This commit is contained in:
bubnikv 2019-01-07 09:39:11 +01:00
commit e03efc96d0
4 changed files with 86 additions and 57 deletions

View file

@ -1700,8 +1700,10 @@ void GLCanvas3D::Selection::flattening_rotate(const Vec3d& normal)
} }
#if !DISABLE_INSTANCES_SYNCH #if !DISABLE_INSTANCES_SYNCH
// we want to synchronize z-rotation as well, otherwise the flattening behaves funny
// when applied on one of several identical instances
if (m_mode == Instance) if (m_mode == Instance)
_synchronize_unselected_instances(); _synchronize_unselected_instances(true);
#endif // !DISABLE_INSTANCES_SYNCH #endif // !DISABLE_INSTANCES_SYNCH
m_bounding_box_dirty = true; m_bounding_box_dirty = true;
@ -1892,8 +1894,6 @@ void GLCanvas3D::Selection::erase()
} }
wxGetApp().obj_list()->delete_from_model_and_list(items); wxGetApp().obj_list()->delete_from_model_and_list(items);
} }
else if (is_single_full_instance())
wxGetApp().obj_list()->delete_from_model_and_list(ItemType::itInstance, get_object_idx(), get_instance_idx());
else if (is_multiple_full_instance()) else if (is_multiple_full_instance())
{ {
std::set<std::pair<int, int>> instances_idxs; std::set<std::pair<int, int>> instances_idxs;
@ -1911,9 +1911,10 @@ void GLCanvas3D::Selection::erase()
{ {
items.emplace_back(ItemType::itInstance, i.first, i.second); items.emplace_back(ItemType::itInstance, i.first, i.second);
} }
wxGetApp().obj_list()->delete_from_model_and_list(items); wxGetApp().obj_list()->delete_from_model_and_list(items);
} }
else if (is_single_full_instance())
wxGetApp().obj_list()->delete_from_model_and_list(ItemType::itInstance, get_object_idx(), get_instance_idx());
else if (is_mixed()) else if (is_mixed())
{ {
std::set<ItemForDelete> items_set; std::set<ItemForDelete> items_set;
@ -2573,7 +2574,7 @@ void GLCanvas3D::Selection::_render_sidebar_size_hint(Axis axis, double length)
} }
#endif // ENABLE_SIDEBAR_VISUAL_HINTS #endif // ENABLE_SIDEBAR_VISUAL_HINTS
void GLCanvas3D::Selection::_synchronize_unselected_instances() void GLCanvas3D::Selection::_synchronize_unselected_instances(bool including_z)
{ {
std::set<unsigned int> done; // prevent processing volumes twice std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end()); done.insert(m_list.begin(), m_list.end());
@ -2606,7 +2607,7 @@ void GLCanvas3D::Selection::_synchronize_unselected_instances()
if ((v->object_idx() != object_idx) || (v->instance_idx() == instance_idx)) if ((v->object_idx() != object_idx) || (v->instance_idx() == instance_idx))
continue; continue;
v->set_instance_rotation(Vec3d(rotation(0), rotation(1), v->get_instance_rotation()(2))); v->set_instance_rotation(Vec3d(rotation(0), rotation(1), including_z ? rotation(2) : v->get_instance_rotation()(2)));
v->set_instance_scaling_factor(scaling_factor); v->set_instance_scaling_factor(scaling_factor);
v->set_instance_mirror(mirror); v->set_instance_mirror(mirror);
@ -4951,7 +4952,6 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
} }
m_mouse.set_start_position_2D_as_invalid(); m_mouse.set_start_position_2D_as_invalid();
m_mouse.set_start_position_3D_as_invalid();
#endif #endif
} }
else if (evt.Leaving()) else if (evt.Leaving())
@ -4963,6 +4963,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
else if (evt.LeftDClick() && (toolbar_contains_mouse != -1)) else if (evt.LeftDClick() && (toolbar_contains_mouse != -1))
{ {
m_toolbar_action_running = true; m_toolbar_action_running = true;
m_mouse.set_start_position_3D_as_invalid();
m_toolbar.do_action((unsigned int)toolbar_contains_mouse, *this); m_toolbar.do_action((unsigned int)toolbar_contains_mouse, *this);
} }
else if (evt.LeftDClick() && (m_gizmos.get_current_type() != Gizmos::Undefined)) else if (evt.LeftDClick() && (m_gizmos.get_current_type() != Gizmos::Undefined))
