work in progress on new ModelArrange interface

This commit is contained in:
tamasmeszaros 2019-06-26 17:09:26 +02:00
parent f4ed0d8137
commit e1d612d05f
3 changed files with 567 additions and 487 deletions

View file

@ -1,5 +1,5 @@
#include "ModelArrange.hpp"
#include "Model.hpp"
//#include "Model.hpp"
#include "Geometry.hpp"
#include "SVG.hpp"
#include "MTUtils.hpp"
@ -43,87 +43,87 @@ namespace arr {
using namespace libnest2d;
// Only for debugging. Prints the model object vertices on stdout.
std::string toString(const Model& model, bool holes = true) {
std::stringstream ss;
//std::string toString(const Model& model, bool holes = true) {
// std::stringstream ss;
ss << "{\n";
// ss << "{\n";
for(auto objptr : model.objects) {
if(!objptr) continue;
// for(auto objptr : model.objects) {
// if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
// auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
// for(auto objinst : objptr->instances) {
// if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
// CHECK_ME -> Is the following correct ?
tmpmesh.scale(objinst->get_scaling_factor());
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
for(auto& expoly_complex : expolys) {
// Slic3r::TriangleMesh tmpmesh = rmesh;
// // CHECK_ME -> Is the following correct ?
// tmpmesh.scale(objinst->get_scaling_factor());
// objinst->transform_mesh(&tmpmesh);
// ExPolygons expolys = tmpmesh.horizontal_projection();
// for(auto& expoly_complex : expolys) {
ExPolygons tmp = expoly_complex.simplify(scaled<double>(1.));
if(tmp.empty()) continue;
ExPolygon expoly = tmp.front();
expoly.contour.make_clockwise();
for(auto& h : expoly.holes) h.make_counter_clockwise();
// ExPolygons tmp = expoly_complex.simplify(scaled<double>(1.));
// if(tmp.empty()) continue;
// ExPolygon expoly = tmp.front();
// expoly.contour.make_clockwise();
// for(auto& h : expoly.holes) h.make_counter_clockwise();
ss << "\t{\n";
ss << "\t\t{\n";
// ss << "\t{\n";
// ss << "\t\t{\n";
for(auto v : expoly.contour.points) ss << "\t\t\t{"
<< v(0) << ", "
<< v(1) << "},\n";
{
auto v = expoly.contour.points.front();
ss << "\t\t\t{" << v(0) << ", " << v(1) << "},\n";
}
ss << "\t\t},\n";
// for(auto v : expoly.contour.points) ss << "\t\t\t{"
// << v(0) << ", "
// << v(1) << "},\n";
// {
// auto v = expoly.contour.points.front();
// ss << "\t\t\t{" << v(0) << ", " << v(1) << "},\n";
// }
// ss << "\t\t},\n";
// Holes:
ss << "\t\t{\n";
if(holes) for(auto h : expoly.holes) {
ss << "\t\t\t{\n";
for(auto v : h.points) ss << "\t\t\t\t{"
<< v(0) << ", "
<< v(1) << "},\n";
{
auto v = h.points.front();
ss << "\t\t\t\t{" << v(0) << ", " << v(1) << "},\n";
}
ss << "\t\t\t},\n";
}
ss << "\t\t},\n";
// // Holes:
// ss << "\t\t{\n";
// if(holes) for(auto h : expoly.holes) {
// ss << "\t\t\t{\n";
// for(auto v : h.points) ss << "\t\t\t\t{"
// << v(0) << ", "
// << v(1) << "},\n";
// {
// auto v = h.points.front();
// ss << "\t\t\t\t{" << v(0) << ", " << v(1) << "},\n";
// }
// ss << "\t\t\t},\n";
// }
// ss << "\t\t},\n";
ss << "\t},\n";
}
}
}
// ss << "\t},\n";
// }
// }
// }
ss << "}\n";
// ss << "}\n";
return ss.str();
}
// return ss.str();
//}
// Debugging: Save model to svg file.
void toSVG(SVG& svg, const Model& model) {
for(auto objptr : model.objects) {
if(!objptr) continue;
//void toSVG(SVG& svg, const Model& model) {
// for(auto objptr : model.objects) {
// if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
// auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
// for(auto objinst : objptr->instances) {
// if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->get_scaling_factor());
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
svg.draw(expolys);
}
}
}
// Slic3r::TriangleMesh tmpmesh = rmesh;
// tmpmesh.scale(objinst->get_scaling_factor());
// objinst->transform_mesh(&tmpmesh);
// ExPolygons expolys = tmpmesh.horizontal_projection();
// svg.draw(expolys);
// }
// }
//}
namespace bgi = boost::geometry::index;
@ -565,143 +565,143 @@ public:
// A container which stores a pointer to the 3D object and its projected
// 2D shape from top view.
using ShapeData2D = std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
//using ShapeData2D = std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
ShapeData2D projectModelFromTop(const Slic3r::Model &model,
const WipeTowerInfo &wti,
double tolerance)
{
ShapeData2D ret;
//ShapeData2D projectModelFromTop(const Slic3r::Model &model,
// const WipeTowerInfo &wti,
// double tolerance)
//{
// ShapeData2D ret;
// Count all the items on the bin (all the object's instances)
auto s = std::accumulate(model.objects.begin(), model.objects.end(),
size_t(0), [](size_t s, ModelObject* o)
{
return s + o->instances.size();
});
// // Count all the items on the bin (all the object's instances)
// auto s = std::accumulate(model.objects.begin(), model.objects.end(),
// size_t(0), [](size_t s, ModelObject* o)
// {
// return s + o->instances.size();
// });
ret.reserve(s);
// ret.reserve(s);
// for(ModelObject* objptr : model.objects) {
// if (! objptr->instances.empty()) {
for(ModelObject* objptr : model.objects) {
if (! objptr->instances.empty()) {
// // TODO export the exact 2D projection. Cannot do it as libnest2d
// // does not support concave shapes (yet).
