SPE-742: Builtin pad feature in zero elevation mode.

This commit is contained in:
tamasmeszaros 2019-06-11 12:40:07 +02:00
parent c7ba8c4daa
commit ddd0a9abb6
8 changed files with 685 additions and 232 deletions

View File

@ -46,7 +46,7 @@ BreakConstructorInitializersBeforeComma: false
BreakConstructorInitializers: BeforeComma BreakConstructorInitializers: BeforeComma
BreakAfterJavaFieldAnnotations: false BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: true BreakStringLiterals: true
ColumnLimit: 75 ColumnLimit: 78
CommentPragmas: '^ IWYU pragma:' CommentPragmas: '^ IWYU pragma:'
CompactNamespaces: false CompactNamespaces: false
ConstructorInitializerAllOnOneLineOrOnePerLine: true ConstructorInitializerAllOnOneLineOrOnePerLine: true

View File

@ -15,7 +15,8 @@ const std::string USAGE_STR = {
namespace Slic3r { namespace sla { namespace Slic3r { namespace sla {
Contour3D create_base_pool(const ExPolygons &ground_layer, Contour3D create_base_pool(const Polygons &ground_layer,
const Polygons &holes = {},
const PoolConfig& cfg = PoolConfig()); const PoolConfig& cfg = PoolConfig());
Contour3D walls(const Polygon& floor_plate, const Polygon& ceiling, Contour3D walls(const Polygon& floor_plate, const Polygon& ceiling,
@ -42,37 +43,28 @@ int main(const int argc, const char *argv[]) {
model.ReadSTLFile(argv[1]); model.ReadSTLFile(argv[1]);
model.align_to_origin(); model.align_to_origin();
ExPolygons ground_slice; Polygons ground_slice;
sla::Contour3D mesh;
// TriangleMesh basepool;
sla::base_plate(model, ground_slice, 0.1f); sla::base_plate(model, ground_slice, 0.1f);
if(ground_slice.empty()) return EXIT_FAILURE; if(ground_slice.empty()) return EXIT_FAILURE;
// ExPolygon bottom_plate = ground_slice.front(); Polygon gndfirst; gndfirst = ground_slice.front();
// ExPolygon top_plate = bottom_plate; sla::offset_with_breakstick_holes(gndfirst, 0.5, 10, 0.3);
// sla::offset(top_plate, coord_t(3.0/SCALING_FACTOR));
// sla::offset(bottom_plate, coord_t(1.0/SCALING_FACTOR)); sla::Contour3D mesh;
bench.start(); bench.start();
// TriangleMesh pool;
sla::PoolConfig cfg; sla::PoolConfig cfg;
cfg.min_wall_height_mm = 0; cfg.min_wall_height_mm = 0;
cfg.edge_radius_mm = 0.2; cfg.edge_radius_mm = 0;
mesh = sla::create_base_pool(ground_slice, cfg); mesh = sla::create_base_pool(ground_slice, {}, cfg);
// mesh.merge(triangulate_expolygon_3d(top_plate, 3.0, false));
// mesh.merge(triangulate_expolygon_3d(bottom_plate, 0.0, true));
// mesh = sla::walls(bottom_plate.contour, top_plate.contour, 0, 3, 2.0, [](){});
bench.stop(); bench.stop();
cout << "Base pool creation time: " << std::setprecision(10) cout << "Base pool creation time: " << std::setprecision(10)
<< bench.getElapsedSec() << " seconds." << endl; << bench.getElapsedSec() << " seconds." << endl;
// auto point = []()
for(auto& trind : mesh.indices) { for(auto& trind : mesh.indices) {
Vec3d p0 = mesh.points[size_t(trind[0])]; Vec3d p0 = mesh.points[size_t(trind[0])];
Vec3d p1 = mesh.points[size_t(trind[1])]; Vec3d p1 = mesh.points[size_t(trind[1])];