@ -5040,6 +5041,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
else if (toolbar_contains_mouse != -1) else if (toolbar_contains_mouse != -1)
{ {
m_toolbar_action_running = true; m_toolbar_action_running = true;
m_mouse.set_start_position_3D_as_invalid();
m_toolbar.do_action((unsigned int)toolbar_contains_mouse, *this); m_toolbar.do_action((unsigned int)toolbar_contains_mouse, *this);
m_mouse.left_down = false; m_mouse.left_down = false;
} }

View file

@ -597,7 +597,7 @@ public:
void _render_sidebar_scale_hint(Axis axis) const; void _render_sidebar_scale_hint(Axis axis) const;
void _render_sidebar_size_hint(Axis axis, double length) const; void _render_sidebar_size_hint(Axis axis, double length) const;
#endif // ENABLE_SIDEBAR_VISUAL_HINTS #endif // ENABLE_SIDEBAR_VISUAL_HINTS
void _synchronize_unselected_instances(); void _synchronize_unselected_instances(bool including_z = false);
void _synchronize_unselected_volumes(); void _synchronize_unselected_volumes();
#if ENABLE_ENSURE_ON_BED_WHILE_SCALING #if ENABLE_ENSURE_ON_BED_WHILE_SCALING
void _ensure_on_bed(); void _ensure_on_bed();

View file

@ -1519,13 +1519,15 @@ void GLGizmoFlatten::update_planes()
} }
ch = ch.convex_hull_3d(); ch = ch.convex_hull_3d();
const Vec3d& bb_size = ch.bounding_box().size();
double min_bb_face_area = std::min(bb_size(0) * bb_size(1), std::min(bb_size(0) * bb_size(2), bb_size(1) * bb_size(2)));
m_planes.clear(); m_planes.clear();
const Transform3d& inst_matrix = m_model_object->instances.front()->get_matrix();
// Now we'll go through all the facets and append Points of facets sharing the same normal: // Following constants are used for discarding too small polygons.
const float minimal_area = 20.f; // in square mm (world coordinates)
const float minimal_side = 1.f; // mm
// Now we'll go through all the facets and append Points of facets sharing the same normal.
// This part is still performed in mesh coordinate system.
const int num_of_facets = ch.stl.stats.number_of_facets; const int num_of_facets = ch.stl.stats.number_of_facets;
std::vector<int> facet_queue(num_of_facets, 0); std::vector<int> facet_queue(num_of_facets, 0);
std::vector<bool> facet_visited(num_of_facets, false); std::vector<bool> facet_visited(num_of_facets, false);
@ -1548,7 +1550,7 @@ void GLGizmoFlatten::update_planes()
while (facet_queue_cnt > 0) { while (facet_queue_cnt > 0) {
int facet_idx = facet_queue[-- facet_queue_cnt]; int facet_idx = facet_queue[-- facet_queue_cnt];
const stl_normal& this_normal = ch.stl.facet_start[facet_idx].normal; const stl_normal& this_normal = ch.stl.facet_start[facet_idx].normal;
if (std::abs(this_normal(0) - (*normal_ptr)(0)) < 0.001 && std::abs(this_normal(1) - (*normal_ptr)(1)) < 0.001 && std::abs(this_normal(2) - (*normal_ptr)(2)) < 0.001) { if (this_normal.isApprox(*normal_ptr)) {
stl_vertex* first_vertex = ch.stl.facet_start[facet_idx].vertex; stl_vertex* first_vertex = ch.stl.facet_start[facet_idx].vertex;
for (int j=0; j<3; ++j) for (int j=0; j<3; ++j)
m_planes.back().vertices.emplace_back((double)first_vertex[j](0), (double)first_vertex[j](1), (double)first_vertex[j](2)); m_planes.back().vertices.emplace_back((double)first_vertex[j](0), (double)first_vertex[j](1), (double)first_vertex[j](2));
@ -1561,63 +1563,74 @@ void GLGizmoFlatten::update_planes()
} }
} }
} }
m_planes.back().normal = Vec3d((double)(*normal_ptr)(0), (double)(*normal_ptr)(1), (double)(*normal_ptr)(2)); m_planes.back().normal = normal_ptr->cast<double>();
// if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected anyway): // Now we'll transform all the points into world coordinates, so that the areas, angles and distances
// make real sense.
