Add quadric edge collapse
This commit is contained in:
parent
c64ce8777f
commit
e3cdeda673
@ -177,6 +177,8 @@ add_library(libslic3r STATIC
|
||||
PrintRegion.cpp
|
||||
PNGReadWrite.hpp
|
||||
PNGReadWrite.cpp
|
||||
QuadricEdgeCollapse.cpp
|
||||
QuadricEdgeCollapse.hpp
|
||||
Semver.cpp
|
||||
ShortestPath.cpp
|
||||
ShortestPath.hpp
|
||||
|
620
src/libslic3r/QuadricEdgeCollapse.cpp
Normal file
620
src/libslic3r/QuadricEdgeCollapse.cpp
Normal file
@ -0,0 +1,620 @@
|
||||
#include "QuadricEdgeCollapse.hpp"
|
||||
#include <tuple>
|
||||
#include "MutablePriorityQueue.hpp"
|
||||
#include "SimplifyMeshImpl.hpp"
|
||||
|
||||
using namespace Slic3r;
|
||||
|
||||
// only private namespace not neccessary be in hpp
|
||||
namespace QuadricEdgeCollapse {
|
||||
using Vertices = std::vector<stl_vertex>;
|
||||
using Triangle = stl_triangle_vertex_indices;
|
||||
using Indices = std::vector<stl_triangle_vertex_indices>;
|
||||
using SymMat = SimplifyMesh::implementation::SymetricMatrix<double>;
|
||||
|
||||
struct Error
|
||||
{
|
||||
float value;
|
||||
// range(0 .. 2),
|
||||
unsigned char min_index;
|
||||
Error(float value, unsigned char min_index): value(value), min_index(min_index) {
|
||||
assert(min_index < 3);
|
||||
}
|
||||
Error() = default;
|
||||
};
|
||||
using Errors = std::vector<Error>;
|
||||
// merge information together - faster access during processing
|
||||
struct TriangleInfo
|
||||
{
|
||||
Vec3f n; // normalized normal - speed up calcualtion of q and check flip
|
||||
Error e; // smallest error caused by edges, identify smallest edge in triangle
|
||||
TriangleInfo() = default;
|
||||
bool is_deleted() const { return e.min_index > 2; }
|
||||
void set_deleted() { e.min_index = 3; }
|
||||
};
|
||||
using TriangleInfos = std::vector<TriangleInfo>;
|
||||
struct VertexInfo
|
||||
{
|
||||
SymMat q; // sum quadric of surround triangles
|
||||
size_t start = 0, count = 0; // vertex neighbor triangles
|
||||
VertexInfo() = default;
|
||||
bool is_deleted() const { return count == 0; }
|
||||
};
|
||||
using VertexInfos = std::vector<VertexInfo>;
|
||||
struct EdgeInfo
|
||||
{
|
||||
size_t t_index=0; // triangle index
|
||||
unsigned char edge = 0; // 0 or 1 or 2
|
||||
EdgeInfo() = default;
|
||||
};
|
||||
using EdgeInfos = std::vector<EdgeInfo>;
|
||||
|
||||
Vec3f create_normal(const Triangle &triangle, const Vertices &vertices);
|
||||
double calculate_error(size_t id_v1, size_t id_v2, SymMat & q, const Vertices &vertices);
|
||||
Vec3f calculate_vertex(size_t id_v1, size_t id_v2, SymMat & q, const Vertices &vertices);
|
||||
// calculate error for vertex and quadrics, triangle quadrics and triangle vertex give zero, only pozitive number
|
||||
double vertex_error(const SymMat &q, const Vec3d &vertex);
|
||||
SymMat create_quadric(const Triangle &t, const TriangleInfo &t_info, const Vertices &vertices);
|
||||
std::tuple<TriangleInfos, VertexInfos, EdgeInfos> init(const indexed_triangle_set &its);
|
||||
size_t find_triangle_index1(size_t vi, const VertexInfo& v_info, size_t ti, const EdgeInfos& e_infos, const Indices& indices);
|
||||
bool is_flipped(const Vec3f &vn, const Vec3f &v1, const Vec3f &v2, const Vec3f &normal);
|
||||
bool is_flipped(Vec3f &new_vertex, size_t ti0, size_t ti1, const VertexInfo& v_info,
|
||||
const TriangleInfos &t_infos, const EdgeInfos &e_infos, const indexed_triangle_set &its);
|
||||
|
||||
// find edge with smallest error in triangle
|
||||
Error calculate_error(const Triangle& t,const Vertices &vertices, const VertexInfos& v_infos);
|
||||
// subtract quadric of one triangle from triangle vertex
|
||||
void sub_quadric(const Triangle &t, const TriangleInfo &t_info, VertexInfos &v_infos, const Vertices &vertices);
