Some refactoring

This commit is contained in:
tamasmeszaros 2018-12-13 15:33:39 +01:00
parent ef04e558a7
commit dd3c485965
2 changed files with 34 additions and 44 deletions

View file

@ -19,7 +19,6 @@
namespace Slic3r {
using SlicedModel = SlicedSupports;
using SupportTreePtr = std::unique_ptr<sla::SLASupportTree>;
class SLAPrintObject::SupportData {
@ -510,8 +509,6 @@ void SLAPrint::process()
return;
}
auto& emesh = po.m_supportdata->emesh;
auto& pts = po.m_supportdata->support_points; // nowhere filled yet
try {
sla::SupportConfig scfg = make_support_cfg(po.m_config);
sla::Controller ctl;
@ -534,7 +531,8 @@ void SLAPrint::process()
ctl.cancelfn = [this]() { throw_if_canceled(); };
po.m_supportdata->support_tree_ptr.reset(
new SLASupportTree(pts, emesh, scfg, ctl));
new SLASupportTree(po.m_supportdata->support_points,
po.m_supportdata->emesh, scfg, ctl));
// Create the unified mesh
auto rc = SlicingStatus::RELOAD_SCENE;
@ -581,12 +579,6 @@ void SLAPrint::process()
po.m_supportdata->support_tree_ptr->add_pad(bp, pcfg);
}
// // if the base pool (which means also the support tree) is
// // done, do a refresh when indicating progress. Now the
// // geometries for the supports and the optional base pad are
// // ready. We can grant access for the control thread to read
// // the geometries, but first we have to update the caches:
// po.support_mesh(); /*po->pad_mesh();*/
po.throw_if_canceled();
auto rc = SlicingStatus::RELOAD_SCENE;
set_status(-1, L("Visualizing supports"), rc);
@ -609,8 +601,7 @@ void SLAPrint::process()
po.m_slice_index.clear();
auto sih = LevelID(scale_(ilhd));
// For all print objects, go through its initial layers and place them
// into the layers hash
// Establish the slice grid boundaries
auto bb = po.transformed_mesh().bounding_box();
double modelgnd = bb.min(Z);
double elevation = po.get_elevation();
@ -626,45 +617,42 @@ void SLAPrint::process()
// It is important that the next levels match the levels in
// model_slice method. Only difference is that here it works with
// scaled coordinates
auto& levelids = po.m_level_ids; levelids.clear();
if(sminZ >= smodelgnd) levelids.emplace_back(sminZ);
po.m_level_ids.clear();
if(sminZ >= smodelgnd) po.m_level_ids.emplace_back(sminZ);
for(LevelID h = sminZ + sih; h < smaxZ; h += slh)
if(h >= smodelgnd) levelids.emplace_back(h);
if(h >= smodelgnd) po.m_level_ids.emplace_back(h);
SlicedModel & oslices = po.m_model_slices;
std::vector<ExPolygons>& oslices = po.m_model_slices;
// If everything went well this code should not run at all, but
// let's be robust...
// assert(levelids.size() == oslices.size());
if(levelids.size() < oslices.size()) { // extend the levels until...
if(po.m_level_ids.size() < oslices.size()) { // extend the levels until...
BOOST_LOG_TRIVIAL(warning)
<< "Height level mismatch at rasterization!\n";
LevelID lastlvl = levelids.back();
while(levelids.size() < oslices.size()) {
LevelID lastlvl = po.m_level_ids.back();
while(po.m_level_ids.size() < oslices.size()) {
lastlvl += slh;
levelids.emplace_back(lastlvl);
po.m_level_ids.emplace_back(lastlvl);
}
}
// shortcut for empty index into the slice vectors
static const auto EMPTY_SLICE = SLAPrintObject::SliceRecord::NONE;
for(size_t i = 0; i < oslices.size(); ++i) {
LevelID h = levelids[i];
LevelID h = po.m_level_ids[i];
float fh = float(double(h) * SCALING_FACTOR);
// now for the public slice index:
SLAPrintObject::SliceRecord& sr = po.m_slice_index[fh];
// There should be only one slice layer for each print object
assert(sr.model_slices_idx == EMPTY_SLICE);
assert(sr.model_slices_idx == SLAPrintObject::SliceRecord::NONE);
sr.model_slices_idx = i;
}
if(po.m_supportdata) { // deal with the support slices if present
auto& sslices = po.m_supportdata->support_slices;
std::vector<ExPolygons>& sslices = po.m_supportdata->support_slices;
po.m_supportdata->level_ids.clear();
po.m_supportdata->level_ids.reserve(sslices.size());
@ -677,16 +665,14 @@ void SLAPrint::process()