m_planes.back().vertices = transform(m_planes.back().vertices, inst_matrix);
// if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected later anyway):
if (m_planes.back().vertices.size() == 3 && if (m_planes.back().vertices.size() == 3 &&
((m_planes.back().vertices[0] - m_planes.back().vertices[1]).norm() < 1.0 ((m_planes.back().vertices[0] - m_planes.back().vertices[1]).norm() < minimal_side
|| (m_planes.back().vertices[0] - m_planes.back().vertices[2]).norm() < 1.0 || (m_planes.back().vertices[0] - m_planes.back().vertices[2]).norm() < minimal_side
|| (m_planes.back().vertices[1] - m_planes.back().vertices[2]).norm() < 1.0)) || (m_planes.back().vertices[1] - m_planes.back().vertices[2]).norm() < minimal_side))
m_planes.pop_back(); m_planes.pop_back();
} }
const float minimal_area = 0.01f * (float)min_bb_face_area;
// Now we'll go through all the polygons, transform the points into xy plane to process them: // Now we'll go through all the polygons, transform the points into xy plane to process them:
for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) { for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) {
Pointf3s& polygon = m_planes[polygon_id].vertices; Pointf3s& polygon = m_planes[polygon_id].vertices;
const Vec3d& normal = m_planes[polygon_id].normal; const Vec3d& normal = m_planes[polygon_id].normal;
// let's transform the normal accodring to the instance matrix:
Geometry::Transformation t(inst_matrix);
Vec3d scaling = t.get_scaling_factor();
t.set_scaling_factor(Vec3d(1./(scaling(0)*scaling(0)), 1./(scaling(0)*scaling(0)), 1./(scaling(0)*scaling(0))));
Vec3d normal_transformed = t.get_matrix() * normal;
// We are going to rotate about z and y to flatten the plane // We are going to rotate about z and y to flatten the plane
Eigen::Quaterniond q; Eigen::Quaterniond q;
Transform3d m = Transform3d::Identity(); Transform3d m = Transform3d::Identity();
m.matrix().block(0, 0, 3, 3) = q.setFromTwoVectors(normal, Vec3d::UnitZ()).toRotationMatrix(); m.matrix().block(0, 0, 3, 3) = q.setFromTwoVectors(normal_transformed, Vec3d::UnitZ()).toRotationMatrix();
polygon = transform(polygon, m); polygon = transform(polygon, m);
polygon = Slic3r::Geometry::convex_hull(polygon); // To remove the inner points // Now to remove the inner points. We'll misuse Geometry::convex_hull for that, but since
// it works in fixed point representation, we will rescale the polygon to avoid overflows.
// And yes, it is a nasty thing to do. Whoever has time is free to refactor.