|
||||
|
||||
void remove_triangle(EdgeInfos &e_infos, VertexInfo &v_info, size_t ti);
|
||||
void change_neighbors(EdgeInfos &e_infos, VertexInfos &v_infos, size_t ti0, size_t ti1,
|
||||
size_t vi0, size_t vi1, size_t vi_top0, const Triangle &t1);
|
||||
|
||||
void compact(const VertexInfos &v_infos, const TriangleInfos &t_infos, const EdgeInfos &e_infos, indexed_triangle_set &its);
|
||||
}
|
||||
|
||||
using namespace QuadricEdgeCollapse;
|
||||
|
||||
bool check_neighbors(TriangleInfos &t_infos,
|
||||
Indices& indices,
|
||||
VertexInfos & v_infos)
|
||||
{
|
||||
std::vector<size_t> t_counts(v_infos.size(), 0);
|
||||
for (size_t i = 0; i < indices.size(); i++) {
|
||||
TriangleInfo &t_info = t_infos[i];
|
||||
if (t_info.is_deleted()) continue;
|
||||
Triangle &t = indices[i];
|
||||
for (size_t vidx : t) ++t_counts[vidx];
|
||||
}
|
||||
|
||||
size_t prev_end = 0;
|
||||
for (size_t i = 0; i < v_infos.size(); i++) {
|
||||
VertexInfo &v_info = v_infos[i];
|
||||
if (v_info.is_deleted()) continue;
|
||||
if (v_info.count != t_counts[i]) {
|
||||
// no correct count
|
||||
return false;
|
||||
}
|
||||
if (prev_end > v_info.start) {
|
||||
// overlap of start
|
||||
return false;
|
||||
}
|
||||
prev_end = v_info.start + v_info.count;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool check_new_vertex(const Vec3f& nv, const Vec3f& v0, const Vec3f& v1) {
|
||||
float epsilon = 1.f;
|
||||
for (size_t i = 0; i < 3; i++) {
|
||||
if (nv[i] > (v0[i] + epsilon) && nv[i] > (v1[i] + epsilon) ||
|
||||
nv[i] < (v0[i] - epsilon) && nv[i] < (v1[i] - epsilon)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Slic3r::its_quadric_edge_collapse(indexed_triangle_set &its,
|
||||
size_t triangle_count)
|
||||
{
|
||||
TriangleInfos t_infos;
|
||||
VertexInfos v_infos;
|
||||
EdgeInfos e_infos;
|
||||
std::tie(t_infos, v_infos, e_infos) = init(its);
|
||||
|
||||
static constexpr double max_error = std::numeric_limits<double>::max();
|
||||
|
||||
auto cmp = [&t_infos](size_t vi0, size_t vi1) -> bool {
|
||||
const Error &e0 = t_infos[vi0].e;
|
||||
const Error &e1 = t_infos[vi1].e;
|
||||
return e0.value < e1.value;
|
||||
};
|
||||
// convert triangle index to priority queue index
|
||||
std::vector<size_t> i_convert(its.indices.size(), {0});
|
||||
auto setter = [&i_convert](size_t it, size_t index) { i_convert[it] = index; };
|
||||
MutablePriorityQueue<size_t, decltype(setter), decltype(cmp)> mpq(std::move(setter), std::move(cmp));
|
||||
mpq.reserve(its.indices.size());
|
||||
for (size_t i = 0; i < its.indices.size(); i++) mpq.push(i);
|
||||
|
||||
size_t actual_triangle_count = its.indices.size();
|
||||
while (actual_triangle_count > triangle_count && !mpq.empty()) {
|
||||
// triangle index 0
|
||||
size_t ti0 = mpq.top();
|
||||
mpq.pop();
|
||||
TriangleInfo &t_info0 = t_infos[ti0];
|
||||
if (t_info0.is_deleted()) continue;
|
||||
|
||||
Error &e = t_info0.e;
|
||||
|
||||
const Triangle &t0 = its.indices[ti0];
|
||||
size_t vi0 = t0[e.min_index];
|
||||
size_t vi1 = t0[(e.min_index+1) %3];
|
||||
// Need by move of neighbor edge infos in function: change_neighbors
|
||||
if (vi0 > vi1) std::swap(vi0, vi1);
|
||||
VertexInfo &v_info0 = v_infos[vi0];
|
||||
VertexInfo &v_info1 = v_infos[vi1];
|
||||
assert(!v_info0.is_deleted() && !v_info1.is_deleted());
|
||||
|
||||
// new vertex position
|
||||
SymMat q(v_info0.q);
|
||||
q += v_info1.q;
|
||||
Vec3f new_vertex0 = calculate_vertex(vi0, vi1, q, its.vertices);
|
||||
assert(check_new_vertex(new_vertex0, its.vertices[vi0], its.vertices[vi1]));
|
||||
// set of triangle indices that change quadric
|
||||
size_t ti1 = (v_info0.count < v_info1.count)?
