Not handling logical beds in arrange()

This commit is contained in:
tamasmeszaros 2019-07-12 21:03:49 +02:00
parent 9372f1c6ad
commit df7bb94daf
12 changed files with 256 additions and 272 deletions

View file

@ -59,20 +59,20 @@ extern template PackGroup Nester<BottomLeftPlacer, FirstFitSelection>::execute(
template<class Placer = NfpPlacer,
class Selector = FirstFitSelection,
class Iterator = std::vector<Item>::iterator>
PackGroup nest(Iterator from, Iterator to,
void nest(Iterator from, Iterator to,
const typename Placer::BinType& bin,
Coord dist = 0,
const typename Placer::Config& pconf = {},
const typename Selector::Config& sconf = {})
{
Nester<Placer, Selector> nester(bin, dist, pconf, sconf);
return nester.execute(from, to);
nester.execute(from, to);
}
template<class Placer = NfpPlacer,
class Selector = FirstFitSelection,
class Iterator = std::vector<Item>::iterator>
PackGroup nest(Iterator from, Iterator to,
void nest(Iterator from, Iterator to,
const typename Placer::BinType& bin,
ProgressFunction prg,
StopCondition scond = []() { return false; },
@ -83,7 +83,7 @@ PackGroup nest(Iterator from, Iterator to,
Nester<Placer, Selector> nester(bin, dist, pconf, sconf);
if(prg) nester.progressIndicator(prg);
if(scond) nester.stopCondition(scond);
return nester.execute(from, to);
nester.execute(from, to);
}
#ifdef LIBNEST2D_STATIC
@ -91,14 +91,14 @@ PackGroup nest(Iterator from, Iterator to,
extern template class Nester<NfpPlacer, FirstFitSelection>;
extern template class Nester<BottomLeftPlacer, FirstFitSelection>;
extern template PackGroup nest(std::vector<Item>::iterator from,
extern template void nest(std::vector<Item>::iterator from,
std::vector<Item>::iterator to,
const Box& bin,
Coord dist = 0,
const NfpPlacer::Config& pconf,
const FirstFitSelection::Config& sconf);
extern template PackGroup nest(std::vector<Item>::iterator from,
extern template void nest(std::vector<Item>::iterator from,
std::vector<Item>::iterator to,
const Box& bin,
ProgressFunction prg,
@ -112,20 +112,19 @@ extern template PackGroup nest(std::vector<Item>::iterator from,
template<class Placer = NfpPlacer,
class Selector = FirstFitSelection,
class Container = std::vector<Item>>
PackGroup nest(Container&& cont,
void nest(Container&& cont,
const typename Placer::BinType& bin,
Coord dist = 0,
const typename Placer::Config& pconf = {},
const typename Selector::Config& sconf = {})
{
return nest<Placer, Selector>(cont.begin(), cont.end(),
bin, dist, pconf, sconf);
nest<Placer, Selector>(cont.begin(), cont.end(), bin, dist, pconf, sconf);
}
template<class Placer = NfpPlacer,
class Selector = FirstFitSelection,
class Container = std::vector<Item>>
PackGroup nest(Container&& cont,
void nest(Container&& cont,
const typename Placer::BinType& bin,
ProgressFunction prg,
StopCondition scond = []() { return false; },
@ -133,8 +132,8 @@ PackGroup nest(Container&& cont,
const typename Placer::Config& pconf = {},
const typename Selector::Config& sconf = {})
{
return nest<Placer, Selector>(cont.begin(), cont.end(),
bin, prg, scond, dist, pconf, sconf);
nest<Placer, Selector>(cont.begin(), cont.end(), bin, prg, scond, dist,
pconf, sconf);
}
}