// ClipperLib::Path clpath;
// TODO export the exact 2D projection. Cannot do it as libnest2d
// does not support concave shapes (yet).
ClipperLib::Path clpath;
// Object instances should carry the same scaling and
// x, y rotation that is why we use the first instance.
{
ModelInstance *finst = objptr->instances.front();
Vec3d rotation = finst->get_rotation();
rotation.z() = 0.;
Transform3d trafo_instance = Geometry::assemble_transform(
Vec3d::Zero(),
rotation,
finst->get_scaling_factor(),
finst->get_mirror());
Polygon p = objptr->convex_hull_2d(trafo_instance);
// // Object instances should carry the same scaling and
// // x, y rotation that is why we use the first instance.
// {
// ModelInstance *finst = objptr->instances.front();
// Vec3d rotation = finst->get_rotation();
// rotation.z() = 0.;
// Transform3d trafo_instance = Geometry::assemble_transform(
// Vec3d::Zero(),
// rotation,
// finst->get_scaling_factor(),
// finst->get_mirror());
// Polygon p = objptr->convex_hull_2d(trafo_instance);
assert(!p.points.empty());
// assert(!p.points.empty());
// this may happen for malformed models, see:
// https://github.com/prusa3d/PrusaSlicer/issues/2209
if (p.points.empty()) continue;
// // this may happen for malformed models, see:
// // https://github.com/prusa3d/PrusaSlicer/issues/2209
// if (p.points.empty()) continue;
if(tolerance > EPSILON) {
Polygons pp { p };
pp = p.simplify(scaled<double>(tolerance));
if (!pp.empty()) p = pp.front();
}
// if(tolerance > EPSILON) {
// Polygons pp { p };
// pp = p.simplify(scaled<double>(tolerance));
// if (!pp.empty()) p = pp.front();
// }
p.reverse();
assert(!p.is_counter_clockwise());
clpath = Slic3rMultiPoint_to_ClipperPath(p);
auto firstp = clpath.front(); clpath.emplace_back(firstp);
}
// p.reverse();
// assert(!p.is_counter_clockwise());
// clpath = Slic3rMultiPoint_to_ClipperPath(p);
// auto firstp = clpath.front(); clpath.emplace_back(firstp);
// }
Vec3d rotation0 = objptr->instances.front()->get_rotation();
rotation0(2) = 0.;
for(ModelInstance* objinst : objptr->instances) {
ClipperLib::Polygon pn;
pn.Contour = clpath;
// Vec3d rotation0 = objptr->instances.front()->get_rotation();
// rotation0(2) = 0.;
// for(ModelInstance* objinst : objptr->instances) {
// ClipperLib::Polygon pn;
// pn.Contour = clpath;
// Efficient conversion to item.
Item item(std::move(pn));
// // Efficient conversion to item.
// Item item(std::move(pn));
// Invalid geometries would throw exceptions when arranging
if(item.vertexCount() > 3) {
item.rotation(Geometry::rotation_diff_z(rotation0, objinst->get_rotation()));
item.translation({
scaled<ClipperLib::cInt>(objinst->get_offset(X)),
scaled<ClipperLib::cInt>(objinst->get_offset(Y))
});
ret.emplace_back(objinst, item);
}
}
}
}
// // Invalid geometries would throw exceptions when arranging
// if(item.vertexCount() > 3) {
// item.rotation(Geometry::rotation_diff_z(rotation0, objinst->get_rotation()));
// item.translation({
// scaled<ClipperLib::cInt>(objinst->get_offset(X)),
// scaled<ClipperLib::cInt>(objinst->get_offset(Y))
// });
// ret.emplace_back(objinst, item);
// }
// }
// }
// }
// The wipe tower is a separate case (in case there is one), let's duplicate the code
if (wti.is_wipe_tower) {
Points pts;
pts.emplace_back(coord_t(scale_(0.)), coord_t(scale_(0.)));
pts.emplace_back(coord_t(scale_(wti.bb_size(0))), coord_t(scale_(0.)));
pts.emplace_back(coord_t(scale_(wti.bb_size(0))), coord_t(scale_(wti.bb_size(1))));
pts.emplace_back(coord_t(scale_(-0.)), coord_t(scale_(wti.bb_size(1))));
pts.emplace_back(coord_t(scale_(-0.)), coord_t(scale_(0.)));
Polygon p(std::move(pts));
ClipperLib::Path clpath = Slic3rMultiPoint_to_ClipperPath(p);
ClipperLib::Polygon pn;
pn.Contour = clpath;
// Efficient conversion to item.