|
||||
find_triangle_index1(vi1, v_info0, ti0, e_infos, its.indices) :
|
||||
find_triangle_index1(vi0, v_info1, ti0, e_infos, its.indices) ;
|
||||
|
||||
if (is_flipped(new_vertex0, ti0, ti1, v_info0, t_infos, e_infos, its) ||
|
||||
is_flipped(new_vertex0, ti0, ti1, v_info1, t_infos, e_infos, its)) {
|
||||
// IMPROVE1: what about other edges in triangle?
|
||||
// IMPROVE2: check mpq top if it is ti1 with same edge
|
||||
e.value = max_error;
|
||||
mpq.push(ti0);
|
||||
continue;
|
||||
}
|
||||
|
||||
std::vector<size_t> changed_triangle_indices;
|
||||
changed_triangle_indices.reserve(v_info0.count + v_info1.count - 4);
|
||||
|
||||
sub_quadric(t0, t_info0, v_infos, its.vertices);
|
||||
TriangleInfo &t_info1 = t_infos[ti1];
|
||||
const Triangle &t1 = its.indices[ti1];
|
||||
sub_quadric(t1, t_info1, v_infos, its.vertices);
|
||||
// for each vertex0 triangles
|
||||
size_t v_info0_end = v_info0.start + v_info0.count;
|
||||
for (size_t di = v_info0.start; di < v_info0_end; ++di) {
|
||||
assert(di < e_infos.size());
|
||||
EdgeInfo &e_info = e_infos[di];
|
||||
size_t ti = e_info.t_index;
|
||||
if (ti == ti0) continue; // ti0 will be deleted
|
||||
if (ti == ti1) continue; // ti1 will be deleted
|
||||
sub_quadric(its.indices[ti], t_infos[ti], v_infos, its.vertices);
|
||||
changed_triangle_indices.emplace_back(ti);
|
||||
}
|
||||
|
||||
// for each vertex1 triangles
|
||||
size_t v_info1_end = v_info1.start + v_info1.count;
|
||||
for (size_t di = v_info1.start; di < v_info1_end; ++di) {
|
||||
assert(di < e_infos.size());
|
||||
EdgeInfo &e_info = e_infos[di];
|
||||
size_t ti = e_info.t_index;
|
||||
if (ti == ti0) continue; // ti0 will be deleted
|
||||
if (ti == ti1) continue; // ti1 will be deleted
|
||||
Triangle &t = its.indices[ti];
|
||||
sub_quadric(t, t_infos[ti], v_infos, its.vertices);
|
||||
t[e_info.edge] = vi0; // change index
|
||||
changed_triangle_indices.emplace_back(ti);
|
||||
}
|
||||
|
||||
// fix neighbors
|
||||
|
||||
// vertex index of triangle 0 which is not vi0 nor vi1
|
||||
size_t vi_top0 = t0[(e.min_index + 2) % 3];
|
||||
change_neighbors(e_infos, v_infos, ti0, ti1, vi0, vi1, vi_top0, t1);
|
||||
|
||||
// Change vertex
|
||||
// Has to be set after subtract quadric
|
||||
its.vertices[vi0] = new_vertex0;
|
||||
|
||||
// add new quadrics
|
||||
v_info0.q = SymMat(); // zero value
|
||||
for (size_t ti : changed_triangle_indices) {
|
||||
const Triangle& t = its.indices[ti];
|
||||
TriangleInfo &t_info = t_infos[ti];
|
||||
t_info.n = create_normal(t, its.vertices); // new normal
|
||||
SymMat q = create_quadric(t, t_info, its.vertices);
|
||||
for (const size_t vi: t) v_infos[vi].q += q;
|
||||
}
|
||||
|
||||
// fix errors - must be after calculate all quadric
|
||||
t_info1.e.value = max_error; // not neccessary when check deleted triangles at begining
|
||||
//mpq.remove(i_convert[ti1]);
|
||||
for (size_t ti : changed_triangle_indices) {
|
||||
const Triangle &t = its.indices[ti];
|
||||
t_infos[ti].e = calculate_error(t, its.vertices, v_infos);
|
||||
mpq.update(i_convert[ti]);
|
||||
}
|
||||
|
||||
// set triangle(0 + 1) indices as deleted
|
||||
t_info0.set_deleted();
|
||||
t_info1.set_deleted();
|
||||
// triangle counter decrementation
|
||||
actual_triangle_count-=2;
|
||||
|
||||
//assert(check_neighbors(t_infos, its.indices, v_infos));
|
||||
}
|
||||