float fh = float(double(h) * SCALING_FACTOR);
SLAPrintObject::SliceRecord& sr = po.m_slice_index[fh];
assert(sr.support_slices_idx == EMPTY_SLICE);
assert(sr.support_slices_idx == SLAPrintObject::SliceRecord::NONE);
sr.support_slices_idx = SLAPrintObject::SliceRecord::Idx(i);
}
}
};
auto& levels = m_printer_input;
// Rasterizing the model objects, and their supports
auto rasterize = [this, max_objstatus, &levels]() {
auto rasterize = [this, max_objstatus]() {
if(canceled()) return;
// clear the rasterizer input
@ -694,32 +680,35 @@ void SLAPrint::process()
for(SLAPrintObject * o : m_objects) {
auto& po = *o;
SlicedModel & oslices = po.m_model_slices;
std::vector<ExPolygons>& oslices = po.m_model_slices;
// We need to adjust the min Z level of the slices to be zero
LevelID smfirst = po.m_supportdata? po.m_supportdata->level_ids.front() : 0;
LevelID mfirst = po.m_level_ids.front();
LevelID smfirst =
po.m_supportdata && !po.m_supportdata->level_ids.empty() ?
po.m_supportdata->level_ids.front() : 0;
LevelID mfirst = po.m_level_ids.empty()? 0 : po.m_level_ids.front();
LevelID gndlvl = -(std::min(smfirst, mfirst));
// now merge this object's support and object slices with the rest
// of the print object slices
for(size_t i = 0; i < oslices.size(); ++i) {
auto& lyrs = levels[gndlvl + po.m_level_ids[i]];
auto& lyrs = m_printer_input[gndlvl + po.m_level_ids[i]];
lyrs.emplace_back(oslices[i], po.m_instances);
}
if(!po.m_supportdata) continue;
auto& sslices = po.m_supportdata->support_slices;
std::vector<ExPolygons>& sslices = po.m_supportdata->support_slices;
for(size_t i = 0; i < sslices.size(); ++i) {
auto& lyrs = levels[gndlvl + po.m_supportdata->level_ids[i]];
LayerRefs& lyrs =
m_printer_input[gndlvl + po.m_supportdata->level_ids[i]];
lyrs.emplace_back(sslices[i], po.m_instances);
}
}
// collect all the keys
std::vector<long long> keys; keys.reserve(levels.size());
for(auto& e : levels) keys.emplace_back(e.first);
std::vector<long long> keys; keys.reserve(m_printer_input.size());
for(auto& e : m_printer_input) keys.emplace_back(e.first);
// If the raster has vertical orientation, we will flip the coordinates
bool flpXY = m_printer_config.display_orientation.getInt() ==
@ -748,7 +737,7 @@ void SLAPrint::process()
// Allocate space for all the layers
SLAPrinter& printer = *m_printer;
auto lvlcnt = unsigned(levels.size());
auto lvlcnt = unsigned(m_printer_input.size());
printer.layers(lvlcnt);
unsigned slot = PRINT_STEP_LEVELS[slapsRasterize];
@ -758,12 +747,12 @@ void SLAPrint::process()
// procedure to process one height level. This will run in parallel
auto lvlfn =
[this, &slck, &keys, &levels, &printer, slot, sd, ist, &pst, flpXY]
[this, &slck, &keys, &printer, slot, sd, ist, &pst, flpXY]
(unsigned level_id)
{
if(canceled()) return;
LayerRefs& lrange = levels[keys[level_id]];
LayerRefs& lrange = m_printer_input[keys[level_id]];
// Switch to the appropriate layer in the printer
printer.begin_layer(level_id);
@ -790,7 +779,7 @@ void SLAPrint::process()
printer.finish_layer(level_id);
// Status indication
auto st = ist + unsigned(sd*level_id*slot/levels.size());
auto st = ist + unsigned(sd*level_id*slot/m_printer_input.size());
{ std::lock_guard<SpinMutex> lck(slck);
if( st > pst) {
set_status(int(st), PRINT_STEP_LABELS[slapsRasterize]);
@ -911,6 +900,7 @@ bool SLAPrint::invalidate_state_by_config_options(const std::vector<t_config_opt
"display_height",
"display_pixels_x",
"display_pixels_y",
"display_orientation",
"printer_correction"
};

View file

@ -177,9 +177,9 @@ private: // Prevents erroneous use by other classes.
public:
SLAPrint(): m_stepmask(slapsCount, true) {}
virtual ~SLAPrint() { this->clear(); }
virtual ~SLAPrint() override { this->clear(); }
PrinterTechnology technology() const noexcept { return ptSLA; }
PrinterTechnology technology() const noexcept override { return ptSLA; }
void clear() override;
bool empty() const override { return m_objects.empty(); }