Item item(std::move(pn));
item.rotation(wti.rotation),
item.translation({
scaled<ClipperLib::cInt>(wti.pos(0)),
scaled<ClipperLib::cInt>(wti.pos(1))
});
ret.emplace_back(nullptr, item);
}
// // The wipe tower is a separate case (in case there is one), let's duplicate the code
// if (wti.is_wipe_tower) {
// Points pts;
// pts.emplace_back(coord_t(scale_(0.)), coord_t(scale_(0.)));
// pts.emplace_back(coord_t(scale_(wti.bb_size(0))), coord_t(scale_(0.)));
// pts.emplace_back(coord_t(scale_(wti.bb_size(0))), coord_t(scale_(wti.bb_size(1))));
// pts.emplace_back(coord_t(scale_(-0.)), coord_t(scale_(wti.bb_size(1))));
// pts.emplace_back(coord_t(scale_(-0.)), coord_t(scale_(0.)));
// Polygon p(std::move(pts));
// ClipperLib::Path clpath = Slic3rMultiPoint_to_ClipperPath(p);
// ClipperLib::Polygon pn;
// pn.Contour = clpath;
// // Efficient conversion to item.
// Item item(std::move(pn));
// item.rotation(wti.rotation),
// item.translation({
// scaled<ClipperLib::cInt>(wti.pos(0)),
// scaled<ClipperLib::cInt>(wti.pos(1))
// });
// ret.emplace_back(nullptr, item);
// }
return ret;
}
// return ret;
//}
// Apply the calculated translations and rotations (currently disabled) to
// the Model object instances.
void applyResult(IndexedPackGroup::value_type &group,
ClipperLib::cInt batch_offset,
ShapeData2D & shapemap,
WipeTowerInfo & wti)
{
for(auto& r : group) {
auto idx = r.first; // get the original item index
Item& item = r.second; // get the item itself
//void applyResult(IndexedPackGroup::value_type &group,
// ClipperLib::cInt batch_offset,
// ShapeData2D & shapemap,
// WipeTowerInfo & wti)
//{
// for(auto& r : group) {
// auto idx = r.first; // get the original item index
// Item& item = r.second; // get the item itself
// Get the model instance from the shapemap using the index
ModelInstance *inst_ptr = shapemap[idx].first;
// // Get the model instance from the shapemap using the index
// ModelInstance *inst_ptr = shapemap[idx].first;
// Get the transformation data from the item object and scale it
// appropriately
auto off = item.translation();
Radians rot = item.rotation();
// // Get the transformation data from the item object and scale it
// // appropriately
// auto off = item.translation();
// Radians rot = item.rotation();
Vec3d foff(unscaled(off.X + batch_offset) ,
unscaled(off.Y),
inst_ptr ? inst_ptr->get_offset()(Z) : 0.);
// Vec3d foff(unscaled(off.X + batch_offset),
// unscaled(off.Y),
// inst_ptr ? inst_ptr->get_offset()(Z) : 0.);
if (inst_ptr) {
// write the transformation data into the model instance
inst_ptr->set_rotation(Z, rot);
inst_ptr->set_offset(foff);
}
else { // this is the wipe tower - we will modify the struct with the info
// and leave it up to the called to actually move the wipe tower
wti.pos = Vec2d(foff(0), foff(1));
wti.rotation = rot;
}
}
}
// if (inst_ptr) {
// // write the transformation data into the model instance
// inst_ptr->set_rotation(Z, rot);
// inst_ptr->set_offset(foff);
// }
// else { // this is the wipe tower - we will modify the struct with the info
// // and leave it up to the called to actually move the wipe tower
// wti.pos = Vec2d(foff(0), foff(1));
// wti.rotation = rot;
// }
// }
//}
// Get the type of bed geometry from a simple vector of points.
BedShapeHint bedShape(const Polyline &bed) {
@ -784,254 +784,254 @@ BedShapeHint bedShape(const Polyline &bed) {
static const SLIC3R_CONSTEXPR double SIMPLIFY_TOLERANCE_MM = 0.1;
template<class BinT>
IndexedPackGroup _arrange(std::vector<std::reference_wrapper<Item>> &shapes,
const BinT & bin,
coord_t minobjd,
std::function<void(unsigned)> prind,
std::function<bool()> stopfn)
{
AutoArranger<BinT> arranger{bin, minobjd, prind, stopfn};
return arranger(shapes.begin(), shapes.end());
}
//template<class BinT>
//IndexedPackGroup _arrange(std::vector<std::reference_wrapper<Item>> &shapes,
// const BinT & bin,
// coord_t minobjd,
// std::function<void(unsigned)> prind,
// std::function<bool()> stopfn)
//{
// AutoArranger<BinT> arranger{bin, minobjd, prind, stopfn};
// return arranger(shapes.begin(), shapes.end());
//}
template<class BinT>
IndexedPackGroup _arrange(std::vector<std::reference_wrapper<Item>> &shapes,
const PackGroup & preshapes,
std::vector<ModelInstance *> &minstances,
const BinT & bin,
coord_t minobjd)
{
//template<class BinT>
//IndexedPackGroup _arrange(std::vector<std::reference_wrapper<Item>> &shapes,
// const PackGroup & preshapes,
// std::vector<ModelInstance *> &minstances,
// const BinT & bin,
// coord_t minobjd)
//{
auto binbb = sl::boundingBox(bin);
// auto binbb = sl::boundingBox(bin);
AutoArranger<BinT> arranger{bin, minobjd};
// AutoArranger<BinT> arranger{bin, minobjd};
if(!preshapes.front().empty()) { // If there is something on the plate
arranger.preload(preshapes);
// if(!preshapes.front().empty()) { // If there is something on the plate
// arranger.preload(preshapes);
// Try to put the first item to the center, as the arranger will not
// do this for us.
auto shptrit = minstances.begin();
for(auto shit = shapes.begin(); shit != shapes.end(); ++shit, ++shptrit)
{
// Try to place items to the center
Item& itm = *shit;
auto ibb = itm.boundingBox();
auto d = binbb.center() - ibb.center();
itm.translate(d);
if(!arranger.is_colliding(itm)) {
arranger.preload({{itm}});
// // Try to put the first item to the center, as the arranger will not
// // do this for us.