View file

@ -12,6 +12,8 @@
namespace libnest2d {
static const constexpr int BIN_ID_UNSET = -1;
/**
* \brief An item to be placed on a bin.
*
@ -34,9 +36,9 @@ class _Item {
RawShape sh_;
// Transformation data
Vertex translation_;
Radians rotation_;
Coord inflation_;
Vertex translation_{0, 0};
Radians rotation_{0.0};
Coord inflation_{0};
// Info about whether the transformations will have to take place
// This is needed because if floating point is used, it is hard to say
@ -66,9 +68,7 @@ class _Item {
BBCache(): valid(false) {}
} bb_cache_;
static const size_t ID_UNSET = size_t(-1);
size_t id_{ID_UNSET};
int binid_{BIN_ID_UNSET};
bool fixed_{false};
public:
@ -149,8 +149,8 @@ public:
inline bool isFixed() const noexcept { return fixed_; }
inline void markAsFixed(bool fixed = true) { fixed_ = fixed; }
inline void id(size_t idx) { id_ = idx; }
inline long id() const noexcept { return id_; }
inline void binId(int idx) { binid_ = idx; }
inline int binId() const noexcept { return binid_; }
/**
* @brief Convert the polygon to string representation. The format depends
@ -766,25 +766,6 @@ public:
void clear() { impl_.clear(); }
};
using BinIdx = unsigned;
template<class S, class Key = size_t> using _NestResult =
std::vector<
std::tuple<Key, // Identifier of the original shape
TPoint<S>, // Translation calculated by nesting
Radians, // Rotation calculated by nesting
BinIdx> // Logical bin index, first is zero
>;
template<class T> struct Indexed {
using ShapeType = T;
static T& get(T& obj) { return obj; }
};
template<class K, class S> struct Indexed<std::pair<K, S>> {
using ShapeType = S;
static S& get(std::pair<K, S>& obj) { return obj.second; }
};
/**
* The Arranger is the front-end class for the libnest2d library. It takes the
* input items and outputs the items with the proper transformations to be
@ -805,7 +786,6 @@ public:
using Coord = TCoord<TPoint<typename Item::ShapeType>>;
using PackGroup = _PackGroup<typename Item::ShapeType>;
using ResultType = PackGroup;
template<class K> using NestResult = _NestResult<ShapeType, K>;
private:
BinType bin_;
@ -816,8 +796,13 @@ private:
using TPItem = remove_cvref_t<Item>;
using TSItem = remove_cvref_t<SItem>;
std::vector<TPItem> item_cache_;
StopCondition stopfn_;
template<class It> using TVal = remove_cvref_t<typename It::value_type>;
template<class It, class Out>
using ConvertibleOnly =
enable_if_t< std::is_convertible<TVal<It>, TPItem>::value, void>;
public:
@ -864,12 +849,20 @@ public:
* The number of groups in the pack group is the number of bins opened by
* the selection algorithm.
*/
template<class It, class Key = size_t>
inline const NestResult<Key> execute(It from, It to,
std::function<Key(It)> keyfn = nullptr)
template<class It>
inline ConvertibleOnly<It, void> execute(It from, It to)
{
if (!keyfn) keyfn = [to](It it) { return to - it; };