View File

@ -7,9 +7,9 @@
#include "Tesselate.hpp" #include "Tesselate.hpp"
// For debugging: // For debugging:
//#include <fstream> // #include <fstream>
//#include <libnest2d/tools/benchmark.h> // #include <libnest2d/tools/benchmark.h>
//#include "SVG.hpp" #include "SVG.hpp"
namespace Slic3r { namespace sla { namespace Slic3r { namespace sla {
@ -180,9 +180,10 @@ Contour3D walls(const Polygon& lower, const Polygon& upper,
} }
/// Offsetting with clipper and smoothing the edges into a curvature. /// Offsetting with clipper and smoothing the edges into a curvature.
void offset(ExPolygon& sh, coord_t distance) { void offset(ExPolygon& sh, coord_t distance, bool edgerounding = true) {
using ClipperLib::ClipperOffset; using ClipperLib::ClipperOffset;
using ClipperLib::jtRound; using ClipperLib::jtRound;
using ClipperLib::jtMiter;
using ClipperLib::etClosedPolygon; using ClipperLib::etClosedPolygon;
using ClipperLib::Paths; using ClipperLib::Paths;
using ClipperLib::Path; using ClipperLib::Path;
@ -199,11 +200,13 @@ void offset(ExPolygon& sh, coord_t distance) {
return; return;
} }
auto jointype = edgerounding? jtRound : jtMiter;
ClipperOffset offs; ClipperOffset offs;
offs.ArcTolerance = 0.01*mm(1); offs.ArcTolerance = 0.01*mm(1);
Paths result; Paths result;
offs.AddPath(ctour, jtRound, etClosedPolygon); offs.AddPath(ctour, jointype, etClosedPolygon);
offs.AddPaths(holes, jtRound, etClosedPolygon); offs.AddPaths(holes, jointype, etClosedPolygon);
offs.Execute(result, static_cast<double>(distance)); offs.Execute(result, static_cast<double>(distance));
// Offsetting reverts the orientation and also removes the last vertex // Offsetting reverts the orientation and also removes the last vertex
@ -233,6 +236,49 @@ void offset(ExPolygon& sh, coord_t distance) {
} }
} }
void offset(Polygon& sh, coord_t distance, bool edgerounding = true) {
using ClipperLib::ClipperOffset;
using ClipperLib::jtRound;
using ClipperLib::jtMiter;
using ClipperLib::etClosedPolygon;
using ClipperLib::Paths;
using ClipperLib::Path;
auto&& ctour = Slic3rMultiPoint_to_ClipperPath(sh);
// If the input is not at least a triangle, we can not do this algorithm
if(ctour.size() < 3) {
BOOST_LOG_TRIVIAL(error) << "Invalid geometry for offsetting!";
return;
}
ClipperOffset offs;
offs.ArcTolerance = 0.01*mm(1);
Paths result;
offs.AddPath(ctour, edgerounding ? jtRound : jtMiter, etClosedPolygon);
offs.Execute(result, static_cast<double>(distance));
// Offsetting reverts the orientation and also removes the last vertex
// so boost will not have a closed polygon.
bool found_the_contour = false;
for(auto& r : result) {
if(ClipperLib::Orientation(r)) {
// We don't like if the offsetting generates more than one contour
// but throwing would be an overkill. Instead, we should warn the
// caller about the inability to create correct geometries
if(!found_the_contour) {
auto rr = ClipperPath_to_Slic3rPolygon(r);
sh.points.swap(rr.points);
found_the_contour = true;
} else {
BOOST_LOG_TRIVIAL(warning)
<< "Warning: offsetting result is invalid!";
}
}
}
}
/// Unification of polygons (with clipper) preserving holes as well. /// Unification of polygons (with clipper) preserving holes as well.
ExPolygons unify(const ExPolygons& shapes) { ExPolygons unify(const ExPolygons& shapes) {
using ClipperLib::ptSubject; using ClipperLib::ptSubject;
@ -303,6 +349,118 @@ ExPolygons unify(const ExPolygons& shapes) {
return retv; return retv;
} }
Polygons unify(const Polygons& shapes) {
using ClipperLib::ptSubject;
bool closed = true;
bool valid = true;
ClipperLib::Clipper clipper;
for(auto& path : shapes) {
auto clipperpath = Slic3rMultiPoint_to_ClipperPath(path);
if(!clipperpath.empty())
valid &= clipper.AddPath(clipperpath, ptSubject, closed);
}
if(!valid) BOOST_LOG_TRIVIAL(warning) << "Unification of invalid shapes!";
ClipperLib::Paths result;
clipper.Execute(ClipperLib::ctUnion, result, ClipperLib::pftNonZero);
Polygons ret;
for (ClipperLib::Path &p : result) {
Polygon pp = ClipperPath_to_Slic3rPolygon(p);
if (!pp.is_clockwise()) ret.emplace_back(std::move(pp));
}
return ret;
}
// Function to cut tiny connector cavities for a given polygon. The input poly
// will be offsetted by "padding" and small rectangle shaped cavities will be
// inserted along the perimeter in every "stride" distance. The stick rectangles
// will have a with about "stick_width". The input dimensions are in world
// measure, not the scaled clipper units.
void offset_with_breakstick_holes(ExPolygon& poly,
double padding,
double stride,
double stick_width,
double penetration)
{
// We do the basic offsetting first
const bool dont_round_edges = false;
offset(poly, coord_t(padding / SCALING_FACTOR), dont_round_edges);
SVG svg("bridgestick_plate.svg");
svg.draw(poly);
auto transf = [stick_width, penetration, padding, stride](Points &pts) {
// The connector stick will be a small rectangle with dimensions
// stick_width x (penetration + padding) to have some penetration
// into the input polygon.
Points out;
out.reserve(2 * pts.size()); // output polygon points
// stick bottom and right edge dimensions
double sbottom = stick_width / SCALING_FACTOR;
double sright = (penetration + padding) / SCALING_FACTOR;
// scaled stride distance
double sstride = stride / SCALING_FACTOR;
double t = 0;
// process pairs of vertices as an edge, start with the last and
// first point
for (size_t i = pts.size() - 1, j = 0; j < pts.size(); i = j, ++j) {
// Get vertices and the direction vectors
const Point &a = pts[i], &b = pts[j];
Vec2d dir = b.cast<double>() - a.cast<double>();
double nrm = dir.norm();
dir /= nrm;
Vec2d dirp(-dir(Y), dir(X));
// Insert start point
out.emplace_back(a);
// dodge the start point, do not make sticks on the joins
while (t < sright) t += sright;
double tend = nrm - sright;
while (t < tend) { // insert the stick on the polygon perimeter
// calculate the stick rectangle vertices and insert them
// into the output.
Point p1 = a + (t * dir).cast<coord_t>();
Point p2 = p1 + (sright * dirp).cast<coord_t>();
Point p3 = p2 + (sbottom * dir).cast<coord_t>();
Point p4 = p3 + (sright * -dirp).cast<coord_t>();
out.insert(out.end(), {p1, p2, p3, p4});
// continue along the perimeter
t += sstride;
}
t = t - nrm;
// Insert edge endpoint
out.emplace_back(b);
}
// move the new points
out.shrink_to_fit();
pts.swap(out);
};
transf(poly.contour.points);
for (auto &h : poly.holes) transf(h.points);
svg.draw(poly);
svg.Close();
}
/// Only a debug function to generate top and bottom plates from a 2D shape. /// Only a debug function to generate top and bottom plates from a 2D shape.
/// It is not used in the algorithm directly. /// It is not used in the algorithm directly.
inline Contour3D roofs(const ExPolygon& poly, coord_t z_distance) { inline Contour3D roofs(const ExPolygon& poly, coord_t z_distance) {
@ -467,40 +625,37 @@ inline Point centroid(Points& pp) {
return c; return c;
} }
inline Point centroid(const ExPolygon& poly) { inline Point centroid(const Polygon& poly) {
return poly.contour.centroid(); return poly.centroid();
} }
/// A fake concave hull that is constructed by connecting separate shapes /// A fake concave hull that is constructed by connecting separate shapes
/// with explicit bridges. Bridges are generated from each shape's centroid /// with explicit bridges. Bridges are generated from each shape's centroid
/// to the center of the "scene" which is the centroid calculated from the shape /// to the center of the "scene" which is the centroid calculated from the shape
/// centroids (a star is created...) /// centroids (a star is created...)
ExPolygons concave_hull(const ExPolygons& polys, double max_dist_mm = 50, Polygons concave_hull(const Polygons& polys, double max_dist_mm = 50,
ThrowOnCancel throw_on_cancel = [](){}) ThrowOnCancel throw_on_cancel = [](){})
{ {
namespace bgi = boost::geometry::index; namespace bgi = boost::geometry::index;
using SpatElement = std::pair<BoundingBox, unsigned>; using SpatElement = std::pair<Point, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >; using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
if(polys.empty()) return ExPolygons(); if(polys.empty()) return Polygons();
ExPolygons punion = unify(polys); // could be redundant const double max_dist = mm(max_dist_mm);
Polygons punion = unify(polys); // could be redundant
if(punion.size() == 1) return punion; if(punion.size() == 1) return punion;
// We get the centroids of all the islands in the 2D slice // We get the centroids of all the islands in the 2D slice
Points centroids; centroids.reserve(punion.size()); Points centroids; centroids.reserve(punion.size());
std::transform(punion.begin(), punion.end(), std::back_inserter(centroids), std::transform(punion.begin(), punion.end(), std::back_inserter(centroids),
[](const ExPolygon& poly) { return centroid(poly); }); [](const Polygon& poly) { return centroid(poly); });