Vec3d bb_size = BoundingBoxf3(polygon).size();
float sf = std::min(1./bb_size(0), 1./bb_size(1));
Transform3d tr = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), Vec3d(sf, sf, 1.f));
polygon = transform(polygon, tr);
polygon = Slic3r::Geometry::convex_hull(polygon);
polygon = transform(polygon, tr.inverse());
// We will calculate area of the polygons and discard ones that are too small // Calculate area of the polygons and discard ones that are too small
// The limit is more forgiving in case the normal is in the direction of the coordinate axes
float area_threshold = (std::abs(normal(0)) > 0.999f || std::abs(normal(1)) > 0.999f || std::abs(normal(2)) > 0.999f) ? minimal_area : 10.0f * minimal_area;
float& area = m_planes[polygon_id].area; float& area = m_planes[polygon_id].area;
area = 0.f; area = 0.f;
for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula
area += polygon[i](0)*polygon[i + 1 < polygon.size() ? i + 1 : 0](1) - polygon[i + 1 < polygon.size() ? i + 1 : 0](0)*polygon[i](1); area += polygon[i](0)*polygon[i + 1 < polygon.size() ? i + 1 : 0](1) - polygon[i + 1 < polygon.size() ? i + 1 : 0](0)*polygon[i](1);
area = 0.5f * std::abs(area); area = 0.5f * std::abs(area);
if (area < area_threshold) {
m_planes.erase(m_planes.begin()+(polygon_id--));
continue;
}
// We check the inner angles and discard polygons with angles smaller than the following threshold
const double angle_threshold = ::cos(10.0 * (double)PI / 180.0);
bool discard = false; bool discard = false;
if (area < minimal_area)
discard = true;
else {
// We also check the inner angles and discard polygons with angles smaller than the following threshold
const double angle_threshold = ::cos(10.0 * (double)PI / 180.0);
for (unsigned int i = 0; i < polygon.size(); ++i) for (unsigned int i = 0; i < polygon.size(); ++i) {
{ const Vec3d& prec = polygon[(i == 0) ? polygon.size() - 1 : i - 1];
const Vec3d& prec = polygon[(i == 0) ? polygon.size() - 1 : i - 1]; const Vec3d& curr = polygon[i];
const Vec3d& curr = polygon[i]; const Vec3d& next = polygon[(i == polygon.size() - 1) ? 0 : i + 1];
const Vec3d& next = polygon[(i == polygon.size() - 1) ? 0 : i + 1];
if ((prec - curr).normalized().dot((next - curr).normalized()) > angle_threshold) if ((prec - curr).normalized().dot((next - curr).normalized()) > angle_threshold) {
{ discard = true;
discard = true; break;
break; }
} }
} }
if (discard) if (discard) {
{
m_planes.erase(m_planes.begin() + (polygon_id--)); m_planes.erase(m_planes.begin() + (polygon_id--));
continue; continue;
} }
@ -1667,13 +1680,17 @@ void GLGizmoFlatten::update_planes()
polygon = points_out; // replace the coarse polygon with the smooth one that we just created polygon = points_out; // replace the coarse polygon with the smooth one that we just created
} }
// Transform back to 3D;
for (auto& b : polygon) {
b(2) += 0.1f; // raise a bit above the object surface to avoid flickering
}
m = m.inverse(); // Raise a bit above the object surface to avoid flickering:
polygon = transform(polygon, m); for (auto& b : polygon)
b(2) += 0.1f;
// Transform back to 3D (and also back to mesh coordinates)
polygon = transform(polygon, inst_matrix.inverse() * m.inverse());
// make sure the points are in correct order:
if ( ((inst_matrix.inverse() * m.inverse()) * Vec3d(0., 0., 1.)).dot(normal) > 0.)
std::reverse(polygon.begin(),polygon.end());
} }
// We'll sort the planes by area and only keep the 254 largest ones (because of the picking pass limitations): // We'll sort the planes by area and only keep the 254 largest ones (because of the picking pass limitations):
@ -1682,12 +1699,15 @@ void GLGizmoFlatten::update_planes()
// Planes are finished - let's save what we calculated it from: // Planes are finished - let's save what we calculated it from:
m_volumes_matrices.clear(); m_volumes_matrices.clear();
for (const ModelVolume* vol : m_model_object->volumes) m_volumes_types.clear();
for (const ModelVolume* vol : m_model_object->volumes) {
m_volumes_matrices.push_back(vol->get_matrix()); m_volumes_matrices.push_back(vol->get_matrix());
m_volumes_types.push_back(vol->type());
}
m_first_instance_scale = m_model_object->instances.front()->get_scaling_factor();
} }
// Check if the bounding boxes of each volume's convex hull is the same as before
// and that scaling and rotation has not changed. In that case we don't have to recalculate it.