return _execute(from, to, keyfn);
auto infl = static_cast<Coord>(std::ceil(min_obj_distance_/2.0));
if(infl > 0) std::for_each(from, to, [this, infl](Item& item) {
item.inflate(infl);
});
selector_.template packItems<PlacementStrategy>(
from, to, bin_, pconfig_);
if(min_obj_distance_ > 0) std::for_each(from, to, [infl](Item& item) {
item.inflate(-infl);
});
}
/// Set a progress indicator function object for the selector.
@ -890,74 +883,32 @@ public:
}
private:
template<class It> using TVal = remove_cvref_t<typename It::value_type>;
template<class It, class Out>
using ConvertibleOnly =
enable_if_t< std::is_convertible<TVal<It>, TPItem>::value, void>;
template<class It, class Out>
using NotConvertibleOnly =
enable_if_t< ! std::is_convertible<TVal<It>, TPItem>::value, void>;
// This function will be used only if the iterators are pointing to
// a type compatible with the libnets2d::_Item template.
// This way we can use references to input elements as they will
// have to exist for the lifetime of this call.
template<class It, class Key>
inline ConvertibleOnly<It, const NestResult<Key>> _execute(
It from, It to, std::function<Key(It)> keyfn)
{
{
auto it = from; size_t id = 0;
while(it != to)
if (it->id() == Item::ID_UNSET) (it++)->id(id++);
else { id = it->id() + 1; ++it; }
}
NestResult<Key> result(to - from);
__execute(from, to, keyfn);
BinIdx binidx = 0;
for(auto &itmgrp : lastResult()) {
for(const Item& itm : itmgrp)
result[itm.id()] =
std::make_tuple(keyfn(from + itm.id()), itm.translation(),
itm.rotation(), binidx);
++binidx;
}
return result;
}
// template<class It, class Key>
// inline ConvertibleOnly<It, void> _execute(It from, It to)
// {
// __execute(from, to);
// }
template<class It, class Key = size_t>
inline NotConvertibleOnly<It, const NestResult<Key>> _execute(
It from, It to, std::function<Key(It)> keyfn)
{
item_cache_.reserve(to - from);
for(auto it = from; it != to; ++it)
item_cache_.emplace_back(Indexed<typename It::value_type>::get(*it));
// template<class It> inline void _execute(It from, It to)
// {
// auto infl = static_cast<Coord>(std::ceil(min_obj_distance_/2.0));
// if(infl > 0) std::for_each(from, to, [this](Item& item) {
// item.inflate(infl);
// });
return _execute(item_cache_.begin(), item_cache_.end(), keyfn);
}
template<class It> inline void __execute(It from, It to)
{
auto infl = static_cast<Coord>(std::ceil(min_obj_distance_/2.0));
if(infl > 0) std::for_each(from, to, [this](Item& item) {
item.inflate(infl);
});
selector_.template packItems<PlacementStrategy>(
from, to, bin_, pconfig_);
// selector_.template packItems<PlacementStrategy>(
// from, to, bin_, pconfig_);
if(min_obj_distance_ > 0) std::for_each(from, to, [](Item& item) {
item.inflate(-infl);
});
}
// if(min_obj_distance_ > 0) std::for_each(from, to, [](Item& item) {
// item.inflate(-infl);
// });
// }
};
}