SpatIndex boxindex; unsigned idx = 0;
std::for_each(punion.begin(), punion.end(),
[&boxindex, &idx](const ExPolygon& expo) {
BoundingBox bb(expo);
boxindex.insert(std::make_pair(bb, idx++));
});
SpatIndex ctrindex;
unsigned idx = 0;
for(const Point &ct : centroids) ctrindex.insert(std::make_pair(ct, idx++));
// Centroid of the centroids of islands. This is where the additional // Centroid of the centroids of islands. This is where the additional
// connector sticks are routed. // connector sticks are routed.
@ -511,25 +666,32 @@ ExPolygons concave_hull(const ExPolygons& polys, double max_dist_mm = 50,
idx = 0; idx = 0;
std::transform(centroids.begin(), centroids.end(), std::transform(centroids.begin(), centroids.end(),
std::back_inserter(punion), std::back_inserter(punion),
[&punion, &boxindex, cc, max_dist_mm, &idx, throw_on_cancel] [&centroids, &ctrindex, cc, max_dist, &idx, throw_on_cancel]
(const Point& c) (const Point& c)
{ {
throw_on_cancel(); throw_on_cancel();
double dx = x(c) - x(cc), dy = y(c) - y(cc); double dx = x(c) - x(cc), dy = y(c) - y(cc);
double l = std::sqrt(dx * dx + dy * dy); double l = std::sqrt(dx * dx + dy * dy);
double nx = dx / l, ny = dy / l; double nx = dx / l, ny = dy / l;
double max_dist = mm(max_dist_mm);
ExPolygon& expo = punion[idx++]; Point& ct = centroids[idx];
BoundingBox querybb(expo);
querybb.offset(max_dist);
std::vector<SpatElement> result; std::vector<SpatElement> result;
boxindex.query(bgi::intersects(querybb), std::back_inserter(result)); ctrindex.query(bgi::nearest(ct, 2), std::back_inserter(result));
if(result.size() <= 1) return ExPolygon();
ExPolygon r; double dist = max_dist;
auto& ctour = r.contour.points; for (const SpatElement &el : result)
if (el.second != idx) {
dist = Line(el.first, ct).length();
break;
}
idx++;
if (dist >= max_dist) return Polygon();
Polygon r;
auto& ctour = r.points;
ctour.reserve(3); ctour.reserve(3);
ctour.emplace_back(cc); ctour.emplace_back(cc);
@ -576,13 +738,14 @@ void base_plate(const TriangleMesh &mesh, ExPolygons &output, float h,
ExPolygons utmp = unify(tmp); ExPolygons utmp = unify(tmp);
for(auto& o : utmp) { for(ExPolygon& o : utmp) {
auto&& smp = o.simplify(0.1/SCALING_FACTOR); auto&& smp = o.simplify(0.1/SCALING_FACTOR); // TODO: is this important?
output.insert(output.end(), smp.begin(), smp.end()); output.insert(output.end(), smp.begin(), smp.end());
} }
} }
Contour3D create_base_pool(const ExPolygons &ground_layer, Contour3D create_base_pool(const Polygons &ground_layer,
const ExPolygons &obj_self_pad = {},
const PoolConfig& cfg = PoolConfig()) const PoolConfig& cfg = PoolConfig())
{ {
// for debugging: // for debugging:
@ -597,7 +760,7 @@ Contour3D create_base_pool(const ExPolygons &ground_layer,
// serve as the bottom plate of the pad. We will offset this concave hull // serve as the bottom plate of the pad. We will offset this concave hull
// and then offset back the result with clipper with rounding edges ON. This // and then offset back the result with clipper with rounding edges ON. This
// trick will create a nice rounded pad shape. // trick will create a nice rounded pad shape.
ExPolygons concavehs = concave_hull(ground_layer, mergedist, cfg.throw_on_cancel); Polygons concavehs = concave_hull(ground_layer, mergedist, cfg.throw_on_cancel);
const double thickness = cfg.min_wall_thickness_mm; const double thickness = cfg.min_wall_thickness_mm;
const double wingheight = cfg.min_wall_height_mm; const double wingheight = cfg.min_wall_height_mm;
@ -617,42 +780,37 @@ Contour3D create_base_pool(const ExPolygons &ground_layer,
Contour3D pool; Contour3D pool;
for(ExPolygon& concaveh : concavehs) { for(Polygon& concaveh : concavehs) {
if(concaveh.contour.points.empty()) return pool; if(concaveh.points.empty()) return pool;
// Get rid of any holes in the concave hull output.
concaveh.holes.clear();
// Here lies the trick that does the smoothing only with clipper offset // Here lies the trick that does the smoothing only with clipper offset
// calls. The offset is configured to round edges. Inner edges will // calls. The offset is configured to round edges. Inner edges will
// be rounded because we offset twice: ones to get the outer (top) plate // be rounded because we offset twice: ones to get the outer (top) plate
// and again to get the inner (bottom) plate // and again to get the inner (bottom) plate
auto outer_base = concaveh; auto outer_base = concaveh;
outer_base.holes.clear();
offset(outer_base, s_safety_dist + s_wingdist + s_thickness); offset(outer_base, s_safety_dist + s_wingdist + s_thickness);
ExPolygon bottom_poly = outer_base; ExPolygon bottom_poly; bottom_poly.contour = outer_base;
bottom_poly.holes.clear();
offset(bottom_poly, -s_bottom_offs); offset(bottom_poly, -s_bottom_offs);
// Punching a hole in the top plate for the cavity // Punching a hole in the top plate for the cavity
ExPolygon top_poly; ExPolygon top_poly;
ExPolygon middle_base; ExPolygon middle_base;
ExPolygon inner_base; ExPolygon inner_base;
top_poly.contour = outer_base.contour; top_poly.contour = outer_base;
if(wingheight > 0) { if(wingheight > 0) {
inner_base = outer_base; inner_base.contour = outer_base;
offset(inner_base, -(s_thickness + s_wingdist + s_eradius)); offset(inner_base, -(s_thickness + s_wingdist + s_eradius));
middle_base = outer_base; middle_base.contour = outer_base;
offset(middle_base, -s_thickness); offset(middle_base, -s_thickness);
top_poly.holes.emplace_back(middle_base.contour); top_poly.holes.emplace_back(middle_base.contour);
auto& tph = top_poly.holes.back().points; auto& tph = top_poly.holes.back().points;
std::reverse(tph.begin(), tph.end()); std::reverse(tph.begin(), tph.end());
} }
ExPolygon ob = outer_base; double wh = 0; ExPolygon ob; ob.contour = outer_base; double wh = 0;
// now we will calculate the angle or portion of the circle from // now we will calculate the angle or portion of the circle from
// pi/2 that will connect perfectly with the bottom plate. // pi/2 that will connect perfectly with the bottom plate.
@ -713,11 +871,56 @@ Contour3D create_base_pool(const ExPolygons &ground_layer,
wh, -wingdist, thrcl)); wh, -wingdist, thrcl));
} }
// Now we need to triangulate the top and bottom plates as well as the if (cfg.embed_object) {
// cavity bottom plate which is the same as the bottom plate but it is ExPolygons pp = diff_ex(to_polygons(bottom_poly),
// elevated by the thickness. to_polygons(obj_self_pad));
// Generate outer walls
auto fp = [](const Point &p, Point::coord_type z) {
return unscale(x(p), y(p), z);
};
auto straight_walls = [&pool, s_thickness, fp](const Polygon &cntr)
{
auto lines = cntr.lines();
bool cclk = cntr.is_counter_clockwise();
for (auto &l : lines) {
auto s = coord_t(pool.points.size());
pool.points.emplace_back(fp(l.a, -s_thickness));
pool.points.emplace_back(fp(l.b, -s_thickness));
pool.points.emplace_back(fp(l.a, 0));
pool.points.emplace_back(fp(l.b, 0));
if(cclk) {
pool.indices.emplace_back(s + 3, s + 1, s);
pool.indices.emplace_back(s + 2, s + 3, s);
} else {
pool.indices.emplace_back(s, s + 1, s + 3);
pool.indices.emplace_back(s, s + 3, s + 2);
}
}
};
for (ExPolygon &ep : pp) {
pool.merge(triangulate_expolygon_3d(ep));
pool.merge(triangulate_expolygon_3d(ep, -fullheight, true));
for (auto &h : ep.holes) straight_walls(h);
}
// Skip the outer contour. TODO: make sure the first in the list
// IS the outer contour.
for (auto it = std::next(pp.begin()); it != pp.end(); ++it)
straight_walls(it->contour);
} else {
// Now we need to triangulate the top and bottom plates as well as
// the cavity bottom plate which is the same as the bottom plate
// but it is elevated by the thickness.
pool.merge(triangulate_expolygon_3d(top_poly)); pool.merge(triangulate_expolygon_3d(top_poly));
pool.merge(triangulate_expolygon_3d(bottom_poly, -fullheight, true)); pool.merge(triangulate_expolygon_3d(bottom_poly, -fullheight, true));
}
if(wingheight > 0) if(wingheight > 0)
pool.merge(triangulate_expolygon_3d(inner_base, -wingheight)); pool.merge(triangulate_expolygon_3d(inner_base, -wingheight));
@ -727,8 +930,8 @@ Contour3D create_base_pool(const ExPolygons &ground_layer,
return pool; return pool;
} }
void create_base_pool(const ExPolygons &ground_layer, TriangleMesh& out, void create_base_pool(const Polygons &ground_layer, TriangleMesh& out,
const PoolConfig& cfg) const ExPolygons &holes, const PoolConfig& cfg)
{ {
@ -738,7 +941,7 @@ void create_base_pool(const ExPolygons &ground_layer, TriangleMesh& out,
// std::fstream fout("pad_debug.obj", std::fstream::out); // std::fstream fout("pad_debug.obj", std::fstream::out);
// if(fout.good()) pool.to_obj(fout); // if(fout.good()) pool.to_obj(fout);
out.merge(mesh(create_base_pool(ground_layer, cfg))); out.merge(mesh(create_base_pool(ground_layer, holes, cfg)));
} }
} }