|
||||
// compact triangle
|
||||
compact(v_infos, t_infos, e_infos, its);
|
||||
return true;
|
||||
}
|
||||
|
||||
Vec3f QuadricEdgeCollapse::create_normal(const Triangle & triangle,
|
||||
const Vertices &vertices)
|
||||
{
|
||||
const Vec3f &v0 = vertices[triangle[0]];
|
||||
const Vec3f &v1 = vertices[triangle[1]];
|
||||
const Vec3f &v2 = vertices[triangle[2]];
|
||||
// n = triangle normal
|
||||
Vec3f n = (v1 - v0).cross(v2 - v0);
|
||||
n.normalize();
|
||||
return n;
|
||||
}
|
||||
|
||||
double QuadricEdgeCollapse::calculate_error(size_t id_v1,
|
||||
size_t id_v2,
|
||||
SymMat & q,
|
||||
const Vertices &vertices)
|
||||
{
|
||||
double det = q.det(0, 1, 2, 1, 4, 5, 2, 5, 7);
|
||||
if (abs(det) < std::numeric_limits<double>::epsilon()) {
|
||||
// can't divide by zero
|
||||
const Vec3f &v0 = vertices[id_v1];
|
||||
const Vec3f &v1 = vertices[id_v2];
|
||||
Vec3d verts[3] = {v0.cast<double>(), v1.cast<double>(), Vec3d()};
|
||||
verts[2] = (verts[0] + verts[1]) / 2;
|
||||
double errors[] = {vertex_error(q, verts[0]),
|
||||
vertex_error(q, verts[1]),
|
||||
vertex_error(q, verts[2])};
|
||||
return *std::min_element(std::begin(errors), std::end(errors));
|
||||
}
|
||||
|
||||
double det_1 = -1 / det;
|
||||
double det_x = q.det(1, 2, 3, 4, 5, 6, 5, 7, 8); // vx = A41/det(q_delta)
|
||||
double det_y = q.det(0, 2, 3, 1, 5, 6, 2, 7, 8); // vy = A42/det(q_delta)
|
||||
double det_z = q.det(0, 1, 3, 1, 4, 6, 2, 5, 8); // vz = A43/det(q_delta)
|
||||
Vec3d vertex(det_1 * det_x, -det_1 * det_y, det_1 * det_z);
|
||||
return vertex_error(q, vertex);
|
||||
}
|
||||
|
||||
// similar as calculate error but focus on new vertex without calculation of error
|
||||
Vec3f QuadricEdgeCollapse::calculate_vertex(size_t id_v1,
|
||||
size_t id_v2,
|
||||
SymMat & q,
|
||||
const Vertices &vertices)
|
||||
{
|
||||
double det = q.det(0, 1, 2, 1, 4, 5, 2, 5, 7);
|
||||
if (abs(det) < std::numeric_limits<double>::epsilon()) {
|
||||
// can't divide by zero
|
||||
const Vec3f &v0 = vertices[id_v1];
|
||||
const Vec3f &v1 = vertices[id_v2];
|
||||
Vec3d verts[3] = {v0.cast<double>(), v1.cast<double>(), Vec3d()};
|
||||
verts[2] = (verts[0] + verts[1]) / 2;
|
||||
double errors[] = {vertex_error(q, verts[0]),
|
||||
vertex_error(q, verts[1]),
|
||||
vertex_error(q, verts[2])};
|
||||
auto mit = std::min_element(std::begin(errors), std::end(errors));
|
||||
return verts[mit - std::begin(errors)].cast<float>();
|
||||
}
|
||||
|
||||
double det_1 = -1 / det;
|
||||
double det_x = q.det(1, 2, 3, 4, 5, 6, 5, 7, 8); // vx = A41/det(q_delta)
|
||||
double det_y = q.det(0, 2, 3, 1, 5, 6, 2, 7, 8); // vy = A42/det(q_delta)
|
||||
double det_z = q.det(0, 1, 3, 1, 4, 6, 2, 5, 8); // vz = A43/det(q_delta)
|
||||
return Vec3f(det_1 * det_x, -det_1 * det_y, det_1 * det_z);
|
||||
}
|
||||
|
||||
double QuadricEdgeCollapse::vertex_error(const SymMat &q, const Vec3d &vertex)
|
||||
{
|
||||
const double &x = vertex.x(), &y = vertex.y(), &z = vertex.z();
|
||||
return q[0] * x * x + 2 * q[1] * x * y + 2 * q[2] * x * z +
|
||||
2 * q[3] * x + q[4] * y * y + 2 * q[5] * y * z +
|
||||
2 * q[6] * y + q[7] * z * z + 2 * q[8] * z + q[9];
|
||||
}
|
||||
|
||||
SymMat QuadricEdgeCollapse::create_quadric(const Triangle & t,
|
||||
const TriangleInfo &t_info,
|
||||
const Vertices & vertices)
|
||||
{
|
||||
Vec3d n = t_info.n.cast<double>();