View file

@ -711,7 +711,12 @@ public:
addBin();
packjob(placers[idx], remaining, idx); idx++;
}
int binid = 0;
for(auto &bin : packed_bins_) {
for(Item& itm : bin) itm.binId(binid);
binid++;
}
}
};

View file

@ -90,8 +90,10 @@ public:
size_t j = 0;
while(!was_packed && !cancelled()) {
for(; j < placers.size() && !was_packed && !cancelled(); j++) {
if((was_packed = placers[j].pack(*it, rem(it, store_) )))
makeProgress(placers[j], j);
if((was_packed = placers[j].pack(*it, rem(it, store_) ))) {
it->get().binId(int(j));
makeProgress(placers[j], j);
}
}
if(!was_packed) {

View file

@ -372,27 +372,34 @@ TEST(GeometryAlgorithms, ArrangeRectanglesTight)
Nester<BottomLeftPlacer, DJDHeuristic> arrange(bin);
auto groups = arrange.execute(rects.begin(), rects.end());
ASSERT_EQ(groups.size(), 1u);
ASSERT_EQ(groups[0].size(), rects.size());
arrange.execute(rects.begin(), rects.end());
auto max_group = std::max_element(rects.begin(), rects.end(),
[](const Item &i1, const Item &i2) {
return i1.binId() < i2.binId();
});
int groups = max_group == rects.end() ? 0 : max_group->binId() + 1;
ASSERT_EQ(groups, 1u);
ASSERT_TRUE(
std::all_of(rects.begin(), rects.end(), [](const Rectangle &itm) {
return itm.binId() != BIN_ID_UNSET;
}));
// check for no intersections, no containment:
for(auto result : groups) {
bool valid = true;
for(Item& r1 : result) {
for(Item& r2 : result) {
if(&r1 != &r2 ) {
valid = !Item::intersects(r1, r2) || Item::touches(r1, r2);
ASSERT_TRUE(valid);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
ASSERT_TRUE(valid);
}
bool valid = true;
for(Item& r1 : rects) {
for(Item& r2 : rects) {
if(&r1 != &r2 ) {
valid = !Item::intersects(r1, r2) || Item::touches(r1, r2);
ASSERT_TRUE(valid);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
ASSERT_TRUE(valid);
}
}
}
}
TEST(GeometryAlgorithms, ArrangeRectanglesLoose)
@ -433,16 +440,25 @@ TEST(GeometryAlgorithms, ArrangeRectanglesLoose)
Nester<BottomLeftPlacer, DJDHeuristic> arrange(bin, min_obj_distance);
auto groups = arrange.execute(rects.begin(), rects.end());
arrange.execute(rects.begin(), rects.end());
ASSERT_EQ(groups.size(), 1u);
ASSERT_EQ(groups[0].size(), rects.size());
auto max_group = std::max_element(rects.begin(), rects.end(),
[](const Item &i1, const Item &i2) {
return i1.binId() < i2.binId();
});
size_t groups = max_group == rects.end() ? 0 : max_group->binId() + 1;
ASSERT_EQ(groups, 1u);
ASSERT_TRUE(
std::all_of(rects.begin(), rects.end(), [](const Rectangle &itm) {
return itm.binId() != BIN_ID_UNSET;
}));
// check for no intersections, no containment:
auto result = groups[0];
bool valid = true;
for(Item& r1 : result) {
for(Item& r2 : result) {
for(Item& r1 : rects) {
for(Item& r2 : rects) {
if(&r1 != &r2 ) {
valid = !Item::intersects(r1, r2);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
@ -554,27 +570,24 @@ TEST(GeometryAlgorithms, convexHull) {
TEST(GeometryAlgorithms, NestTest) {
std::vector<Item> input = prusaParts();
libnest2d::nest(input, Box(250000000, 210000000), [](unsigned cnt) {
std::cout << "parts left: " << cnt << std::endl;
});
auto max_binid_it = std::max_element(input.begin(), input.end(),
[](const Item &i1, const Item &i2) {
return i1.binId() < i2.binId();
});
size_t bins = max_binid_it == input.end() ? 0 : max_binid_it->binId() + 1;
PackGroup result = libnest2d::nest(input,
Box(250000000, 210000000),
[](unsigned cnt) {
std::cout
<< "parts left: " << cnt
<< std::endl;
});
ASSERT_LE(result.size(), 2);
size_t partsum = std::accumulate(result.begin(),
result.end(),
size_t(0),
[](size_t s,
const decltype(
result)::value_type &bin) {
return s += bin.size();
});
ASSERT_EQ(input.size(), partsum);
ASSERT_EQ(bins, 2u);
ASSERT_TRUE(
std::all_of(input.begin(), input.end(), [](const Item &itm) {
return itm.binId() != BIN_ID_UNSET;
}));
}
namespace {