View File

@ -8,7 +8,9 @@
namespace Slic3r { namespace Slic3r {
class ExPolygon; class ExPolygon;
class Polygon;
using ExPolygons = std::vector<ExPolygon>; using ExPolygons = std::vector<ExPolygon>;
using Polygons = std::vector<Polygon>;
class TriangleMesh; class TriangleMesh;
@ -23,12 +25,24 @@ void base_plate(const TriangleMesh& mesh, // input mesh
float layerheight = 0.05f, // The sampling height float layerheight = 0.05f, // The sampling height
ThrowOnCancel thrfn = [](){}); // Will be called frequently ThrowOnCancel thrfn = [](){}); // Will be called frequently
// Function to cut tiny connector cavities for a given polygon. The input poly
// will be offsetted by "padding" and small rectangle shaped cavities will be
// inserted along the perimeter in every "stride" distance. The stick rectangles
// will have a with about "stick_width". The input dimensions are in world
// measure, not the scaled clipper units.
void offset_with_breakstick_holes(ExPolygon& poly,
double padding,
double stride,
double stick_width,
double penetration = 0.0);
struct PoolConfig { struct PoolConfig {
double min_wall_thickness_mm = 2; double min_wall_thickness_mm = 2;
double min_wall_height_mm = 5; double min_wall_height_mm = 5;
double max_merge_distance_mm = 50; double max_merge_distance_mm = 50;
double edge_radius_mm = 1; double edge_radius_mm = 1;
double wall_slope = std::atan(1.0); // Universal constant for Pi/4 double wall_slope = std::atan(1.0); // Universal constant for Pi/4
bool embed_object = false;
ThrowOnCancel throw_on_cancel = [](){}; ThrowOnCancel throw_on_cancel = [](){};
@ -42,8 +56,9 @@ struct PoolConfig {
}; };
/// Calculate the pool for the mesh for SLA printing /// Calculate the pool for the mesh for SLA printing
void create_base_pool(const ExPolygons& base_plate, void create_base_pool(const Polygons& base_plate,
TriangleMesh& output_mesh, TriangleMesh& output_mesh,
const ExPolygons& holes,
const PoolConfig& = PoolConfig()); const PoolConfig& = PoolConfig());
/// TODO: Currently the base plate of the pool will have half the height of the /// TODO: Currently the base plate of the pool will have half the height of the

View File

@ -72,6 +72,7 @@ public:
~EigenMesh3D(); ~EigenMesh3D();
inline double ground_level() const { return m_ground_level; } inline double ground_level() const { return m_ground_level; }
inline double& ground_level() { return m_ground_level; }
inline const Eigen::MatrixXd& V() const { return m_V; } inline const Eigen::MatrixXd& V() const { return m_V; }
inline const Eigen::MatrixXi& F() const { return m_F; } inline const Eigen::MatrixXi& F() const { return m_F; }
@ -149,6 +150,12 @@ public:
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */ #endif /* SLIC3R_SLA_NEEDS_WINDTREE */
double squared_distance(const Vec3d& p, int& i, Vec3d& c) const; double squared_distance(const Vec3d& p, int& i, Vec3d& c) const;
inline double squared_distance(const Vec3d &p) const
{
int i;
Vec3d c;
return squared_distance(p, i, c);
}
}; };