|
||||
Vec3d v0 = vertices[t[0]].cast<double>();
|
||||
return SymMat(n.x(), n.y(), n.z(), -n.dot(v0));
|
||||
}
|
||||
|
||||
std::tuple<TriangleInfos, VertexInfos, EdgeInfos> QuadricEdgeCollapse::init(
|
||||
const indexed_triangle_set &its)
|
||||
{
|
||||
TriangleInfos t_infos(its.indices.size());
|
||||
VertexInfos v_infos(its.vertices.size());
|
||||
EdgeInfos e_infos(its.indices.size() * 3);
|
||||
|
||||
for (size_t i = 0; i < its.indices.size(); i++) {
|
||||
const Triangle &t = its.indices[i];
|
||||
TriangleInfo &t_info = t_infos[i];
|
||||
t_info.n = create_normal(t, its.vertices);
|
||||
SymMat q = create_quadric(t, t_info, its.vertices);
|
||||
for (size_t e = 0; e < 3; e++) {
|
||||
VertexInfo &v_info = v_infos[t[e]];
|
||||
v_info.q += q;
|
||||
++v_info.count; // triangle count
|
||||
}
|
||||
}
|
||||
|
||||
// set offseted starts
|
||||
size_t triangle_start = 0;
|
||||
for (VertexInfo &v_info : v_infos) {
|
||||
v_info.start = triangle_start;
|
||||
triangle_start += v_info.count;
|
||||
// set filled vertex to zero
|
||||
v_info.count = 0;
|
||||
}
|
||||
assert(its.indices.size() * 3 == triangle_start);
|
||||
|
||||
// calc error + create reference
|
||||
for (size_t i = 0; i < its.indices.size(); i++) {
|
||||
const Triangle &t = its.indices[i];
|
||||
TriangleInfo &t_info = t_infos[i];
|
||||
t_info.e = calculate_error(t, its.vertices, v_infos);
|
||||
for (size_t j = 0; j < 3; ++j) {
|
||||
VertexInfo &v_info = v_infos[t[j]];
|
||||
size_t ei = v_info.start + v_info.count;
|
||||
assert(ei < e_infos.size());
|
||||
EdgeInfo &e_info = e_infos[ei];
|
||||
e_info.t_index = i;
|
||||
e_info.edge = j;
|
||||
++v_info.count;
|
||||
}
|
||||
}
|
||||
return {t_infos, v_infos, e_infos};
|
||||
}
|
||||
|
||||
size_t QuadricEdgeCollapse::find_triangle_index1(size_t vi,
|
||||
const VertexInfo &v_info,
|
||||
size_t ti0,
|
||||
const EdgeInfos & e_infos,
|
||||
const Indices &indices)
|
||||
{
|
||||
size_t end = v_info.start + v_info.count;
|
||||
for (size_t ei = v_info.start; ei < end; ++ei) {
|
||||
const EdgeInfo &e_info = e_infos[ei];
|
||||
if (e_info.t_index == ti0) continue;
|
||||
const Triangle& t = indices[e_info.t_index];
|
||||
if (t[(e_info.edge + 1) % 3] == vi ||
|
||||
t[(e_info.edge + 2) % 3] == vi)
|
||||
return e_info.t_index;
|
||||
}
|
||||
// triangle0 is on border and do NOT have twin edge
|
||||
assert(false);
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
bool QuadricEdgeCollapse::is_flipped(const Vec3f &vn,
|
||||
const Vec3f &v1,
|
||||
const Vec3f &v2,
|
||||
const Vec3f &normal)
|
||||
{
|
||||
static const float thr_pos = 1.0f - std::numeric_limits<float>::epsilon();
|
||||
static const float thr_neg = -thr_pos;
|
||||
static const float dot_thr = 0.2f; // Value from simplify mesh
|
||||
|
||||
Vec3f d1 = v1 - vn;
|
||||
d1.normalize();
|
||||
Vec3f d2 = v2 - vn;
|
||||
d2.normalize();
|
||||
|
||||
float dot = d1.dot(d2);
|
||||
if (dot > thr_pos || dot < thr_neg) return true;
|
||||
|
||||
// IMPROVE: propagate new normal
|
||||
Vec3f n = d1.cross(d2);
|
||||
n.normalize();
|
||||
return n.dot(normal) < dot_thr;
|
||||
}
|
||||
|
||||
|
||||
bool QuadricEdgeCollapse::is_flipped(Vec3f & new_vertex,
|
||||
size_t ti0,
|
||||
size_t ti1,
|
||||
const VertexInfo & v_info,
|
||||
const TriangleInfos &t_infos,
|
||||
const EdgeInfos & e_infos,
|
||||