View file

@ -341,9 +341,9 @@ public:
m_pck.configure(m_pconf);
}
template<class...Args> inline PackGroup operator()(Args&&...args) {
template<class...Args> inline void operator()(Args&&...args) {
m_rtree.clear();
return m_pck.execute(std::forward<Args>(args)...);
m_pck.execute(std::forward<Args>(args)...);
}
inline void preload(std::vector<Item>& fixeditems) {
@ -513,7 +513,7 @@ BedShapeHint bedShape(const Polyline &bed) {
}
template<class BinT> // Arrange for arbitrary bin type
_NestResult<clppr::Polygon> _arrange(
void _arrange(
std::vector<Item> & shapes,
std::vector<Item> & excludes,
const BinT & bin,
@ -553,40 +553,30 @@ _NestResult<clppr::Polygon> _arrange(
for (auto &itm : shapes ) inp.emplace_back(itm);
for (auto &itm : excludes) inp.emplace_back(itm);
return arranger(inp.begin(), inp.end());
}
inline SLIC3R_CONSTEXPR coord_t stride_padding(coord_t w)
{
return w + w / 5;
arranger(inp.begin(), inp.end());
}
// The final client function for arrangement. A progress indicator and
// a stop predicate can be also be passed to control the process.
bool arrange(ArrangeablePtrs & arrangables,
const ArrangeablePtrs & excludes,
void arrange(ArrangePolygons & arrangables,
const ArrangePolygons & excludes,
coord_t min_obj_dist,
const BedShapeHint & bedhint,
std::function<void(unsigned)> progressind,
std::function<bool()> stopcondition)
{
bool ret = true;
namespace clppr = ClipperLib;
std::vector<Item> items, fixeditems;
items.reserve(arrangables.size());
coord_t binwidth = 0;
// Create Item from Arrangeable
auto process_arrangeable =
[](const Arrangeable *arrangeable, std::vector<Item> &outp)
[](const ArrangePolygon &arrpoly, std::vector<Item> &outp)
{
assert(arrangeable);
auto arrangeitem = arrangeable->get_arrange_polygon();
Polygon & p = std::get<0>(arrangeitem);
const Vec2crd &offs = std::get<1>(arrangeitem);
double rotation = std::get<2>(arrangeitem);
Polygon p = arrpoly.poly.contour;
const Vec2crd & offs = arrpoly.translation;
double rotation = arrpoly.rotation;
if (p.is_counter_clockwise()) p.reverse();
@ -600,10 +590,10 @@ bool arrange(ArrangeablePtrs & arrangables,
outp.back().translation({offs.x(), offs.y()});
};
for (Arrangeable *arrangeable : arrangables)
for (ArrangePolygon &arrangeable : arrangables)
process_arrangeable(arrangeable, items);
for (const Arrangeable * fixed: excludes)
for (const ArrangePolygon &fixed: excludes)
process_arrangeable(fixed, fixeditems);
// Integer ceiling the min distance from the bed perimeters
@ -619,7 +609,6 @@ bool arrange(ArrangeablePtrs & arrangables,
BoundingBox bbb = bedhint.shape.box;
bbb.min -= Point{md, md}, bbb.max += Point{md, md};
Box binbb{{bbb.min(X), bbb.min(Y)}, {bbb.max(X), bbb.max(Y)}};
binwidth = coord_t(binbb.width());
_arrange(items, fixeditems, binbb, min_obj_dist, pri, cfn);
break;
@ -627,7 +616,6 @@ bool arrange(ArrangeablePtrs & arrangables,
case BedShapeType::CIRCLE: {
auto c = bedhint.shape.circ;
auto cc = to_lnCircle(c);
binwidth = scaled(c.radius());
_arrange(items, fixeditems, cc, min_obj_dist, pri, cfn);
break;
@ -636,7 +624,6 @@ bool arrange(ArrangeablePtrs & arrangables,
auto ctour = Slic3rMultiPoint_to_ClipperPath(bedhint.shape.polygon);
auto irrbed = sl::create<clppr::Polygon>(std::move(ctour));
BoundingBox polybb(bedhint.shape.polygon);
binwidth = (polybb.max(X) - polybb.min(X));
_arrange(items, fixeditems, irrbed, min_obj_dist, pri, cfn);
break;
@ -655,19 +642,22 @@ bool arrange(ArrangeablePtrs & arrangables,
}
};
if(stopcondition && stopcondition()) return false;
return ret;
for(size_t i = 0; i < items.size(); ++i) {
clppr::IntPoint tr = items[i].translation();
arrangables[i].translation = {coord_t(tr.X), coord_t(tr.Y)};
arrangables[i].rotation = items[i].rotation();
arrangables[i].bed_idx = items[i].binId();
}
}
// Arrange, without the fixed items (excludes)
bool arrange(ArrangeablePtrs & inp,
coord_t min_d,
const BedShapeHint & bedhint,
std::function<void(unsigned)> prfn,
std::function<bool()> stopfn)
void arrange(ArrangePolygons & inp,
coord_t min_d,
const BedShapeHint & bedhint,
std::function<void(unsigned)> prfn,
std::function<bool()> stopfn)
{
return arrange(inp, {}, min_d, bedhint, prfn, stopfn);
arrange(inp, {}, min_d, bedhint, prfn, stopfn);
}
} // namespace arr