// auto shptrit = minstances.begin();
// for(auto shit = shapes.begin(); shit != shapes.end(); ++shit, ++shptrit)
// {
// // Try to place items to the center
// Item& itm = *shit;
// auto ibb = itm.boundingBox();
// auto d = binbb.center() - ibb.center();
// itm.translate(d);
// if(!arranger.is_colliding(itm)) {
// arranger.preload({{itm}});
auto offset = itm.translation();
Radians rot = itm.rotation();
ModelInstance *minst = *shptrit;
// auto offset = itm.translation();
// Radians rot = itm.rotation();
// ModelInstance *minst = *shptrit;
Vec3d foffset(unscaled(offset.X),
unscaled(offset.Y),
minst->get_offset()(Z));
// Vec3d foffset(unscaled(offset.X),
// unscaled(offset.Y),
// minst->get_offset()(Z));
// write the transformation data into the model instance
minst->set_rotation(Z, rot);
minst->set_offset(foffset);
// // write the transformation data into the model instance
// minst->set_rotation(Z, rot);
// minst->set_offset(foffset);
shit = shapes.erase(shit);
shptrit = minstances.erase(shptrit);
break;
}
}
}
// shit = shapes.erase(shit);
// shptrit = minstances.erase(shptrit);
// break;
// }
// }
// }
return arranger(shapes.begin(), shapes.end());
}
// return arranger(shapes.begin(), shapes.end());
//}
inline SLIC3R_CONSTEXPR libnest2d::Coord stride_padding(Coord w)
{
return w + w / 5;
}
// The final client function to arrange the Model. A progress indicator and
// a stop predicate can be also be passed to control the process.
bool arrange(Model &model, // The model with the geometries
WipeTowerInfo& wti, // Wipe tower info
coord_t min_obj_distance, // Has to be in scaled (clipper) measure
const Polyline &bed, // The bed geometry.
BedShapeHint bedhint, // Hint about the bed geometry type.
bool first_bin_only, // What to do is not all items fit.
//// The final client function to arrange the Model. A progress indicator and
//// a stop predicate can be also be passed to control the process.
//bool arrange(Model &model, // The model with the geometries
// WipeTowerInfo& wti, // Wipe tower info
// coord_t min_obj_distance, // Has to be in scaled (clipper) measure
// const Polyline &bed, // The bed geometry.
// BedShapeHint bedhint, // Hint about the bed geometry type.
// bool first_bin_only, // What to do is not all items fit.
// Controlling callbacks.
std::function<void (unsigned)> progressind,
std::function<bool ()> stopcondition)
{
bool ret = true;
// // Controlling callbacks.
// std::function<void (unsigned)> progressind,
// std::function<bool ()> stopcondition)
//{
// bool ret = true;
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model, wti, SIMPLIFY_TOLERANCE_MM);
// // Get the 2D projected shapes with their 3D model instance pointers
// auto shapemap = arr::projectModelFromTop(model, wti, SIMPLIFY_TOLERANCE_MM);
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
std::vector<std::reference_wrapper<Item>> shapes;
shapes.reserve(shapemap.size());
std::for_each(shapemap.begin(), shapemap.end(),
[&shapes] (ShapeData2D::value_type& it)
{
shapes.push_back(std::ref(it.second));
});
// // Copy the references for the shapes only as the arranger expects a
// // sequence of objects convertible to Item or ClipperPolygon
// std::vector<std::reference_wrapper<Item>> shapes;
// shapes.reserve(shapemap.size());
// std::for_each(shapemap.begin(), shapemap.end(),
// [&shapes] (ShapeData2D::value_type& it)
// {
// shapes.push_back(std::ref(it.second));
// });
IndexedPackGroup result;
// IndexedPackGroup result;
// If there is no hint about the shape, we will try to guess
if(bedhint.type == BedShapeType::WHO_KNOWS) bedhint = bedShape(bed);
// // If there is no hint about the shape, we will try to guess
// if(bedhint.type == BedShapeType::WHO_KNOWS) bedhint = bedShape(bed);
BoundingBox bbb(bed);
// BoundingBox bbb(bed);
auto& cfn = stopcondition;
// auto& cfn = stopcondition;
// Integer ceiling the min distance from the bed perimeters
coord_t md = min_obj_distance - SCALED_EPSILON;
md = (md % 2) ? md / 2 + 1 : md / 2;
// // Integer ceiling the min distance from the bed perimeters
// coord_t md = min_obj_distance - SCALED_EPSILON;
// md = (md % 2) ? md / 2 + 1 : md / 2;
auto binbb = Box({ClipperLib::cInt{bbb.min(0)} - md,
ClipperLib::cInt{bbb.min(1)} - md},
{ClipperLib::cInt{bbb.max(0)} + md,
ClipperLib::cInt{bbb.max(1)} + md});
// auto binbb = Box({ClipperLib::cInt{bbb.min(0)} - md,
// ClipperLib::cInt{bbb.min(1)} - md},
// {ClipperLib::cInt{bbb.max(0)} + md,
// ClipperLib::cInt{bbb.max(1)} + md});
switch(bedhint.type) {
case BedShapeType::BOX: {
// Create the arranger for the box shaped bed
result = _arrange(shapes, binbb, min_obj_distance, progressind, cfn);
break;
}
case BedShapeType::CIRCLE: {
auto c = bedhint.shape.circ;
auto cc = to_lnCircle(c);
result = _arrange(shapes, cc, min_obj_distance, progressind, cfn);
break;
}
case BedShapeType::IRREGULAR:
case BedShapeType::WHO_KNOWS: {