const indexed_triangle_set &its)
|
||||
{
|
||||
// for each vertex triangles
|
||||
size_t v_info_end = v_info.start + v_info.count;
|
||||
for (size_t ei = v_info.start; ei < v_info_end; ++ei) {
|
||||
assert(ei < e_infos.size());
|
||||
const EdgeInfo &e_info = e_infos[ei];
|
||||
if (e_info.t_index == ti0) continue; // ti0 will be deleted
|
||||
if (e_info.t_index == ti1) continue; // ti1 will be deleted
|
||||
const Triangle &t = its.indices[e_info.t_index];
|
||||
const Vec3f &normal = t_infos[e_info.t_index].n;
|
||||
const Vec3f &vf = its.vertices[t[(e_info.edge + 1) % 3]];
|
||||
const Vec3f &vs = its.vertices[t[(e_info.edge + 2) % 3]];
|
||||
if (is_flipped(new_vertex, vf, vs, normal))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
Error QuadricEdgeCollapse::calculate_error(const Triangle & t,
|
||||
const Vertices & vertices,
|
||||
const VertexInfos &v_infos)
|
||||
{
|
||||
Vec3d error;
|
||||
for (size_t j = 0; j < 3; ++j) {
|
||||
size_t j2 = (j == 2) ? 0 : (j + 1);
|
||||
size_t vi0 = t[j];
|
||||
size_t vi1 = t[j2];
|
||||
SymMat q(v_infos[vi0].q); // copy
|
||||
q += v_infos[vi1].q;
|
||||
error[j] = calculate_error(vi0, vi1, q, vertices);
|
||||
}
|
||||
unsigned char min_index = (error[0] < error[1]) ?
|
||||
((error[0] < error[2]) ? 0 : 2) :
|
||||
((error[1] < error[2]) ? 1 : 2);
|
||||
return Error(static_cast<float>(error[min_index]), min_index);
|
||||
}
|
||||
|
||||
void QuadricEdgeCollapse::sub_quadric(const Triangle &t,
|
||||
const TriangleInfo & t_info,
|
||||
VertexInfos &v_infos,
|
||||
const Vertices &vertices)
|
||||
{
|
||||
SymMat quadric = create_quadric(t, t_info, vertices);
|
||||
for (size_t vi: t) v_infos[vi].q -= quadric;
|
||||
}
|
||||
|
||||
void QuadricEdgeCollapse::remove_triangle(EdgeInfos & e_infos,
|
||||
VertexInfo &v_info,
|
||||
size_t ti)
|
||||
{
|
||||
auto e_info = e_infos.begin() + v_info.start;
|
||||
auto e_info_end = e_info + v_info.count - 1;
|
||||
for (; e_info != e_info_end; ++e_info) {
|
||||
if (e_info->t_index == ti) {
|
||||
*e_info = *e_info_end;
|
||||
--v_info.count;
|
||||
return;
|
||||
}
|
||||
}
|
||||
assert(e_info_end->t_index == ti);
|
||||
// last triangle is ti
|
||||
--v_info.count;
|
||||
}
|
||||
|
||||
void QuadricEdgeCollapse::change_neighbors(EdgeInfos & e_infos,
|
||||
VertexInfos & v_infos,
|
||||
size_t ti0,
|
||||
size_t ti1,
|
||||
size_t vi0,
|
||||
size_t vi1,
|
||||
size_t vi_top0,
|
||||
const Triangle &t1)
|
||||
{
|
||||
// have to copy Edge info from higher vertex index into smaller
|
||||
assert(vi0 < vi1);
|
||||
|
||||
// vertex index of triangle 1 which is not vi0 nor vi1
|
||||
size_t vi_top1 = t1[0];
|
||||
if (vi_top1 == vi0 || vi_top1 == vi1) {
|
||||
vi_top1 = (t1[1] == vi0 || t1[1] == vi1)? t1[2] : t1[1];
|
||||
}
|
||||
|
||||
remove_triangle(e_infos, v_infos[vi_top0], ti0);
|
||||
remove_triangle(e_infos, v_infos[vi_top1], ti1);
|
||||
|
||||
VertexInfo &v_info0 = v_infos[vi0];
|
||||
VertexInfo &v_info1 = v_infos[vi1];
|
||||
|
||||
size_t new_triangle_count = v_info0.count + v_info1.count - 4;
|
||||
remove_triangle(e_infos, v_info0, ti0);
|
||||
remove_triangle(e_infos, v_info0, ti1);
|
||||
|
||||
// copy second's edge infos out of e_infos, to free size
|
||||
EdgeInfos e_infos1;
|
||||
e_infos1.reserve(v_info1.count - 2);
|
||||
size_t v_info_s_end = v_info1.start + v_info1.count;
|
||||