View file

@ -1,7 +1,7 @@
#ifndef MODELARRANGE_HPP
#define MODELARRANGE_HPP
#include "Polygon.hpp"
#include "ExPolygon.hpp"
#include "BoundingBox.hpp"
namespace Slic3r {
@ -37,34 +37,57 @@ enum class BedShapeType {
/// Info about the print bed for the arrange() function.
struct BedShapeHint {
BedShapeType type = BedShapeType::INFINITE;
/*union*/ struct { // I know but who cares... TODO: use variant from cpp17?
union BedShape_u { // I know but who cares... TODO: use variant from cpp17?
CircleBed circ;
BoundingBox box;
Polyline polygon;
InfiniteBed infinite;
InfiniteBed infinite{};
~BedShape_u() {}
BedShape_u() {};
} shape;
BedShapeHint() {};
~BedShapeHint() {
if (type == BedShapeType::IRREGULAR)
shape.polygon.Slic3r::Polyline::~Polyline();
};
BedShapeHint(const BedShapeHint &cpy) {
*this = cpy;
}
BedShapeHint& operator=(const BedShapeHint &cpy) {
type = cpy.type;
switch(type) {
case BedShapeType::BOX: shape.box = cpy.shape.box; break;
case BedShapeType::CIRCLE: shape.circ = cpy.shape.circ; break;
case BedShapeType::IRREGULAR: shape.polygon = cpy.shape.polygon; break;
case BedShapeType::INFINITE: shape.infinite = cpy.shape.infinite; break;
case BedShapeType::UNKNOWN: break;
}
return *this;
}
};
/// Get a bed shape hint for arrange() from a naked Polyline.
BedShapeHint bedShape(const Polyline& bed);
/**
* @brief Classes implementing the Arrangeable interface can be used as input
* to the arrange function.
*/
class Arrangeable {
public:
static const constexpr long UNARRANGED = -1;
struct ArrangePolygon {
const ExPolygon poly;
Vec2crd translation{0, 0};
double rotation{0.0};
long bed_idx{UNARRANGED};
virtual ~Arrangeable() = default;
/// Apply the result transformation calculated by the arrangement.
virtual void apply_arrange_result(Vec2d offset, double rotation_rads, unsigned bed_num) = 0;
/// Get the 2D silhouette to arrange and an initial offset and rotation
virtual std::tuple<Polygon, Vec2crd, double> get_arrange_polygon() const = 0;
ArrangePolygon(const ExPolygon &p, const Vec2crd &tr = {}, double rot = 0.0)
: poly{p}, translation{tr}, rotation{rot}
{}
};
using ArrangeablePtrs = std::vector<Arrangeable*>;
using ArrangePolygons = std::vector<ArrangePolygon>;
/**
* \brief Arranges the model objects on the screen.
@ -97,20 +120,20 @@ using ArrangeablePtrs = std::vector<Arrangeable*>;
*
* \param stopcondition A predicate returning true if abort is needed.
*/
bool arrange(ArrangeablePtrs &items,
coord_t min_obj_distance,
const BedShapeHint& bedhint,
std::function<void(unsigned)> progressind = nullptr,
std::function<bool(void)> stopcondition = nullptr);
void arrange(ArrangePolygons & items,
coord_t min_obj_distance,
const BedShapeHint & bedhint,
std::function<void(unsigned)> progressind = nullptr,
std::function<bool(void)> stopcondition = nullptr);
/// Same as the previous, only that it takes unmovable items as an
/// additional argument.
bool arrange(ArrangeablePtrs &items,
const ArrangeablePtrs &excludes,
coord_t min_obj_distance,
const BedShapeHint& bedhint,
std::function<void(unsigned)> progressind = nullptr,
std::function<bool(void)> stopcondition = nullptr);
void arrange(ArrangePolygons & items,
const ArrangePolygons & excludes,
coord_t min_obj_distance,
const BedShapeHint & bedhint,
std::function<void(unsigned)> progressind = nullptr,
std::function<bool(void)> stopcondition = nullptr);
} // arr
} // Slic3r