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
ClipperLib::Polygon irrbed = sl::create<PolygonImpl>(std::move(ctour));
result = _arrange(shapes, irrbed, min_obj_distance, progressind, cfn);
break;
}
};
// switch(bedhint.type) {
// case BedShapeType::BOX: {
// // Create the arranger for the box shaped bed
// result = _arrange(shapes, binbb, min_obj_distance, progressind, cfn);
// break;
// }
// case BedShapeType::CIRCLE: {
// auto c = bedhint.shape.circ;
// auto cc = to_lnCircle(c);
// result = _arrange(shapes, cc, min_obj_distance, progressind, cfn);
// break;
// }
// case BedShapeType::IRREGULAR:
// case BedShapeType::WHO_KNOWS: {
// auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
// ClipperLib::Polygon irrbed = sl::create<PolygonImpl>(std::move(ctour));
// result = _arrange(shapes, irrbed, min_obj_distance, progressind, cfn);
// break;
// }
// };
if(result.empty() || stopcondition()) return false;
// if(result.empty() || stopcondition()) return false;
if(first_bin_only) {
applyResult(result.front(), 0, shapemap, wti);
} else {
// if(first_bin_only) {
// applyResult(result.front(), 0, shapemap, wti);
// } else {
ClipperLib::cInt stride = stride_padding(binbb.width());
ClipperLib::cInt batch_offset = 0;
// ClipperLib::cInt stride = stride_padding(binbb.width());
// ClipperLib::cInt batch_offset = 0;
for(auto& group : result) {
applyResult(group, batch_offset, shapemap, wti);
// for(auto& group : result) {
// applyResult(group, batch_offset, shapemap, wti);
// Only the first pack group can be placed onto the print bed. The
// other objects which could not fit will be placed next to the
// print bed
batch_offset += stride;
}
}
// // Only the first pack group can be placed onto the print bed. The
// // other objects which could not fit will be placed next to the
// // print bed
// batch_offset += stride;
// }
// }
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
// for(auto objptr : model.objects) objptr->invalidate_bounding_box();
return ret && result.size() == 1;
}
// return ret && result.size() == 1;
//}
void find_new_position(const Model &model,
ModelInstancePtrs toadd,
coord_t min_obj_distance,
const Polyline &bed,
WipeTowerInfo& wti)
{
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model, wti, SIMPLIFY_TOLERANCE_MM);
//void find_new_position(const Model &model,
// ModelInstancePtrs toadd,
// coord_t min_obj_distance,
// const Polyline &bed,
// WipeTowerInfo& wti)
//{
// // Get the 2D projected shapes with their 3D model instance pointers
// auto shapemap = arr::projectModelFromTop(model, wti, SIMPLIFY_TOLERANCE_MM);
// Copy the references for the shapes only, as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
PackGroup preshapes; preshapes.emplace_back();
ItemGroup shapes;
preshapes.front().reserve(shapemap.size());
// // Copy the references for the shapes only, as the arranger expects a
// // sequence of objects convertible to Item or ClipperPolygon
// PackGroup preshapes; preshapes.emplace_back();
// ItemGroup shapes;
// preshapes.front().reserve(shapemap.size());
std::vector<ModelInstance*> shapes_ptr; shapes_ptr.reserve(toadd.size());
IndexedPackGroup result;
// std::vector<ModelInstance*> shapes_ptr; shapes_ptr.reserve(toadd.size());
// IndexedPackGroup result;
// If there is no hint about the shape, we will try to guess
BedShapeHint bedhint = bedShape(bed);
// // If there is no hint about the shape, we will try to guess
// BedShapeHint bedhint = bedShape(bed);
BoundingBox bbb(bed);
// BoundingBox bbb(bed);
// Integer ceiling the min distance from the bed perimeters
coord_t md = min_obj_distance - SCALED_EPSILON;
md = (md % 2) ? md / 2 + 1 : md / 2;
// // Integer ceiling the min distance from the bed perimeters
// coord_t md = min_obj_distance - SCALED_EPSILON;
// md = (md % 2) ? md / 2 + 1 : md / 2;
auto binbb = Box({ClipperLib::cInt{bbb.min(0)} - md,
ClipperLib::cInt{bbb.min(1)} - md},
{ClipperLib::cInt{bbb.max(0)} + md,
ClipperLib::cInt{bbb.max(1)} + md});
// auto binbb = Box({ClipperLib::cInt{bbb.min(0)} - md,
// ClipperLib::cInt{bbb.min(1)} - md},
// {ClipperLib::cInt{bbb.max(0)} + md,
// ClipperLib::cInt{bbb.max(1)} + md});
for(auto it = shapemap.begin(); it != shapemap.end(); ++it) {
// `toadd` vector contains the instance pointers which have to be
// considered by arrange. If `it` points to an ModelInstance, which
// is NOT in `toadd`, add it to preshapes.
if(std::find(toadd.begin(), toadd.end(), it->first) == toadd.end()) {
if(it->second.isInside(binbb)) // just ignore items which are outside
preshapes.front().emplace_back(std::ref(it->second));
}
else {
shapes_ptr.emplace_back(it->first);
shapes.emplace_back(std::ref(it->second));
}
}
// for(auto it = shapemap.begin(); it != shapemap.end(); ++it) {
// // `toadd` vector contains the instance pointers which have to be
// // considered by arrange. If `it` points to an ModelInstance, which
// // is NOT in `toadd`, add it to preshapes.