View File

@ -13,6 +13,7 @@
#include <libslic3r/Model.hpp> #include <libslic3r/Model.hpp>
#include <libnest2d/optimizers/nlopt/genetic.hpp> #include <libnest2d/optimizers/nlopt/genetic.hpp>
#include <libnest2d/optimizers/nlopt/subplex.hpp>
#include <boost/log/trivial.hpp> #include <boost/log/trivial.hpp>
#include <tbb/parallel_for.h> #include <tbb/parallel_for.h>
#include <libslic3r/I18N.hpp> #include <libslic3r/I18N.hpp>
@ -71,6 +72,8 @@ const double SupportConfig::normal_cutoff_angle = 150.0 * M_PI / 180.0;
// The shortest distance of any support structure from the model surface // The shortest distance of any support structure from the model surface
const double SupportConfig::safety_distance_mm = 0.5; const double SupportConfig::safety_distance_mm = 0.5;
const double SupportConfig::pillar_base_safety_distance_mm = 0.5;
const double SupportConfig::max_solo_pillar_height_mm = 15.0; const double SupportConfig::max_solo_pillar_height_mm = 15.0;
const double SupportConfig::max_dual_pillar_height_mm = 35.0; const double SupportConfig::max_dual_pillar_height_mm = 35.0;
const double SupportConfig::optimizer_rel_score_diff = 1e-6; const double SupportConfig::optimizer_rel_score_diff = 1e-6;
@ -413,7 +416,7 @@ struct Pillar {
assert(steps > 0); assert(steps > 0);
height = jp(Z) - endp(Z); height = jp(Z) - endp(Z);
if(height > 0) { // Endpoint is below the starting point if(height > EPSILON) { // Endpoint is below the starting point
// We just create a bridge geometry with the pillar parameters and // We just create a bridge geometry with the pillar parameters and
// move the data. // move the data.
@ -556,28 +559,47 @@ struct Pad {
PoolConfig cfg; PoolConfig cfg;
double zlevel = 0; double zlevel = 0;
Pad() {} Pad() = default;
Pad(const TriangleMesh& object_support_mesh, Pad(const TriangleMesh& object_support_mesh,
const ExPolygons& baseplate, const ExPolygons& modelbase,
double ground_level, double ground_level,
const PoolConfig& pcfg) : const PoolConfig& pcfg) :
cfg(pcfg), cfg(pcfg),
zlevel(ground_level + zlevel(ground_level +
(sla::get_pad_fullheight(pcfg) - sla::get_pad_elevation(pcfg)) ) sla::get_pad_fullheight(pcfg) -
sla::get_pad_elevation(pcfg))
{ {
ExPolygons basep; Polygons basep;
cfg.throw_on_cancel(); cfg.throw_on_cancel();
// The 0.1f is the layer height with which the mesh is sampled and then // The 0.1f is the layer height with which the mesh is sampled and then
// the layers are unified into one vector of polygons. // the layers are unified into one vector of polygons.
base_plate(object_support_mesh, basep, ExPolygons platetmp;
base_plate(object_support_mesh, platetmp,
float(cfg.min_wall_height_mm + cfg.min_wall_thickness_mm), float(cfg.min_wall_height_mm + cfg.min_wall_thickness_mm),
0.1f, pcfg.throw_on_cancel); 0.1f, pcfg.throw_on_cancel);
for(auto& bp : baseplate) basep.emplace_back(bp); // We don't need the holes for the base plate from the supports
for (const ExPolygon &bp : platetmp) basep.emplace_back(bp.contour);
for (const ExPolygon &bp : modelbase) basep.emplace_back(bp.contour);
if(pcfg.embed_object) {
auto modelbase_sticks = modelbase;
for(auto& poly : modelbase_sticks)
sla::offset_with_breakstick_holes(
poly,
SupportConfig::pillar_base_safety_distance_mm, // padding
10, // stride (mm)
0.3, // stick_width (mm)
0.1); // penetration (mm)
create_base_pool(basep, tmesh, modelbase_sticks, cfg);
} else {
create_base_pool(basep, tmesh, {}, cfg);
}
create_base_pool(basep, tmesh, cfg);
tmesh.translate(0, 0, float(zlevel)); tmesh.translate(0, 0, float(zlevel));
} }
@ -763,9 +785,9 @@ public:
} }
const Pad& create_pad(const TriangleMesh& object_supports, const Pad& create_pad(const TriangleMesh& object_supports,
const ExPolygons& baseplate, const ExPolygons& modelbase,
const PoolConfig& cfg) { const PoolConfig& cfg) {
m_pad = Pad(object_supports, baseplate, ground_level, cfg); m_pad = Pad(object_supports, modelbase, ground_level, cfg);
return m_pad; return m_pad;
} }
@ -1149,7 +1171,7 @@ class SLASupportTree::Algorithm {
auto hr = m.query_ray_hit(p + sd*dir, dir); auto hr = m.query_ray_hit(p + sd*dir, dir);
if(ins_check && hr.is_inside()) { if(ins_check && hr.is_inside()) {
if(hr.distance() > r + sd) hits[i] = HitResult(0.0); if(hr.distance() > 2 * r + sd) hits[i] = HitResult(0.0);
else { else {
// re-cast the ray from the outside of the object // re-cast the ray from the outside of the object
auto hr2 = auto hr2 =
@ -1265,8 +1287,11 @@ class SLASupportTree::Algorithm {
// For connecting a head to a nearby pillar. // For connecting a head to a nearby pillar.
bool connect_to_nearpillar(const Head& head, long nearpillar_id) { bool connect_to_nearpillar(const Head& head, long nearpillar_id) {
auto nearpillar = [this, nearpillar_id]() { return m_result.pillar(nearpillar_id); }; auto nearpillar = [this, nearpillar_id]() {
if(nearpillar().bridges > m_cfg.max_bridges_on_pillar) return false; return m_result.pillar(nearpillar_id);
};
if (nearpillar().bridges > m_cfg.max_bridges_on_pillar) return false;
Vec3d headjp = head.junction_point(); Vec3d headjp = head.junction_point();
Vec3d nearjp_u = nearpillar().startpoint(); Vec3d nearjp_u = nearpillar().startpoint();
@ -1370,6 +1395,108 @@ class SLASupportTree::Algorithm {
return nearest_id >= 0; return nearest_id >= 0;
} }
// This is a proxy function for pillar creation which will mind the gap
// between the pad and the model bottom in zero elevation mode.
void create_ground_pillar(const Vec3d &jp,
const Vec3d &sourcedir,
double radius,
int head_id = -1)
{
// People were killed for this number (seriously)
static const double SQR2 = std::sqrt(2.0);
double gndlvl = m_result.ground_level;
Vec3d endp = {jp(X), jp(Y), gndlvl};
double sd = SupportConfig::pillar_base_safety_distance_mm;
int pillar_id = -1;
double min_dist = sd + m_cfg.base_radius_mm + EPSILON;
double dist = 0;
bool can_add_base = true;
bool normal_mode = true;
if (m_cfg.object_elevation_mm < EPSILON
&& (dist = std::sqrt(m_mesh.squared_distance(endp))) < min_dist) {
// Get the distance from the mesh. This can be later optimized
// to get the distance in 2D plane because we are dealing with
// the ground level only.
normal_mode = false;
double mv = min_dist - dist;
double azimuth = std::atan2(sourcedir(Y), sourcedir(X));
double sinpolar = std::sin(PI - m_cfg.bridge_slope);
double cospolar = std::cos(PI - m_cfg.bridge_slope);
double cosazm = std::cos(azimuth);
double sinazm = std::sin(azimuth);
auto dir = Vec3d(cosazm * sinpolar, sinazm * sinpolar, cospolar)
.normalized();
using namespace libnest2d::opt;
StopCriteria scr;
scr.stop_score = min_dist;
SubplexOptimizer solver(scr);
auto result = solver.optimize_max(
[this, dir, jp, gndlvl](double mv) {
Vec3d endp = jp + SQR2 * mv * dir;
endp(Z) = gndlvl;
return std::sqrt(m_mesh.squared_distance(endp));
},
initvals(mv), bound(0.0, 2 * min_dist));
mv = std::get<0>(result.optimum);
endp = jp + std::sqrt(2) * mv * dir;
Vec3d pgnd = {endp(X), endp(Y), gndlvl};
can_add_base = result.score > min_dist;
// We have to check if the bridge is feasible.
if (bridge_mesh_intersect(jp, dir, radius) < (endp - jp).norm()) {
normal_mode = true;
endp = {jp(X), jp(Y), gndlvl};
}
else {
// If the new endpoint is below ground, do not make a pillar
if (endp(Z) < gndlvl)
endp = endp - SQR2 * (gndlvl - endp(Z)) * dir; // back off
else {
Pillar &plr = m_result.add_pillar(endp, pgnd, radius);
if (can_add_base)
plr.add_base(m_cfg.base_height_mm,
m_cfg.base_radius_mm);
pillar_id = plr.id;
}
m_result.add_bridge(jp, endp, radius);
m_result.add_junction(endp, radius);
// Add a degenerated pillar and the bridge.
// The degenerate pillar will have zero length and it will
// prevent from queries of head_pillar() to have non-existing
// pillar when the head should have one.
if (head_id >= 0)
m_result.add_pillar(unsigned(head_id), jp, radius);
}
}
if (normal_mode) {
Pillar &plr = head_id >= 0
? m_result.add_pillar(unsigned(head_id),
endp,
radius)
: m_result.add_pillar(jp, endp, radius);
if (can_add_base)
plr.add_base(m_cfg.base_height_mm, m_cfg.base_radius_mm);
pillar_id = plr.id;
}
if(pillar_id >= 0) // Save the pillar endpoint in the spatial index
m_pillar_index.insert(endp, pillar_id);
}
public: public:
Algorithm(const SupportConfig& config, Algorithm(const SupportConfig& config,
@ -1473,14 +1600,14 @@ public:
std::cos(polar)).normalized(); std::cos(polar)).normalized();
// check available distance // check available distance
double t = pinhead_mesh_intersect( EigenMesh3D::hit_result t
hp, // touching point = pinhead_mesh_intersect(hp, // touching point
nn, // normal nn, // normal
pin_r, pin_r,
m_cfg.head_back_radius_mm, m_cfg.head_back_radius_mm,
w); w);
if(t <= w) { if(t.distance() <= w) {
// Let's try to optimize this angle, there might be a // Let's try to optimize this angle, there might be a
// viable normal that doesn't collide with the model // viable normal that doesn't collide with the model
@ -1523,12 +1650,17 @@ public:
// save the verified and corrected normal // save the verified and corrected normal
m_support_nmls.row(fidx) = nn; m_support_nmls.row(fidx) = nn;
if(t > w) { if (t.distance() > w) {
// Check distance from ground, we might have zero elevation.
if (hp(Z) + w * nn(Z) < m_result.ground_level) {
m_iheadless.emplace_back(fidx);
} else {
// mark the point for needing a head. // mark the point for needing a head.
m_iheads.emplace_back(fidx); m_iheads.emplace_back(fidx);
} else if( polar >= 3*PI/4 ) { }
// Headless supports do not tilt like the headed ones so } else if (polar >= 3 * PI / 4) {
// the normal should point almost to the ground. // Headless supports do not tilt like the headed ones
// so the normal should point almost to the ground.
m_iheadless.emplace_back(fidx); m_iheadless.emplace_back(fidx);
} }
} }
@ -1594,16 +1726,22 @@ public:
// from each other in the XY plane to not cross their pillar bases // from each other in the XY plane to not cross their pillar bases
// These clusters of support points will join in one pillar, // These clusters of support points will join in one pillar,
// possibly in their centroid support point. // possibly in their centroid support point.
auto pointfn = [this](unsigned i) { auto pointfn = [this](unsigned i) {
return m_result.head(i).junction_point(); return m_result.head(i).junction_point();
}; };
auto predicate = [this](const SpatElement& e1, const SpatElement& e2) {
auto predicate = [this](const SpatElement &e1,
const SpatElement &e2) {
double d2d = distance(to_2d(e1.first), to_2d(e2.first)); double d2d = distance(to_2d(e1.first), to_2d(e2.first));
double d3d = distance(e1.first, e2.first); double d3d = distance(e1.first, e2.first);
return d2d < 2 * m_cfg.base_radius_mm && return d2d < 2 * m_cfg.base_radius_mm
d3d < m_cfg.max_bridge_length_mm; && d3d < m_cfg.max_bridge_length_mm;
}; };
m_pillar_clusters = cluster(ground_head_indices, pointfn, predicate,
m_pillar_clusters = cluster(ground_head_indices,
pointfn,
predicate,
m_cfg.max_bridges_on_pillar); m_cfg.max_bridges_on_pillar);
} }
@ -1615,7 +1753,7 @@ public:
void routing_to_ground() void routing_to_ground()
{ {
const double pradius = m_cfg.head_back_radius_mm; const double pradius = m_cfg.head_back_radius_mm;
const double gndlvl = m_result.ground_level; // const double gndlvl = m_result.ground_level;
ClusterEl cl_centroids; ClusterEl cl_centroids;
cl_centroids.reserve(m_pillar_clusters.size()); cl_centroids.reserve(m_pillar_clusters.size());
@ -1648,13 +1786,8 @@ public:
Head& h = m_result.head(hid); Head& h = m_result.head(hid);
h.transform(); h.transform();
Vec3d p = h.junction_point(); p(Z) = gndlvl;
auto& plr = m_result.add_pillar(hid, p, h.r_back_mm)
.add_base(m_cfg.base_height_mm,
m_cfg.base_radius_mm);
// Save the pillar endpoint and the pillar id in the spatial index create_ground_pillar(h.junction_point(), h.dir, h.r_back_mm, h.id);
m_pillar_index.insert(plr.endpoint(), unsigned(plr.id));
} }
// now we will go through the clusters ones again and connect the // now we will go through the clusters ones again and connect the
@ -1681,15 +1814,12 @@ public:
!search_pillar_and_connect(sidehead)) !search_pillar_and_connect(sidehead))
{ {