bool GLGizmoFlatten::is_plane_update_necessary() const bool GLGizmoFlatten::is_plane_update_necessary() const
{ {
if (m_state != On || !m_model_object || m_model_object->instances.empty()) if (m_state != On || !m_model_object || m_model_object->instances.empty())
@ -1696,8 +1716,13 @@ bool GLGizmoFlatten::is_plane_update_necessary() const
if (m_model_object->volumes.size() != m_volumes_matrices.size()) if (m_model_object->volumes.size() != m_volumes_matrices.size())
return true; return true;
// We want to recalculate when the scale changes - some planes could (dis)appear.
if (! m_model_object->instances.front()->get_scaling_factor().isApprox(m_first_instance_scale))
return true;
for (unsigned int i=0; i < m_model_object->volumes.size(); ++i) for (unsigned int i=0; i < m_model_object->volumes.size(); ++i)
if (! m_model_object->volumes[i]->get_matrix().isApprox(m_volumes_matrices[i])) if (! m_model_object->volumes[i]->get_matrix().isApprox(m_volumes_matrices[i])
|| m_model_object->volumes[i]->type() != m_volumes_types[i])
return true; return true;
return false; return false;
@ -1723,7 +1748,7 @@ GLGizmoSlaSupports::GLGizmoSlaSupports(GLCanvas3D& parent)
if (m_quadric != nullptr) if (m_quadric != nullptr)
// using GLU_FILL does not work when the instance's transformation // using GLU_FILL does not work when the instance's transformation
// contains mirroring (normals are reverted) // contains mirroring (normals are reverted)
::gluQuadricDrawStyle(m_quadric, GLU_SILHOUETTE); ::gluQuadricDrawStyle(m_quadric, GLU_FILL);
#endif // ENABLE_SLA_SUPPORT_GIZMO_MOD #endif // ENABLE_SLA_SUPPORT_GIZMO_MOD
} }
@ -1895,8 +1920,8 @@ void GLGizmoSlaSupports::render_grabbers(const GLCanvas3D::Selection& selection,
::glPushMatrix(); ::glPushMatrix();
::glLoadIdentity(); ::glLoadIdentity();
::glTranslated(grabber_world_position(0), grabber_world_position(1), grabber_world_position(2) + z_shift); ::glTranslated(grabber_world_position(0), grabber_world_position(1), grabber_world_position(2) + z_shift);
::gluQuadricDrawStyle(m_quadric, GLU_SILHOUETTE); const float diameter = 0.8f;
::gluSphere(m_quadric, 0.75, 64, 36); ::gluSphere(m_quadric, diameter/2.f, 64, 36);
::glPopMatrix(); ::glPopMatrix();
} }
@ -1945,7 +1970,7 @@ void GLGizmoSlaSupports::render_grabbers(bool picking) const
GLUquadricObj *quadric; GLUquadricObj *quadric;
quadric = ::gluNewQuadric(); quadric = ::gluNewQuadric();
::gluQuadricDrawStyle(quadric, GLU_FILL ); ::gluQuadricDrawStyle(quadric, GLU_FILL );
::gluSphere( quadric , 0.75f, 64 , 32 ); ::gluSphere( quadric , 0.4, 64 , 32 );
::gluDeleteQuadric(quadric); ::gluDeleteQuadric(quadric);
::glPopMatrix(); ::glPopMatrix();
if (!picking) if (!picking)

View file

@ -403,6 +403,8 @@ private:
// This holds information to decide whether recalculation is necessary: // This holds information to decide whether recalculation is necessary:
std::vector<Transform3d> m_volumes_matrices; std::vector<Transform3d> m_volumes_matrices;
std::vector<ModelVolume::Type> m_volumes_types;
Vec3d m_first_instance_scale;
std::vector<PlaneData> m_planes; std::vector<PlaneData> m_planes;
mutable Vec3d m_starting_center; mutable Vec3d m_starting_center;