// if(std::find(toadd.begin(), toadd.end(), it->first) == toadd.end()) {
// if(it->second.isInside(binbb)) // just ignore items which are outside
// preshapes.front().emplace_back(std::ref(it->second));
// }
// else {
// shapes_ptr.emplace_back(it->first);
// shapes.emplace_back(std::ref(it->second));
// }
// }
switch(bedhint.type) {
case BedShapeType::BOX: {
// Create the arranger for the box shaped bed
result = _arrange(shapes, preshapes, shapes_ptr, binbb, min_obj_distance);
break;
}
case BedShapeType::CIRCLE: {
auto c = bedhint.shape.circ;
auto cc = to_lnCircle(c);
result = _arrange(shapes, preshapes, shapes_ptr, cc, min_obj_distance);
break;
}
case BedShapeType::IRREGULAR:
case BedShapeType::WHO_KNOWS: {
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
ClipperLib::Polygon irrbed = sl::create<PolygonImpl>(std::move(ctour));
result = _arrange(shapes, preshapes, shapes_ptr, irrbed, min_obj_distance);
break;
}
};
// switch(bedhint.type) {
// case BedShapeType::BOX: {
// // Create the arranger for the box shaped bed
// result = _arrange(shapes, preshapes, shapes_ptr, binbb, min_obj_distance);
// break;
// }
// case BedShapeType::CIRCLE: {
// auto c = bedhint.shape.circ;
// auto cc = to_lnCircle(c);
// result = _arrange(shapes, preshapes, shapes_ptr, cc, min_obj_distance);
// break;
// }
// case BedShapeType::IRREGULAR:
// case BedShapeType::WHO_KNOWS: {
// auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
// ClipperLib::Polygon irrbed = sl::create<PolygonImpl>(std::move(ctour));
// result = _arrange(shapes, preshapes, shapes_ptr, irrbed, min_obj_distance);
// break;
// }
// };
// Now we go through the result which will contain the fixed and the moving
// polygons as well. We will have to search for our item.
// // Now we go through the result which will contain the fixed and the moving
// // polygons as well. We will have to search for our item.
ClipperLib::cInt stride = stride_padding(binbb.width());
ClipperLib::cInt batch_offset = 0;
// ClipperLib::cInt stride = stride_padding(binbb.width());
// ClipperLib::cInt batch_offset = 0;
for(auto& group : result) {
for(auto& r : group) if(r.first < shapes.size()) {
Item& resultitem = r.second;
unsigned idx = r.first;
auto offset = resultitem.translation();
Radians rot = resultitem.rotation();
ModelInstance *minst = shapes_ptr[idx];
Vec3d foffset(offset.X*SCALING_FACTOR + batch_offset,
offset.Y*SCALING_FACTOR,
minst->get_offset()(Z));
// for(auto& group : result) {
// for(auto& r : group) if(r.first < shapes.size()) {
// Item& resultitem = r.second;
// unsigned idx = r.first;
// auto offset = resultitem.translation();
// Radians rot = resultitem.rotation();
// ModelInstance *minst = shapes_ptr[idx];
// Vec3d foffset(unscaled(offset.X + batch_offset),
// unscaled(offset.Y),
// minst->get_offset()(Z));
// write the transformation data into the model instance
minst->set_rotation(Z, rot);
minst->set_offset(foffset);
}
batch_offset += stride;
}
}
// // write the transformation data into the model instance
// minst->set_rotation(Z, rot);
// minst->set_offset(foffset);
// }
// batch_offset += stride;
// }
//}
}

View file

@ -1,7 +1,9 @@
#ifndef MODELARRANGE_HPP
#define MODELARRANGE_HPP
#include "Model.hpp"
//#include "Model.hpp"
#include "Polygon.hpp"
#include "BoundingBox.hpp"
namespace Slic3r {
@ -40,13 +42,25 @@ struct BedShapeHint {
BedShapeHint bedShape(const Polyline& bed);
struct WipeTowerInfo {
bool is_wipe_tower = false;
Vec2d pos;
Vec2d bb_size;
double rotation;
class ArrangeItem {
public:
virtual ~ArrangeItem() = default;
virtual void transform(Vec2d offset, double rotation_rads) = 0;
virtual Polygon silhouette() const = 0;
};
using ArrangeItems = std::vector<std::reference_wrapper<ArrangeItem>>;
//struct WipeTowerInfo {
// bool is_wipe_tower = false;
// Vec2d pos;
// Vec2d bb_size;
// double rotation;
//};
/**
* \brief Arranges the model objects on the screen.