View file

@ -404,11 +404,16 @@ bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
size_t count = 0;
for (auto obj : objects) count += obj->instances.size();
arrangement::ArrangeablePtrs input;
arrangement::ArrangePolygons input;
ModelInstancePtrs instances;
input.reserve(count);
instances.reserve(count);
for (ModelObject *mo : objects)
for (ModelInstance *minst : mo->instances)
input.emplace_back(minst);
for (ModelInstance *minst : mo->instances) {
input.emplace_back(minst->get_arrange_polygon());
instances.emplace_back(minst);
}
arrangement::BedShapeHint bedhint;
@ -417,7 +422,22 @@ bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
bedhint.shape.box = BoundingBox(scaled(bb->min), scaled(bb->max));
}
return arrangement::arrange(input, scaled(dist), bedhint);
arrangement::arrange(input, scaled(dist), bedhint);
bool ret = true;
for(size_t i = 0; i < input.size(); ++i) {
auto inst = instances[i];
inst->set_rotation(Z, input[i].rotation);
auto tr = unscaled<double>(input[i].translation);
inst->set_offset(X, tr.x());
inst->set_offset(Y, tr.y());
if (input[i].bed_idx != 0) ret = false; // no logical beds are allowed
}
return ret;
}
// Duplicate the entire model preserving instance relative positions.
@ -1819,7 +1839,7 @@ void ModelInstance::transform_polygon(Polygon* polygon) const
polygon->scale(get_scaling_factor(X), get_scaling_factor(Y)); // scale around polygon origin
}
std::tuple<Polygon, Vec2crd, double> ModelInstance::get_arrange_polygon() const
arrangement::ArrangePolygon ModelInstance::get_arrange_polygon() const
{
static const double SIMPLIFY_TOLERANCE_MM = 0.1;
@ -1835,15 +1855,15 @@ std::tuple<Polygon, Vec2crd, double> ModelInstance::get_arrange_polygon() const
// this may happen for malformed models, see:
// https://github.com/prusa3d/PrusaSlicer/issues/2209
if (p.points.empty()) return {};
if (p.points.empty()) return {{}};
Polygons pp{p};
pp = p.simplify(scaled<double>(SIMPLIFY_TOLERANCE_MM));
if (!pp.empty()) p = pp.front();
return std::make_tuple(p,
Vec2crd{scaled(get_offset(X)), scaled(get_offset(Y))},
get_rotation(Z));
ExPolygon ep; ep.contour = std::move(p);
return {ep, Vec2crd{scaled(get_offset(X)), scaled(get_offset(Y))}, get_rotation(Z)};
}
// Test whether the two models contain the same number of ModelObjects with the same set of IDs

View file

@ -491,7 +491,7 @@ private:
// A single instance of a ModelObject.
// Knows the affine transformation of an object.
class ModelInstance : public ModelBase, public arrangement::Arrangeable
class ModelInstance : public ModelBase
{
public:
enum EPrintVolumeState : unsigned char
@ -555,19 +555,19 @@ public:
bool is_printable() const { return print_volume_state == PVS_Inside; }
// /////////////////////////////////////////////////////////////////////////
// Implement arr::Arrangeable interface
// Implement arrangement::Arrangeable interface
// /////////////////////////////////////////////////////////////////////////
// Getting the input polygon for arrange
virtual std::tuple<Polygon, Vec2crd, double> get_arrange_polygon() const override;
arrangement::ArrangePolygon get_arrange_polygon() const;
// Apply the arrange result on the ModelInstance
virtual void apply_arrange_result(Vec2d offs, double rot_rads, unsigned /*bed_num*/) override
void apply_arrange_result(Vec2crd offs, double rot_rads)
{
// write the transformation data into the model instance
set_rotation(Z, rot_rads);
set_offset(X, offs(X));
set_offset(Y, offs(Y));
set_offset(X, unscale<double>(offs(X)));
set_offset(Y, unscale<double>(offs(Y)));
}
protected:

View file

@ -5739,7 +5739,7 @@ const SLAPrint* GLCanvas3D::sla_print() const
return (m_process == nullptr) ? nullptr : m_process->sla_print();
}
void GLCanvas3D::WipeTowerInfo::apply_arrange_result(Vec2d offset, double rotation_rads, unsigned /*bed_num*/)
void GLCanvas3D::WipeTowerInfo::apply_arrange_result(Vec2d offset, double rotation_rads)
{
m_pos = offset;
m_rotation = rotation_rads;