for (size_t ei = v_info1.start; ei < v_info_s_end; ++ei) {
|
||||
const EdgeInfo &e_info = e_infos[ei];
|
||||
if (e_info.t_index == ti0) continue;
|
||||
if (e_info.t_index == ti1) continue;
|
||||
e_infos1.emplace_back(e_info);
|
||||
}
|
||||
v_info1.count = 0;
|
||||
|
||||
size_t need = (new_triangle_count < v_info0.count)? 0:
|
||||
(new_triangle_count - v_info0.count);
|
||||
|
||||
size_t act_vi = vi0 + 1;
|
||||
VertexInfo *act_v_info = &v_infos[act_vi];
|
||||
size_t act_start = act_v_info->start;
|
||||
size_t last_end = v_info0.start + v_info0.count;
|
||||
|
||||
struct CopyEdgeInfo
|
||||
{
|
||||
size_t start;
|
||||
size_t count;
|
||||
unsigned char move;
|
||||
CopyEdgeInfo(size_t start, size_t count, unsigned char move)
|
||||
: start(start), count(count), move(move)
|
||||
{}
|
||||
};
|
||||
std::vector<CopyEdgeInfo> c_infos;
|
||||
c_infos.reserve(need);
|
||||
while (true) {
|
||||
size_t save = act_start - last_end;
|
||||
if (save > 0) {
|
||||
if (save >= need) break;
|
||||
need -= save;
|
||||
c_infos.emplace_back(act_v_info->start, act_v_info->count, need);
|
||||
} else {
|
||||
c_infos.back().count += act_v_info->count;
|
||||
}
|
||||
last_end = act_v_info->start + act_v_info->count;
|
||||
act_v_info->start += need;
|
||||
++act_vi;
|
||||
if (act_vi < v_infos.size()) {
|
||||
act_v_info = &v_infos[act_vi];
|
||||
act_start = act_v_info->start;
|
||||
} else
|
||||
act_start = e_infos.size(); // fix for edge between last two triangles
|
||||
}
|
||||
|
||||
// copy by c_infos
|
||||
for (size_t i = c_infos.size(); i > 0; --i) {
|
||||
const CopyEdgeInfo &c_info = c_infos[i - 1];
|
||||
for (size_t ei = c_info.start + c_info.count - 1; ei >= c_info.start; --ei)
|
||||
e_infos[ei + c_info.move] = e_infos[ei]; // copy
|
||||
}
|
||||
|
||||
// copy triangle from first info into second
|
||||
for (size_t ei_s = 0; ei_s < e_infos1.size(); ++ei_s) {
|
||||
size_t ei_f = v_info0.start + v_info0.count;
|
||||
e_infos[ei_f] = e_infos1[ei_s]; // copy
|
||||
++v_info0.count;
|
||||
}
|
||||
}
|
||||
|
||||
void QuadricEdgeCollapse::compact(const VertexInfos & v_infos,
|
||||
const TriangleInfos & t_infos,
|
||||
const EdgeInfos & e_infos,
|
||||
indexed_triangle_set &its)
|
||||
{
|
||||
size_t vi_new = 0;
|
||||
for (size_t vi = 0; vi < v_infos.size(); vi++) {
|
||||
const VertexInfo &v_info = v_infos[vi];
|
||||
if (v_info.is_deleted()) continue; // deleted
|
||||
size_t e_info_end = v_info.start + v_info.count;
|
||||
for (size_t ei = v_info.start; ei < e_info_end; ei++) {
|
||||
const EdgeInfo &e_info = e_infos[ei];
|
||||
// change vertex index
|
||||
its.indices[e_info.t_index][e_info.edge] = vi_new;
|
||||
}
|
||||
// compact vertices
|
||||
its.vertices[vi_new++] = its.vertices[vi];
|
||||
}
|
||||
// remove vertices tail
|
||||
its.vertices.erase(its.vertices.begin() + vi_new, its.vertices.end());
|
||||
|
||||
size_t ti_new = 0;
|
||||
for (size_t ti = 0; ti < t_infos.size(); ti++) {
|
||||
const TriangleInfo &t_info = t_infos[ti];
|
||||
if (t_info.is_deleted()) continue;
|
||||
its.indices[ti_new++] = its.indices[ti];
|
||||
}
|
||||
its.indices.erase(its.indices.begin() + ti_new, its.indices.end());
|
||||
}
|
17
src/libslic3r/QuadricEdgeCollapse.hpp
Normal file
17
src/libslic3r/QuadricEdgeCollapse.hpp
Normal file
@ -0,0 +1,17 @@
|
||||
// paper: https://people.eecs.berkeley.edu/~jrs/meshpapers/GarlandHeckbert2.pdf
|
||||
// sum up: https://users.csc.calpoly.edu/~zwood/teaching/csc570/final06/jseeba/
|
||||
// inspiration: https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification
|
||||
|
||||
#include "TriangleMesh.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
/// <summary>
|
||||
/// Simplify mesh by Quadric metric
|
||||
/// </summary>
|
||||
/// <param name="its">IN/OUT triangle mesh to be simplified.</param>
|
||||
/// <param name="triangle_count">wanted triangle count.</param>
|
||||
/// <returns>TRUE on success otherwise FALSE</returns>
|
||||
bool its_quadric_edge_collapse(indexed_triangle_set &its, size_t triangle_count);
|
||||
|
||||
} // namespace Slic3r
|
@ -107,7 +107,7 @@ public:
|
||||
// Determinant
|
||||
T det(int a11, int a12, int a13,
|
||||
int a21, int a22, int a23,
|
||||
int a31, int a32, int a33)
|
||||
int a31, int a32, int a33) const
|
||||
{
|
||||
T det = m[a11] * m[a22] * m[a33] + m[a13] * m[a21] * m[a32] +
|
||||
m[a12] * m[a23] * m[a31] - m[a13] * m[a22] * m[a31] -
|
||||
@ -121,7 +121,13 @@ public:
|
||||
for (size_t i = 0; i < N; ++i) m[i] += n[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
const SymetricMatrix &operator-=(const SymetricMatrix &n)
|
||||
{
|
||||
for (size_t i = 0; i < N; ++i) m[i] -= n[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
SymetricMatrix operator+(const SymetricMatrix& n)
|
||||
{
|
||||
SymetricMatrix self = *this;
|
||||
|
@ -4,6 +4,8 @@
|
||||
|
||||
#include "libslic3r/TriangleMesh.hpp"
|
||||
|
||||
using namespace Slic3r;
|
||||
|
||||
TEST_CASE("Split empty mesh", "[its_split][its]") {
|
||||
using namespace Slic3r;
|
||||
|
||||
@ -100,3 +102,41 @@ TEST_CASE("Split two watertight meshes", "[its_split][its]") {
|
||||
debug_write_obj(res, "parts_watertight");
|
||||
}
|
||||
|
||||
#include <libslic3r/QuadricEdgeCollapse.hpp>
|
||||
TEST_CASE("Reduce one edge by Quadric Edge Collapse", "[its]")
|
||||
{
|
||||
indexed_triangle_set its;
|
||||
its.vertices = {Vec3f(-1.f, 0.f, 0.f), Vec3f(0.f, 1.f, 0.f),
|
||||
Vec3f(1.f, 0.f, 0.f), Vec3f(0.f, 0.f, 1.f),
|
||||
// vertex to be removed
|
||||
Vec3f(0.9f, .1f, -.1f)};
|
||||
its.indices = {Vec3i(1, 0, 3), Vec3i(2, 1, 3), Vec3i(0, 2, 3),
|
||||
Vec3i(0, 1, 4), Vec3i(1, 2, 4), Vec3i(2, 0, 4)};
|
||||
// edge to remove is between vertices 2 and 4 on trinagles 4 and 5
|
||||
|
||||
indexed_triangle_set its_ = its; // copy
|
||||
// its_write_obj(its, "tetrhedron_in.obj");
|
||||
size_t wanted_count = its.indices.size() - 1;
|
||||
CHECK(its_quadric_edge_collapse(its, wanted_count));
|
||||
// its_write_obj(its, "tetrhedron_out.obj");
|
||||
CHECK(its.indices.size() == 4);
|
||||
CHECK(its.vertices.size() == 4);
|
||||
|
||||
for (size_t i = 0; i < 3; i++) {
|
||||
CHECK(its.indices[i] == its_.indices[i]);
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < 4; i++) {
|
||||
if (i == 2) continue;
|
||||
CHECK(its.vertices[i] == its_.vertices[i]);
|
||||
}
|
||||
|
||||
const Vec3f &v = its.vertices[2]; // new vertex
|
||||
const Vec3f &v2 = its_.vertices[2]; // moved vertex
|
||||
const Vec3f &v4 = its_.vertices[4]; // removed vertex
|
||||
for (size_t i = 0; i < 3; i++) {
|
||||
bool is_between = (v[i] < v4[i] && v[i] > v2[i]) ||
|
||||
(v[i] > v4[i] && v[i] < v2[i]);
|
||||
CHECK(is_between);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user