*
@ -73,22 +87,33 @@ struct WipeTowerInfo {
* packed. The unsigned argument is the number of items remaining to pack.
* \param stopcondition A predicate returning true if abort is needed.
*/
bool arrange(Model &model,
WipeTowerInfo& wipe_tower_info,
//bool arrange(Model &model,
// WipeTowerInfo& wipe_tower_info,
// coord_t min_obj_distance,
// const Slic3r::Polyline& bed,
// BedShapeHint bedhint,
// bool first_bin_only,
// std::function<void(unsigned)> progressind,
// std::function<bool(void)> stopcondition);
bool arrange(ArrangeItems &items,
coord_t min_obj_distance,
const Slic3r::Polyline& bed,
BedShapeHint bedhint,
bool first_bin_only,
std::function<void(unsigned)> progressind,
std::function<bool(void)> stopcondition);
/// This will find a suitable position for a new object instance and leave the
/// old items untouched.
void find_new_position(const Model& model,
ModelInstancePtrs instances_to_add,
//void find_new_position(const Model& model,
// ModelInstancePtrs instances_to_add,
// coord_t min_obj_distance,
// const Slic3r::Polyline& bed,
// WipeTowerInfo& wti);
void find_new_position(ArrangeItems &items,
const ArrangeItems &instances_to_add,
coord_t min_obj_distance,
const Slic3r::Polyline& bed,
WipeTowerInfo& wti);
BedShapeHint bedhint);
} // arr
} // Slic3r

View file

@ -2,6 +2,7 @@
#include <cstddef>
#include <algorithm>
#include <numeric>
#include <vector>
#include <string>
#include <regex>
@ -2400,131 +2401,185 @@ void Plater::priv::sla_optimize_rotation() {
}
void Plater::priv::ExclusiveJobGroup::ArrangeJob::process() {
static const SLIC3R_CONSTEXPR double SIMPLIFY_TOLERANCE_MM = 0.1;
class ArrItemModelInstance: public arr::ArrangeItem {
ModelInstance *m_inst = nullptr;
public:
ArrItemModelInstance() = default;
ArrItemModelInstance(ModelInstance *inst) : m_inst(inst) {}
virtual void transform(Vec2d offs, double rot_rads) override {
assert(m_inst);
// write the transformation data into the model instance
m_inst->set_rotation(Z, rot_rads);
m_inst->set_offset(offs);
}
virtual Polygon silhouette() const override {
assert(m_inst);
Vec3d rotation = m_inst->get_rotation();
rotation.z() = 0.;
Transform3d trafo_instance = Geometry::assemble_transform(
Vec3d::Zero(),
rotation,
m_inst->get_scaling_factor(),
m_inst->get_mirror());
Polygon p = m_inst->get_object()->convex_hull_2d(trafo_instance);
assert(!p.points.empty());
// this may happen for malformed models, see:
// https://github.com/prusa3d/PrusaSlicer/issues/2209
if (p.points.empty()) return {};
Polygons pp { p };
pp = p.simplify(scaled<double>(SIMPLIFY_TOLERANCE_MM));
if (!pp.empty()) p = pp.front();
return p;
}
};
// Count all the items on the bin (all the object's instances)
auto count = std::accumulate(plater().model.objects.begin(),
plater().model.objects.end(),
size_t(0), [](size_t s, ModelObject* o)
{
return s + o->instances.size();
});
// std::vector<ArrItemInstance> items(size_t);
// TODO: we should decide whether to allow arrange when the search is
// running we should probably disable explicit slicing and background
// processing
static const auto arrangestr = _(L("Arranging"));
// static const auto arrangestr = _(L("Arranging"));
auto &config = plater().config;
auto &view3D = plater().view3D;
auto &model = plater().model;
// auto &config = plater().config;
// auto &view3D = plater().view3D;
// auto &model = plater().model;
// FIXME: I don't know how to obtain the minimum distance, it depends
// on printer technology. I guess the following should work but it crashes.
double dist = 6; // PrintConfig::min_object_distance(config);
if (plater().printer_technology == ptFFF) {
dist = PrintConfig::min_object_distance(config);
}
// // FIXME: I don't know how to obtain the minimum distance, it depends
// // on printer technology. I guess the following should work but it crashes.