View file

@ -612,7 +612,7 @@ public:
int get_move_volume_id() const { return m_mouse.drag.move_volume_idx; }
int get_first_hover_volume_idx() const { return m_hover_volume_idxs.empty() ? -1 : m_hover_volume_idxs.front(); }
class WipeTowerInfo: public arrangement::Arrangeable {
class WipeTowerInfo {
Vec2d m_pos = {std::nan(""), std::nan("")};
Vec2d m_bb_size;
double m_rotation;
@ -624,9 +624,9 @@ public:
return !std::isnan(m_pos.x()) && !std::isnan(m_pos.y());
}
virtual void apply_arrange_result(Vec2d offset, double rotation_rads, unsigned /*bed_num*/) override;
virtual std::tuple<Polygon, Vec2crd, double> get_arrange_polygon() const override
void apply_arrange_result(Vec2d offset, double rotation_rads);
arrangement::ArrangePolygon get_arrange_polygon() const
{
Polygon p({
{coord_t(0), coord_t(0)},
@ -635,8 +635,9 @@ public:
{coord_t(0), scaled(m_bb_size(Y))},
{coord_t(0), coord_t(0)},
});
return std::make_tuple(p, scaled(m_pos), m_rotation);
ExPolygon ep; ep.contour = std::move(p);
return {ep, scaled(m_pos), m_rotation};
}
};

View file

@ -1217,28 +1217,6 @@ bool PlaterDropTarget::OnDropFiles(wxCoord x, wxCoord y, const wxArrayString &fi
return true;
}
namespace {
arrangement::ArrangeablePtrs get_arrange_input(Model &model, const Selection &sel) {
auto selmap = sel.get_content();
size_t count = 0;
for (auto obj : model.objects) count += obj->instances.size();
arrangement::ArrangeablePtrs ret; ret.reserve(count);
if (selmap.empty())
for (ModelObject *mo : model.objects)
for (ModelInstance *minst : mo->instances)
ret.emplace_back(minst);
else
for (auto &s : selmap)
for (auto &instid : s.second)
ret.emplace_back(model.objects[s.first]->instances[instid]);
return ret;
}
}
// Plater / private
struct Plater::priv
{
@ -1447,17 +1425,18 @@ struct Plater::priv
class ArrangeJob : public Job
{
GLCanvas3D::WipeTowerInfo m_wti;
arrangement::ArrangeablePtrs m_selected, m_unselected;
static std::array<arrangement::ArrangeablePtrs, 2> collect(
arrangement::ArrangePolygons m_selected, m_unselected;
static std::array<arrangement::ArrangePolygons, 2> collect(
Model &model, const Selection &sel)
{
auto selmap = sel.get_content();
const Selection::ObjectIdxsToInstanceIdxsMap &selmap =
sel.get_content();
size_t count = 0;
for (auto obj : model.objects) count += obj->instances.size();
arrangement::ArrangeablePtrs selected, unselected;
arrangement::ArrangePolygons selected, unselected;
selected.reserve(count + 1 /* for optional wti */);
unselected.reserve(count + 1 /* for optional wti */);
@ -1475,12 +1454,12 @@ struct Plater::priv
ModelInstance *inst = model.objects[oidx]
->instances[iidx];
instit == iids.end() ?
unselected.emplace_back(inst) :
selected.emplace_back(inst);
unselected.emplace_back(inst->get_arrange_polygon()) :
selected.emplace_back(inst->get_arrange_polygon());
}
} else // object not selected, all instances are unselected
for (auto inst : model.objects[oidx]->instances)
unselected.emplace_back(inst);
unselected.emplace_back(inst->get_arrange_polygon());
}
if (selected.empty()) selected.swap(unselected);
@ -1495,14 +1474,15 @@ struct Plater::priv
m_wti = plater().view3D->get_canvas3d()->get_wipe_tower_info();
const Selection& sel = plater().get_selection();
BoundingBoxf bedbb(plater().bed.get_shape());
auto arrinput = collect(plater().model, sel);
m_selected.swap(arrinput[0]);
m_unselected.swap(arrinput[1]);
if (m_wti)
sel.is_wipe_tower() ?
m_selected.emplace_back(&m_wti) :
m_unselected.emplace_back(&m_wti);
m_selected.emplace_back(m_wti.get_arrange_polygon()) :
m_unselected.emplace_back(m_wti.get_arrange_polygon());
}
public: