Speed up rotation optimizer

- No float to double conversion
- Solving issue of random (very similar) results due to the parallel summation of floats
This commit is contained in:
tamasmeszaros 2021-03-04 18:15:13 +01:00
parent 7760d3fbc4
commit de8bb00fa9
2 changed files with 45 additions and 42 deletions

View File

@ -1,7 +1,9 @@
#include <limits> #include <limits>
#include <libslic3r/SLA/Rotfinder.hpp> #include <libslic3r/SLA/Rotfinder.hpp>
#include <libslic3r/SLA/Concurrency.hpp>
#include <libslic3r/Execution/ExecutionTBB.hpp>
#include <libslic3r/Execution/ExecutionSeq.hpp>
#include <libslic3r/Optimize/BruteforceOptimizer.hpp> #include <libslic3r/Optimize/BruteforceOptimizer.hpp>
@ -20,66 +22,58 @@ namespace Slic3r { namespace sla {
namespace { namespace {
// Get the vertices of a triangle directly in an array of 3 points // Get the vertices of a triangle directly in an array of 3 points
std::array<Vec3d, 3> get_triangle_vertices(const TriangleMesh &mesh, std::array<Vec3f, 3> get_triangle_vertices(const TriangleMesh &mesh,
size_t faceidx) size_t faceidx)
{ {
const auto &face = mesh.its.indices[faceidx]; const auto &face = mesh.its.indices[faceidx];
return {Vec3d{mesh.its.vertices[face(0)].cast<double>()}, return {mesh.its.vertices[face(0)],
Vec3d{mesh.its.vertices[face(1)].cast<double>()}, mesh.its.vertices[face(1)],
Vec3d{mesh.its.vertices[face(2)].cast<double>()}}; mesh.its.vertices[face(2)]};
} }
std::array<Vec3d, 3> get_transformed_triangle(const TriangleMesh &mesh, std::array<Vec3f, 3> get_transformed_triangle(const TriangleMesh &mesh,
const Transform3d & tr, const Transform3f & tr,
size_t faceidx) size_t faceidx)
{ {
const auto &tri = get_triangle_vertices(mesh, faceidx); const auto &tri = get_triangle_vertices(mesh, faceidx);
return {tr * tri[0], tr * tri[1], tr * tri[2]}; return {tr * tri[0], tr * tri[1], tr * tri[2]};
} }
// Get area and normal of a triangle template<class T> Vec<3, T> normal(const std::array<Vec<3, T>, 3> &tri)
struct Facestats {
Vec3d normal;
double area;
explicit Facestats(const std::array<Vec3d, 3> &triangle)
{
Vec3d U = triangle[1] - triangle[0];
Vec3d V = triangle[2] - triangle[0];
Vec3d C = U.cross(V);
normal = C.normalized();
area = 0.5 * C.norm();
}
};
template<class AccessFn>
double sum_score(AccessFn &&accessfn, size_t facecount, size_t Nthreads)
{ {
double initv = 0.; Vec<3, T> U = tri[1] - tri[0];
auto mergefn = [](double a, double b) { return a + b; }; Vec<3, T> V = tri[2] - tri[0];
return U.cross(V).normalized();
}
template<class T, class AccessFn>
T sum_score(AccessFn &&accessfn, size_t facecount, size_t Nthreads)
{
T initv = 0.;
auto mergefn = [](T a, T b) { return a + b; };
size_t grainsize = facecount / Nthreads; size_t grainsize = facecount / Nthreads;
size_t from = 0, to = facecount; size_t from = 0, to = facecount;
return ccr_par::reduce(from, to, initv, mergefn, accessfn, grainsize); return execution::reduce(ex_seq, from, to, initv, mergefn, accessfn, grainsize);
} }
// Try to guess the number of support points needed to support a mesh // Try to guess the number of support points needed to support a mesh
double get_model_supportedness(const TriangleMesh &mesh, const Transform3d &tr) double get_model_supportedness(const TriangleMesh &mesh, const Transform3f &tr)
{ {
if (mesh.its.vertices.empty()) return std::nan(""); if (mesh.its.vertices.empty()) return std::nan("");
auto accessfn = [&mesh, &tr](size_t fi) { auto accessfn = [&mesh, &tr](size_t fi) {
Facestats fc{get_transformed_triangle(mesh, tr, fi)}; Vec3f n = normal(get_transformed_triangle(mesh, tr, fi));
// We should score against the alignment with the reference planes // We should score against the alignment with the reference planes
return std::abs(fc.normal.dot(Vec3d::UnitX())) + return scaled<int_fast64_t>(std::abs(n.dot(Vec3f::UnitX())) +
std::abs(fc.normal.dot(Vec3d::UnitY())) + std::abs(n.dot(Vec3f::UnitY())) +
std::abs(fc.normal.dot(Vec3d::UnitZ())); std::abs(n.dot(Vec3f::UnitZ())));
}; };
size_t facecount = mesh.its.indices.size(); size_t facecount = mesh.its.indices.size();
size_t Nthreads = std::thread::hardware_concurrency(); size_t Nthreads = std::thread::hardware_concurrency();
double S = sum_score(accessfn, facecount, Nthreads); double S = unscaled(sum_score<int_fast64_t>(accessfn, facecount, Nthreads));
return S / facecount; return S / facecount;
} }
@ -87,11 +81,12 @@ double get_model_supportedness(const TriangleMesh &mesh, const Transform3d &tr)
using XYRotation = std::array<double, 2>; using XYRotation = std::array<double, 2>;
// prepare the rotation transformation // prepare the rotation transformation
Transform3d to_transform3d(const XYRotation &rot) Transform3f to_transform3f(const XYRotation &rot)
{ {
Transform3d rt = Transform3d::Identity(); Transform3f rt = Transform3f::Identity();
rt.rotate(Eigen::AngleAxisd(rot[1], Vec3d::UnitY())); rt.rotate(Eigen::AngleAxisf(float(rot[1]), Vec3f::UnitY()));
rt.rotate(Eigen::AngleAxisd(rot[0], Vec3d::UnitX())); rt.rotate(Eigen::AngleAxisf(float(rot[0]), Vec3f::UnitX()));
return rt; return rt;
} }
@ -138,19 +133,27 @@ Vec2d find_best_rotation(const SLAPrintObject & po,
// We can specify the bounds for a dimension in the following way: // We can specify the bounds for a dimension in the following way:
auto bounds = opt::bounds({ {-PI/2, PI/2}, {-PI/2, PI/2} }); auto bounds = opt::bounds({ {-PI/2, PI/2}, {-PI/2, PI/2} });
Benchmark bench;
bench.start();
auto result = solver.to_max().optimize( auto result = solver.to_max().optimize(
[&mesh, &statusfn] (const XYRotation &rot) [&mesh, &statusfn] (const XYRotation &rot)
{ {
statusfn(); statusfn();
return get_model_supportedness(mesh, to_transform3d(rot)); return get_model_supportedness(mesh, to_transform3f(rot));
}, opt::initvals({0., 0.}), bounds); }, opt::initvals({0., 0.}), bounds);
bench.stop();
rot = result.optimum; rot = result.optimum;
std::cout << "Optimum score: " << result.score << std::endl;
std::cout << "Optimum rotation: " << result.optimum[0] << " " << result.optimum[1] << std::endl;
std::cout << "Optimization took: " << bench.getElapsedSec() << " seconds" << std::endl;
return {rot[0], rot[1]}; return {rot[0], rot[1]};
} }
double get_model_supportedness(const SLAPrintObject &po, const Transform3d &tr) double get_model_supportedness(const SLAPrintObject &po, const Transform3f &tr)
{ {
TriangleMesh mesh = po.model_object()->raw_mesh(); TriangleMesh mesh = po.model_object()->raw_mesh();
mesh.require_shared_vertices(); mesh.require_shared_vertices();

View File

@ -35,7 +35,7 @@ Vec2d find_best_rotation(
); );
double get_model_supportedness(const SLAPrintObject &mesh, double get_model_supportedness(const SLAPrintObject &mesh,
const Transform3d & tr); const Transform3f & tr);
} // namespace sla } // namespace sla
} // namespace Slic3r } // namespace Slic3r