main() { - // position in camera space - vec3 eye = (gl_ModelViewMatrix * gl_Vertex).xyz; + vec3 eye = -normalize((gl_ModelViewMatrix * gl_Vertex).xyz); // First transform the normal into camera space and normalize the result. vec3 normal = normalize(gl_NormalMatrix * gl_Normal); // Now normalize the light's direction. Note that according to the OpenGL specification, the light is stored in eye space. // Also since we're talking about a directional light, the position field is actually direction. - vec3 halfVector = normalize(LIGHT_TOP_DIR - eye); + vec3 halfVector = normalize(LIGHT_TOP_DIR + eye); // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. @@ -1904,17 +1903,19 @@ sub _vertex_shader_variable_layer_height { return <<'VERTEX'; #version 110 +#define INTENSITY_CORRECTION 0.6 + const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); -#define LIGHT_TOP_DIFFUSE 0.2 -#define LIGHT_TOP_SPECULAR 0.3 -#define LIGHT_TOP_SHININESS 50. +#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SPECULAR (0.25 * INTENSITY_CORRECTION) +#define LIGHT_TOP_SHININESS 200.0 const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); -#define LIGHT_FRONT_DIFFUSE 0.5 -#define LIGHT_FRONT_SPECULAR 0.3 -#define LIGHT_FRONT_SHININESS 50. +#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) +//#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION) +//#define LIGHT_FRONT_SHININESS 5.0 -#define INTENSITY_AMBIENT 0.1 +#define INTENSITY_AMBIENT 0.3 uniform float z_to_texture_row; @@ -1925,15 +1926,14 @@ varying float object_z; void main() { - // position in camera space - vec3 eye = (gl_ModelViewMatrix * gl_Vertex).xyz; + vec3 eye = -normalize((gl_ModelViewMatrix * gl_Vertex).xyz); // First transform the normal into camera space and normalize the result. vec3 normal = normalize(gl_NormalMatrix * gl_Normal); // Now normalize the light's direction. Note that according to the OpenGL specification, the light is stored in eye space. // Also since we're talking about a directional light, the position field is actually direction. - vec3 halfVector = normalize(LIGHT_TOP_DIR - eye); + vec3 halfVector = normalize(LIGHT_TOP_DIR + eye); // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.