Vec3d pstart = sidehead.junction_point(); Vec3d pstart = sidehead.junction_point();
Vec3d pend = Vec3d{pstart(X), pstart(Y), gndlvl}; //Vec3d pend = Vec3d{pstart(X), pstart(Y), gndlvl};
// Could not find a pillar, create one // Could not find a pillar, create one
auto& pillar = m_result.add_pillar(unsigned(sidehead.id), create_ground_pillar(pstart,
pend, pradius) sidehead.dir,
.add_base(m_cfg.base_height_mm, pradius,
m_cfg.base_radius_mm); sidehead.id);
// connects to ground, eligible for bridging
m_pillar_index.insert(pend, unsigned(pillar.id));
} }
} }
} }
@ -1718,12 +1848,7 @@ public:
m_result.add_bridge(hjp, endp, head.r_back_mm); m_result.add_bridge(hjp, endp, head.r_back_mm);
m_result.add_junction(endp, head.r_back_mm); m_result.add_junction(endp, head.r_back_mm);
auto groundp = endp; this->create_ground_pillar(endp, dir, head.r_back_mm);
groundp(Z) = m_result.ground_level;
auto& newpillar = m_result.add_pillar(endp, groundp, head.r_back_mm)
.add_base(m_cfg.base_height_mm,
m_cfg.base_radius_mm);
m_pillar_index.insert(groundp, unsigned(newpillar.id));
}; };
std::vector<unsigned> modelpillars; std::vector<unsigned> modelpillars;
@ -1884,6 +2009,28 @@ public:
} }
} }
// Helper function for interconnect_pillars where pairs of already connected
// pillars should be checked for not to be processed again. This can be done
// in O(log) or even constant time with a set or an unordered set of hash
// values uniquely representing a pair of integers. The order of numbers
// within the pair should not matter, it has the same unique hash.
template<class I> static I pairhash(I a, I b)
{
using std::ceil; using std::log2; using std::max; using std::min;
static_assert(std::is_integral<I>::value,
"This function works only for integral types.");
I g = min(a, b), l = max(a, b);
auto bits_g = g ? int(ceil(log2(g))) : 0;
// Assume the hash will fit into the output variable
assert((l ? (ceil(log2(l))) : 0) + bits_g < int(sizeof(I) * CHAR_BIT));
return (l << bits_g) + g;
}
void interconnect_pillars() { void interconnect_pillars() {
// Now comes the algorithm that connects pillars with each other. // Now comes the algorithm that connects pillars with each other.
// Ideally every pillar should be connected with at least one of its // Ideally every pillar should be connected with at least one of its
@ -1901,16 +2048,22 @@ public:
std::set<unsigned long> pairs; std::set<unsigned long> pairs;
// A function to connect one pillar with its neighbors. THe number of
// neighbors is given in the configuration. This function if called
// for every pillar in the pillar index. A pair of pillar will not
// be connected multiple times this is ensured by the 'pairs' set which
// remembers the processed pillar pairs
auto cascadefn = auto cascadefn =
[this, d, &pairs, min_height_ratio, H1] (const SpatElement& el) [this, d, &pairs, min_height_ratio, H1] (const SpatElement& el)
{ {
Vec3d qp = el.first; Vec3d qp = el.first; // endpoint of the pillar
const Pillar& pillar = m_result.pillar(el.second); const Pillar& pillar = m_result.pillar(el.second); // actual pillar
// Get the max number of neighbors a pillar should connect to
unsigned neighbors = m_cfg.pillar_cascade_neighbors; unsigned neighbors = m_cfg.pillar_cascade_neighbors;
// connections are enough for one pillar // connections are already enough for the pillar
if(pillar.links >= neighbors) return; if(pillar.links >= neighbors) return;
// Query all remaining points within reach // Query all remaining points within reach
@ -1924,21 +2077,21 @@ public:
return distance(e1.first, qp) < distance(e2.first, qp); return distance(e1.first, qp) < distance(e2.first, qp);
}); });
for(auto& re : qres) { for(auto& re : qres) { // process the queried neighbors
if(re.second == el.second) continue; if(re.second == el.second) continue; // Skip self
auto a = el.second, b = re.second; auto a = el.second, b = re.second;
// I hope that the area of a square is never equal to its // Get unique hash for the given pair (order doesn't matter)
// circumference auto hashval = pairhash(a, b);
auto hashval = 2 * (a + b) + a * b;
// Search for the pair amongst the remembered pairs
if(pairs.find(hashval) != pairs.end()) continue; if(pairs.find(hashval) != pairs.end()) continue;
const Pillar& neighborpillar = m_result.pillars()[re.second]; const Pillar& neighborpillar = m_result.pillars()[re.second];
// this neighbor is occupied // this neighbor is occupied, skip
if(neighborpillar.links >= neighbors) continue; if(neighborpillar.links >= neighbors) continue;
if(interconnect(pillar, neighborpillar)) { if(interconnect(pillar, neighborpillar)) {
@ -1961,46 +2114,74 @@ public:
} }
}; };
// Run the cascade for the pillars in the index
m_pillar_index.foreach(cascadefn); m_pillar_index.foreach(cascadefn);
// We would be done here if we could allow some pillars to not be
// connected with any neighbors. But this might leave the support tree
// unprintable.
//
// The current solution is to insert additional pillars next to these
// lonely pillars. One or even two additional pillar might get inserted
// depending on the length of the lonely pillar.
size_t pillarcount = m_result.pillars().size(); size_t pillarcount = m_result.pillars().size();
// Again, go through all pillars, this time in the whole support tree
// not just the index.
for(size_t pid = 0; pid < pillarcount; pid++) { for(size_t pid = 0; pid < pillarcount; pid++) {
auto pillar = [this, pid]() { return m_result.pillar(pid); }; auto pillar = [this, pid]() { return m_result.pillar(pid); };
// Decide how many additional pillars will be needed:
unsigned needpillars = 0; unsigned needpillars = 0;
if(pillar().bridges > m_cfg.max_bridges_on_pillar) needpillars = 3; if (pillar().bridges > m_cfg.max_bridges_on_pillar)
else if(pillar().links < 2 && pillar().height > H2) { needpillars = 3;
else if (pillar().links < 2 && pillar().height > H2) {
// Not enough neighbors to support this pillar // Not enough neighbors to support this pillar
needpillars = 2 - pillar().links; needpillars = 2 - pillar().links;
} } else if (pillar().links < 1 && pillar().height > H1) {
else if(pillar().links < 1 && pillar().height > H1) {
// No neighbors could be found and the pillar is too long. // No neighbors could be found and the pillar is too long.
needpillars = 1; needpillars = 1;
} }
// Search for new pillar locations // Search for new pillar locations:
bool found = false; bool found = false;
double alpha = 0; // goes to 2Pi double alpha = 0; // goes to 2Pi
double r = 2 * m_cfg.base_radius_mm; double r = 2 * m_cfg.base_radius_mm;
Vec3d pillarsp = pillar().startpoint(); Vec3d pillarsp = pillar().startpoint();
// temp value for starting point detection
Vec3d sp(pillarsp(X), pillarsp(Y), pillarsp(Z) - r); Vec3d sp(pillarsp(X), pillarsp(Y), pillarsp(Z) - r);
std::vector<bool> tv(needpillars, false);
std::vector<Vec3d> spts(needpillars); // A vector of bool for placement feasbility
std::vector<bool> canplace(needpillars, false);
std::vector<Vec3d> spts(needpillars); // vector of starting points
double gnd = m_result.ground_level;
double min_dist = SupportConfig::pillar_base_safety_distance_mm +
m_cfg.base_radius_mm + EPSILON;
while(!found && alpha < 2*PI) { while(!found && alpha < 2*PI) {
for (unsigned n = 0; n < needpillars; n++) {
for(unsigned n = 0; n < needpillars; n++) { double a = alpha + n * PI / 3;
double a = alpha + n * PI/3;
Vec3d s = sp; Vec3d s = sp;
s(X) += std::cos(a) * r; s(X) += std::cos(a) * r;
s(Y) += std::sin(a) * r; s(Y) += std::sin(a) * r;
spts[n] = s; spts[n] = s;
// Check the path vertically down
auto hr = bridge_mesh_intersect(s, {0, 0, -1}, pillar().r); auto hr = bridge_mesh_intersect(s, {0, 0, -1}, pillar().r);
tv[n] = std::isinf(hr.distance());
// If the path is clear, check for pillar base collisions
canplace[n] = std::isinf(hr.distance())
&& m_mesh.squared_distance({s(X), s(Y), gnd})
> min_dist;
} }
found = std::all_of(tv.begin(), tv.end(), [](bool v){return v;}); found = std::all_of(canplace.begin(), canplace.end(),
[](bool v) { return v; });
// 20 angles will be tried... // 20 angles will be tried...
alpha += 0.1 * PI; alpha += 0.1 * PI;
@ -2010,7 +2191,7 @@ public:
newpills.reserve(needpillars); newpills.reserve(needpillars);
if(found) for(unsigned n = 0; n < needpillars; n++) { if(found) for(unsigned n = 0; n < needpillars; n++) {
Vec3d s = spts[n]; double gnd = m_result.ground_level; Vec3d s = spts[n];
Pillar p(s, Vec3d(s(X), s(Y), gnd), pillar().r); Pillar p(s, Vec3d(s(X), s(Y), gnd), pillar().r);
p.add_base(m_cfg.base_height_mm, m_cfg.base_radius_mm); p.add_base(m_cfg.base_height_mm, m_cfg.base_radius_mm);
@ -2075,9 +2256,12 @@ public:
// This is only for checking // This is only for checking
double idist = bridge_mesh_intersect(sph, dir, R, true); double idist = bridge_mesh_intersect(sph, dir, R, true);
double dist = ray_mesh_intersect(sj, dir); double dist = ray_mesh_intersect(sj, dir);
if (std::isinf(dist))
dist = sph(Z) - m_result.ground_level - HWIDTH_MM;
if(std::isinf(idist) || std::isnan(idist) || idist < 2*R || if(std::isnan(idist) || idist < 2*R ||
std::isinf(dist) || std::isnan(dist) || dist < 2*R) { std::isnan(dist) || dist < 2*R)
{
BOOST_LOG_TRIVIAL(warning) << "Can not find route for headless" BOOST_LOG_TRIVIAL(warning) << "Can not find route for headless"
<< " support stick at: " << " support stick at: "
<< sj.transpose(); << sj.transpose();
@ -2214,7 +2398,9 @@ bool SLASupportTree::generate(const std::vector<SupportPoint> &support_points,
return pc == ABORT; return pc == ABORT;
} }
SLASupportTree::SLASupportTree(): m_impl(new Impl()) {} SLASupportTree::SLASupportTree(double gnd_lvl): m_impl(new Impl()) {
m_impl->ground_level = gnd_lvl;
}
const TriangleMesh &SLASupportTree::merged_mesh() const const TriangleMesh &SLASupportTree::merged_mesh() const
{ {
@ -2226,7 +2412,7 @@ void SLASupportTree::merged_mesh_with_pad(TriangleMesh &outmesh) const {
outmesh.merge(get_pad()); outmesh.merge(get_pad());
} }
SlicedSupports SLASupportTree::slice(float layerh, float init_layerh) const std::vector<ExPolygons> SLASupportTree::slice(float layerh, float init_layerh) const
{ {
if(init_layerh < 0) init_layerh = layerh; if(init_layerh < 0) init_layerh = layerh;
auto& stree = get(); auto& stree = get();
@ -2247,34 +2433,29 @@ SlicedSupports SLASupportTree::slice(float layerh, float init_layerh) const
fullmesh.merge(get_pad()); fullmesh.merge(get_pad());
fullmesh.require_shared_vertices(); // TriangleMeshSlicer needs this fullmesh.require_shared_vertices(); // TriangleMeshSlicer needs this
TriangleMeshSlicer slicer(&fullmesh); TriangleMeshSlicer slicer(&fullmesh);
SlicedSupports ret; std::vector<ExPolygons> ret;
slicer.slice(heights, 0.f, &ret, get().ctl().cancelfn); slicer.slice(heights, 0.f, &ret, get().ctl().cancelfn);
return ret; return ret;
} }
SlicedSupports SLASupportTree::slice(const std::vector<float> &heights, std::vector<ExPolygons> SLASupportTree::slice(const std::vector<float> &heights,
float cr) const float cr) const
{ {
TriangleMesh fullmesh = m_impl->merged_mesh(); TriangleMesh fullmesh = m_impl->merged_mesh();
fullmesh.merge(get_pad()); fullmesh.merge(get_pad());
fullmesh.require_shared_vertices(); // TriangleMeshSlicer needs this fullmesh.require_shared_vertices(); // TriangleMeshSlicer needs this
TriangleMeshSlicer slicer(&fullmesh); TriangleMeshSlicer slicer(&fullmesh);
SlicedSupports ret; std::vector<ExPolygons> ret;
slicer.slice(heights, cr, &ret, get().ctl().cancelfn); slicer.slice(heights, cr, &ret, get().ctl().cancelfn);
return ret; return ret;
} }
const TriangleMesh &SLASupportTree::add_pad(const SliceLayer& baseplate, const TriangleMesh &SLASupportTree::add_pad(const ExPolygons& modelbase,
const PoolConfig& pcfg) const const PoolConfig& pcfg) const
{ {
// PoolConfig pcfg; return m_impl->create_pad(merged_mesh(), modelbase, pcfg).tmesh;
// pcfg.min_wall_thickness_mm = min_wall_thickness_mm;
// pcfg.min_wall_height_mm = min_wall_height_mm;
// pcfg.max_merge_distance_mm = max_merge_distance_mm;
// pcfg.edge_radius_mm = edge_radius_mm;
return m_impl->create_pad(merged_mesh(), baseplate, pcfg).tmesh;
} }
const TriangleMesh &SLASupportTree::get_pad() const const TriangleMesh &SLASupportTree::get_pad() const