// double dist = 6; // PrintConfig::min_object_distance(config);
// if (plater().printer_technology == ptFFF) {
// dist = PrintConfig::min_object_distance(config);
// }
auto min_obj_distance = coord_t(dist / SCALING_FACTOR);
// auto min_obj_distance = coord_t(dist / SCALING_FACTOR);
const auto *bed_shape_opt = config->opt<ConfigOptionPoints>(
"bed_shape");
// const auto *bed_shape_opt = config->opt<ConfigOptionPoints>(
// "bed_shape");
assert(bed_shape_opt);
auto & bedpoints = bed_shape_opt->values;
Polyline bed;
bed.points.reserve(bedpoints.size());
for (auto &v : bedpoints) bed.append(Point::new_scale(v(0), v(1)));
// assert(bed_shape_opt);
// auto & bedpoints = bed_shape_opt->values;
// Polyline bed;
// bed.points.reserve(bedpoints.size());
// for (auto &v : bedpoints) bed.append(Point::new_scale(v(0), v(1)));
update_status(0, arrangestr);
// update_status(0, arrangestr);
arr::WipeTowerInfo wti = view3D->get_canvas3d()->get_wipe_tower_info();
// arr::WipeTowerInfo wti = view3D->get_canvas3d()->get_wipe_tower_info();
try {
arr::BedShapeHint hint;
// try {
// arr::BedShapeHint hint;
// TODO: from Sasha from GUI or
hint.type = arr::BedShapeType::WHO_KNOWS;
// // TODO: from Sasha from GUI or
// hint.type = arr::BedShapeType::WHO_KNOWS;
arr::arrange(model,
wti,
min_obj_distance,
bed,
hint,
false, // create many piles not just one pile
[this](unsigned st) {
if (st > 0)
update_status(count - int(st), arrangestr);
},
[this]() { return was_canceled(); });
} catch (std::exception & /*e*/) {
GUI::show_error(plater().q,
L("Could not arrange model objects! "
"Some geometries may be invalid."));
}
// arr::arrange(model,
// wti,
// min_obj_distance,
// bed,
// hint,
// false, // create many piles not just one pile
// [this](unsigned st) {
// if (st > 0)
// update_status(count - int(st), arrangestr);
// },
// [this]() { return was_canceled(); });
// } catch (std::exception & /*e*/) {
// GUI::show_error(plater().q,
// L("Could not arrange model objects! "
// "Some geometries may be invalid."));
// }
update_status(count,
was_canceled() ? _(L("Arranging canceled."))
: _(L("Arranging done.")));
// update_status(count,
// was_canceled() ? _(L("Arranging canceled."))
// : _(L("Arranging done.")));
// it remains to move the wipe tower:
view3D->get_canvas3d()->arrange_wipe_tower(wti);
// // it remains to move the wipe tower:
// view3D->get_canvas3d()->arrange_wipe_tower(wti);
}
void Plater::priv::ExclusiveJobGroup::RotoptimizeJob::process()
{
int obj_idx = plater().get_selected_object_idx();
if (obj_idx < 0) { return; }
// int obj_idx = plater().get_selected_object_idx();
// if (obj_idx < 0) { return; }
ModelObject *o = plater().model.objects[size_t(obj_idx)];
// ModelObject *o = plater().model.objects[size_t(obj_idx)];
auto r = sla::find_best_rotation(
*o,
.005f,
[this](unsigned s) {
if (s < 100)
update_status(int(s),
_(L("Searching for optimal orientation")));
},
[this]() { return was_canceled(); });
// auto r = sla::find_best_rotation(
// *o,
// .005f,
// [this](unsigned s) {
// if (s < 100)
// update_status(int(s),
// _(L("Searching for optimal orientation")));
// },
// [this]() { return was_canceled(); });
const auto *bed_shape_opt =
plater().config->opt<ConfigOptionPoints>("bed_shape");
// const auto *bed_shape_opt =
// plater().config->opt<ConfigOptionPoints>("bed_shape");
assert(bed_shape_opt);
// assert(bed_shape_opt);
auto & bedpoints = bed_shape_opt->values;
Polyline bed;
bed.points.reserve(bedpoints.size());
for (auto &v : bedpoints) bed.append(Point::new_scale(v(0), v(1)));
// auto & bedpoints = bed_shape_opt->values;
// Polyline bed;
// bed.points.reserve(bedpoints.size());
// for (auto &v : bedpoints) bed.append(Point::new_scale(v(0), v(1)));
double mindist = 6.0; // FIXME
// double mindist = 6.0; // FIXME
if (!was_canceled()) {
for(ModelInstance * oi : o->instances) {
oi->set_rotation({r[X], r[Y], r[Z]});
// if (!was_canceled()) {
// for(ModelInstance * oi : o->instances) {
// oi->set_rotation({r[X], r[Y], r[Z]});
auto trmatrix = oi->get_transformation().get_matrix();
Polygon trchull = o->convex_hull_2d(trmatrix);
// auto trmatrix = oi->get_transformation().get_matrix();
// Polygon trchull = o->convex_hull_2d(trmatrix);
MinAreaBoundigBox rotbb(trchull, MinAreaBoundigBox::pcConvex);
double r = rotbb.angle_to_X();
// MinAreaBoundigBox rotbb(trchull, MinAreaBoundigBox::pcConvex);
// double r = rotbb.angle_to_X();
// The box should be landscape
if(rotbb.width() < rotbb.height()) r += PI / 2;
// // The box should be landscape
// if(rotbb.width() < rotbb.height()) r += PI / 2;
Vec3d rt = oi->get_rotation(); rt(Z) += r;
// Vec3d rt = oi->get_rotation(); rt(Z) += r;
oi->set_rotation(rt);
}
// oi->set_rotation(rt);
// }
arr::WipeTowerInfo wti; // useless in SLA context
arr::find_new_position(plater().model,
o->instances,
coord_t(mindist / SCALING_FACTOR),
bed,
wti);
// arr::WipeTowerInfo wti; // useless in SLA context
// arr::find_new_position(plater().model,
// o->instances,
// coord_t(mindist / SCALING_FACTOR),
// bed,
// wti);
// Correct the z offset of the object which was corrupted be
// the rotation
o->ensure_on_bed();
}
// // Correct the z offset of the object which was corrupted be
// // the rotation
// o->ensure_on_bed();
// }
update_status(100,
was_canceled() ? _(L("Orientation search canceled."))
: _(L("Orientation found.")));
// update_status(100,
// was_canceled() ? _(L("Orientation search canceled."))
// : _(L("Orientation found.")));
}
void Plater::priv::split_object()