View File

@ -24,10 +24,11 @@ class TriangleMesh;
class Model; class Model;
class ModelInstance; class ModelInstance;
class ModelObject; class ModelObject;
class Polygon;
class ExPolygon; class ExPolygon;
using SliceLayer = std::vector<ExPolygon>; using Polygons = std::vector<Polygon>;
using SlicedSupports = std::vector<SliceLayer>; using ExPolygons = std::vector<ExPolygon>;
namespace sla { namespace sla {
@ -91,6 +92,10 @@ struct SupportConfig {
// The shortest distance of any support structure from the model surface // The shortest distance of any support structure from the model surface
static const double safety_distance_mm; static const double safety_distance_mm;
// The shortest distance between a pillar base perimeter from the model
// body. This is only useful when elevation is set to zero.
static const double pillar_base_safety_distance_mm;
static const double max_solo_pillar_height_mm; static const double max_solo_pillar_height_mm;
static const double max_dual_pillar_height_mm; static const double max_dual_pillar_height_mm;
static const double optimizer_rel_score_diff; static const double optimizer_rel_score_diff;
@ -160,7 +165,7 @@ class SLASupportTree {
public: public:
SLASupportTree(); SLASupportTree(double ground_level = 0.0);
SLASupportTree(const std::vector<SupportPoint>& pts, SLASupportTree(const std::vector<SupportPoint>& pts,
const EigenMesh3D& em, const EigenMesh3D& em,
@ -179,12 +184,16 @@ public:
void merged_mesh_with_pad(TriangleMesh&) const; void merged_mesh_with_pad(TriangleMesh&) const;
/// Get the sliced 2d layers of the support geometry. /// Get the sliced 2d layers of the support geometry.
SlicedSupports slice(float layerh, float init_layerh = -1.0) const; std::vector<ExPolygons> slice(float layerh, float init_layerh = -1.0) const;
SlicedSupports slice(const std::vector<float>&, float closing_radius) const; std::vector<ExPolygons> slice(const std::vector<float>&, float closing_radius) const;
/// Adding the "pad" (base pool) under the supports /// Adding the "pad" (base pool) under the supports
const TriangleMesh& add_pad(const SliceLayer& baseplate, /// modelbase will be used according to the embed_object flag in PoolConfig.
/// If set, the plate will interpreted as the model's intrinsic pad.
/// Otherwise, the modelbase will be unified with the base plate calculated
/// from the supports.
const TriangleMesh& add_pad(const ExPolygons& modelbase,
const PoolConfig& pcfg) const; const PoolConfig& pcfg) const;
/// Get the pad geometry /// Get the pad geometry

View File

@ -33,7 +33,7 @@ public:
sla::EigenMesh3D emesh; // index-triangle representation sla::EigenMesh3D emesh; // index-triangle representation
std::vector<sla::SupportPoint> support_points; // all the support points (manual/auto) std::vector<sla::SupportPoint> support_points; // all the support points (manual/auto)
SupportTreePtr support_tree_ptr; // the supports SupportTreePtr support_tree_ptr; // the supports
SlicedSupports support_slices; // sliced supports std::vector<ExPolygons> support_slices; // sliced supports
inline SupportData(const TriangleMesh& trmesh): emesh(trmesh) {} inline SupportData(const TriangleMesh& trmesh): emesh(trmesh) {}
}; };
@ -471,7 +471,7 @@ void SLAPrint::set_task(const TaskParams &params)
int n_object_steps = int(params.to_object_step) + 1; int n_object_steps = int(params.to_object_step) + 1;
if (n_object_steps == 0) if (n_object_steps == 0)
n_object_steps = (int)slaposCount; n_object_steps = int(slaposCount);
if (params.single_model_object.valid()) { if (params.single_model_object.valid()) {
// Find the print object to be processed with priority. // Find the print object to be processed with priority.
@ -486,7 +486,7 @@ void SLAPrint::set_task(const TaskParams &params)
// Find out whether the priority print object is being currently processed. // Find out whether the priority print object is being currently processed.
bool running = false; bool running = false;
for (int istep = 0; istep < n_object_steps; ++ istep) { for (int istep = 0; istep < n_object_steps; ++ istep) {
if (! print_object->m_stepmask[istep]) if (! print_object->m_stepmask[size_t(istep)])
// Step was skipped, cancel. // Step was skipped, cancel.
break; break;
if (print_object->is_step_started_unguarded(SLAPrintObjectStep(istep))) { if (print_object->is_step_started_unguarded(SLAPrintObjectStep(istep))) {
@ -502,7 +502,7 @@ void SLAPrint::set_task(const TaskParams &params)
if (params.single_model_instance_only) { if (params.single_model_instance_only) {
// Suppress all the steps of other instances. // Suppress all the steps of other instances.
for (SLAPrintObject *po : m_objects) for (SLAPrintObject *po : m_objects)
for (int istep = 0; istep < (int)slaposCount; ++ istep) for (size_t istep = 0; istep < slaposCount; ++ istep)
po->m_stepmask[istep] = false; po->m_stepmask[istep] = false;
} else if (! running) { } else if (! running) {
// Swap the print objects, so that the selected print_object is first in the row. // Swap the print objects, so that the selected print_object is first in the row.
@ -512,15 +512,15 @@ void SLAPrint::set_task(const TaskParams &params)
} }
// and set the steps for the current object. // and set the steps for the current object.
for (int istep = 0; istep < n_object_steps; ++ istep) for (int istep = 0; istep < n_object_steps; ++ istep)
print_object->m_stepmask[istep] = true; print_object->m_stepmask[size_t(istep)] = true;
for (int istep = n_object_steps; istep < (int)slaposCount; ++ istep) for (int istep = n_object_steps; istep < int(slaposCount); ++ istep)
print_object->m_stepmask[istep] = false; print_object->m_stepmask[size_t(istep)] = false;
} else { } else {
// Slicing all objects. // Slicing all objects.
bool running = false; bool running = false;
for (SLAPrintObject *print_object : m_objects) for (SLAPrintObject *print_object : m_objects)
for (int istep = 0; istep < n_object_steps; ++ istep) { for (int istep = 0; istep < n_object_steps; ++ istep) {
if (! print_object->m_stepmask[istep]) { if (! print_object->m_stepmask[size_t(istep)]) {
// Step may have been skipped. Restart. // Step may have been skipped. Restart.
goto loop_end; goto loop_end;
} }
@ -536,8 +536,8 @@ void SLAPrint::set_task(const TaskParams &params)
this->call_cancel_callback(); this->call_cancel_callback();
for (SLAPrintObject *po : m_objects) { for (SLAPrintObject *po : m_objects) {
for (int istep = 0; istep < n_object_steps; ++ istep) for (int istep = 0; istep < n_object_steps; ++ istep)
po->m_stepmask[istep] = true; po->m_stepmask[size_t(istep)] = true;
for (int istep = n_object_steps; istep < (int)slaposCount; ++ istep) for (auto istep = size_t(n_object_steps); istep < slaposCount; ++ istep)
po->m_stepmask[istep] = false; po->m_stepmask[istep] = false;
} }
} }
@ -555,9 +555,9 @@ void SLAPrint::set_task(const TaskParams &params)
void SLAPrint::finalize() void SLAPrint::finalize()
{ {
for (SLAPrintObject *po : m_objects) for (SLAPrintObject *po : m_objects)
for (int istep = 0; istep < (int)slaposCount; ++ istep) for (size_t istep = 0; istep < slaposCount; ++ istep)
po->m_stepmask[istep] = true; po->m_stepmask[istep] = true;
for (int istep = 0; istep < (int)slapsCount; ++ istep) for (size_t istep = 0; istep < slapsCount; ++ istep)
m_stepmask[istep] = true; m_stepmask[istep] = true;
} }
@ -599,17 +599,29 @@ sla::SupportConfig make_support_cfg(const SLAPrintObjectConfig& c) {
return scfg; return scfg;
} }
bool use_builtin_pad(const SLAPrintObjectConfig& c) {
return c.support_object_elevation.getFloat() <= EPSILON &&
c.pad_enable.getBool();
}
sla::PoolConfig make_pool_config(const SLAPrintObjectConfig& c) { sla::PoolConfig make_pool_config(const SLAPrintObjectConfig& c) {
sla::PoolConfig pcfg; sla::PoolConfig pcfg;
pcfg.min_wall_thickness_mm = c.pad_wall_thickness.getFloat(); pcfg.min_wall_thickness_mm = c.pad_wall_thickness.getFloat();
pcfg.wall_slope = c.pad_wall_slope.getFloat(); pcfg.wall_slope = c.pad_wall_slope.getFloat() * PI / 180.0;
pcfg.edge_radius_mm = c.pad_edge_radius.getFloat();
// We do not support radius for now
pcfg.edge_radius_mm = 0.0; //c.pad_edge_radius.getFloat();
pcfg.max_merge_distance_mm = c.pad_max_merge_distance.getFloat(); pcfg.max_merge_distance_mm = c.pad_max_merge_distance.getFloat();
pcfg.min_wall_height_mm = c.pad_wall_height.getFloat(); pcfg.min_wall_height_mm = c.pad_wall_height.getFloat();
// set builtin pad implicitly ON
pcfg.embed_object = use_builtin_pad(c);
return pcfg; return pcfg;
} }
} }
std::string SLAPrint::validate() const std::string SLAPrint::validate() const
@ -633,7 +645,9 @@ std::string SLAPrint::validate() const
2 * cfg.head_back_radius_mm - 2 * cfg.head_back_radius_mm -
cfg.head_penetration_mm; cfg.head_penetration_mm;
if(supports_en && pinhead_width > cfg.object_elevation_mm) double elv = cfg.object_elevation_mm;
if(supports_en && elv > EPSILON && elv < pinhead_width )
return L("Elevation is too low for object."); return L("Elevation is too low for object.");
} }
@ -818,13 +832,37 @@ void SLAPrint::process()
BOOST_LOG_TRIVIAL(debug) << "Automatic support points: " BOOST_LOG_TRIVIAL(debug) << "Automatic support points: "
<< po.m_supportdata->support_points.size(); << po.m_supportdata->support_points.size();
// Using RELOAD_SLA_SUPPORT_POINTS to tell the Plater to pass the update status to GLGizmoSlaSupports // Using RELOAD_SLA_SUPPORT_POINTS to tell the Plater to pass
m_report_status(*this, -1, L("Generating support points"), SlicingStatus::RELOAD_SLA_SUPPORT_POINTS); // the update status to GLGizmoSlaSupports
m_report_status(*this,
-1,
L("Generating support points"),
SlicingStatus::RELOAD_SLA_SUPPORT_POINTS);
} }
else { else {
// There are either some points on the front-end, or the user removed them on purpose. No calculation will be done. // There are either some points on the front-end, or the user
// removed them on purpose. No calculation will be done.
po.m_supportdata->support_points = po.transformed_support_points(); po.m_supportdata->support_points = po.transformed_support_points();
} }
// If the builtin pad mode is engaged, we have to filter out all the
// points that are on the bottom of the object
if(use_builtin_pad(po.m_config)) {
double gnd = po.m_supportdata->emesh.ground_level();
auto & pts = po.m_supportdata->support_points;
// get iterator to the reorganized vector end
auto endit = std::remove_if(
pts.begin(),
pts.end(),
[&po, gnd](const sla::SupportPoint &sp) {
double diff = std::abs(gnd - double(sp.pos(Z)));
return diff <= po.m_config.pad_wall_thickness.getFloat();
});
// erase all elements after the new end
pts.erase(endit, pts.end());
}
}; };
// In this step we create the supports // In this step we create the supports
@ -832,9 +870,17 @@ void SLAPrint::process()
{ {
if(!po.m_supportdata) return; if(!po.m_supportdata) return;
sla::PoolConfig pcfg = make_pool_config(po.m_config);
if(pcfg.embed_object)
po.m_supportdata->emesh.ground_level() += pcfg.min_wall_thickness_mm;
if(!po.m_config.supports_enable.getBool()) { if(!po.m_config.supports_enable.getBool()) {
// Generate empty support tree. It can still host a pad // Generate empty support tree. It can still host a pad
po.m_supportdata->support_tree_ptr.reset(new SLASupportTree()); po.m_supportdata->support_tree_ptr.reset(
new SLASupportTree(po.m_supportdata->emesh.ground_level()));
return; return;
} }
@ -894,27 +940,26 @@ void SLAPrint::process()
if(po.m_config.pad_enable.getBool()) if(po.m_config.pad_enable.getBool())
{ {
double wt = po.m_config.pad_wall_thickness.getFloat(); // Get the distilled pad configuration from the config
double h = po.m_config.pad_wall_height.getFloat(); sla::PoolConfig pcfg = make_pool_config(po.m_config);
double md = po.m_config.pad_max_merge_distance.getFloat();
// Radius is disabled for now...
double er = 0; // po.m_config.pad_edge_radius.getFloat();
double tilt = po.m_config.pad_wall_slope.getFloat() * PI / 180.0;
double lh = po.m_config.layer_height.getFloat();
double elevation = po.m_config.support_object_elevation.getFloat();
if(!po.m_config.supports_enable.getBool()) elevation = 0;
sla::PoolConfig pcfg(wt, h, md, er, tilt);
ExPolygons bp; ExPolygons bp; // This will store the base plate of the pad.
double pad_h = sla::get_pad_fullheight(pcfg); double pad_h = sla::get_pad_fullheight(pcfg);
auto&& trmesh = po.transformed_mesh(); const TriangleMesh &trmesh = po.transformed_mesh();
// This call can get pretty time consuming // This call can get pretty time consuming
auto thrfn = [this](){ throw_if_canceled(); }; auto thrfn = [this](){ throw_if_canceled(); };
if(elevation < pad_h) { if (!po.m_config.supports_enable.getBool() || pcfg.embed_object) {
// we have to count with the model geometry for the base plate // No support (thus no elevation) or zero elevation mode
sla::base_plate(trmesh, bp, float(pad_h), float(lh), thrfn); // we sometimes call it "builtin pad" is enabled so we will
// get a sample from the bottom of the mesh and use it for pad
// creation.
sla::base_plate(trmesh,
bp,
float(pad_h),
float(po.m_config.layer_height.getFloat()),
thrfn);
} }
pcfg.throw_on_cancel = thrfn; pcfg.throw_on_cancel = thrfn;
@ -1647,7 +1692,7 @@ double SLAPrintObject::get_elevation() const {
// will be in the future, we provide the config to the get_pad_elevation // will be in the future, we provide the config to the get_pad_elevation
// method and we will have the correct value // method and we will have the correct value
sla::PoolConfig pcfg = make_pool_config(m_config); sla::PoolConfig pcfg = make_pool_config(m_config);
ret += sla::get_pad_elevation(pcfg); if(!pcfg.embed_object) ret += sla::get_pad_elevation(pcfg);
} }
return ret; return ret;
@ -1661,8 +1706,9 @@ double SLAPrintObject::get_current_elevation() const
if(!has_supports && !has_pad) if(!has_supports && !has_pad)
return 0; return 0;
else if(has_supports && !has_pad) else if(has_supports && !has_pad) {
return se ? m_config.support_object_elevation.getFloat() : 0; return se ? m_config.support_object_elevation.getFloat() : 0;
}
return get_elevation(); return get_elevation();
} }
@ -1786,7 +1832,7 @@ std::vector<sla::SupportPoint> SLAPrintObject::transformed_support_points() cons
ret.reserve(spts.size()); ret.reserve(spts.size());
for(sla::SupportPoint& sp : spts) { for(sla::SupportPoint& sp : spts) {
Vec3d transformed_pos = trafo() * Vec3d(sp.pos(0), sp.pos(1), sp.pos(2)); Vec3d transformed_pos = trafo() * Vec3d(double(sp.pos(0)), double(sp.pos(1)), double(sp.pos(2)));
ret.emplace_back(transformed_pos(0), transformed_pos(1), transformed_pos(2), sp.head_front_radius, sp.is_new_island); ret.emplace_back(transformed_pos(0), transformed_pos(1), transformed_pos(2), sp.head_front_radius, sp.is_new_island);
} }