Fixed make_cylinder() / make_sphere() functions to produce meshes
without errors.
This commit is contained in:
parent
8e007c5b6a
commit
e515ef4fbe
1 changed files with 71 additions and 86 deletions
|
@ -1847,116 +1847,101 @@ TriangleMesh make_cube(double x, double y, double z) {
|
|||
// Generate the mesh for a cylinder and return it, using
|
||||
// the generated angle to calculate the top mesh triangles.
|
||||
// Default is 360 sides, angle fa is in radians.
|
||||
TriangleMesh make_cylinder(double r, double h, double fa) {
|
||||
Pointf3s vertices;
|
||||
std::vector<Vec3crd> facets;
|
||||
TriangleMesh make_cylinder(double r, double h, double fa)
|
||||
{
|
||||
size_t n_steps = (size_t)ceil(2. * PI / fa);
|
||||
double angle_step = 2. * PI / n_steps;
|
||||
|
||||
Pointf3s vertices;
|
||||
std::vector<Vec3crd> facets;
|
||||
vertices.reserve(2 * n_steps + 2);
|
||||
facets.reserve(4 * n_steps);
|
||||
|
||||
// 2 special vertices, top and bottom center, rest are relative to this
|
||||
vertices.emplace_back(Vec3d(0.0, 0.0, 0.0));
|
||||
vertices.emplace_back(Vec3d(0.0, 0.0, h));
|
||||
|
||||
// adjust via rounding to get an even multiple for any provided angle.
|
||||
double angle = (2*PI / floor(2*PI / fa));
|
||||
|
||||
// for each line along the polygon approximating the top/bottom of the
|
||||
// circle, generate four points and four facets (2 for the wall, 2 for the
|
||||
// top and bottom.
|
||||
// Special case: Last line shares 2 vertices with the first line.
|
||||
unsigned id = vertices.size() - 1;
|
||||
vertices.emplace_back(Vec3d(sin(0) * r , cos(0) * r, 0));
|
||||
vertices.emplace_back(Vec3d(sin(0) * r , cos(0) * r, h));
|
||||
for (double i = 0; i < 2*PI; i+=angle) {
|
||||
Vec2d p = Eigen::Rotation2Dd(i) * Eigen::Vector2d(0, r);
|
||||
Vec2d p = Eigen::Rotation2Dd(0.) * Eigen::Vector2d(0, r);
|
||||
vertices.emplace_back(Vec3d(p(0), p(1), 0.));
|
||||
vertices.emplace_back(Vec3d(p(0), p(1), h));
|
||||
for (size_t i = 1; i < n_steps; ++i) {
|
||||
p = Eigen::Rotation2Dd(angle_step * i) * Eigen::Vector2d(0, r);
|
||||
vertices.emplace_back(Vec3d(p(0), p(1), 0.));
|
||||
vertices.emplace_back(Vec3d(p(0), p(1), h));
|
||||
id = vertices.size() - 1;
|
||||
int id = (int)vertices.size() - 1;
|
||||
facets.emplace_back(Vec3crd( 0, id - 1, id - 3)); // top
|
||||
facets.emplace_back(Vec3crd(id, 1, id - 2)); // bottom
|
||||
facets.emplace_back(Vec3crd(id, id - 2, id - 3)); // upper-right of side
|
||||
facets.emplace_back(Vec3crd(id, id - 2, id - 3)); // upper-right of side
|
||||
facets.emplace_back(Vec3crd(id, id - 3, id - 1)); // bottom-left of side
|
||||
}
|
||||
// Connect the last set of vertices with the first.
|
||||
facets.emplace_back(Vec3crd( 2, 0, id - 1));
|
||||
facets.emplace_back(Vec3crd( 1, 3, id));
|
||||
facets.emplace_back(Vec3crd(id, 3, 2));
|
||||
facets.emplace_back(Vec3crd(id, 2, id - 1));
|
||||
int id = (int)vertices.size() - 1;
|
||||
facets.emplace_back(Vec3crd( 0, 2, id - 1));
|
||||
facets.emplace_back(Vec3crd( 3, 1, id));
|
||||
facets.emplace_back(Vec3crd(id, 2, 3));
|
||||
facets.emplace_back(Vec3crd(id, id - 1, 2));
|
||||
|
||||
TriangleMesh mesh(vertices, facets);
|
||||
return mesh;
|
||||
return TriangleMesh(std::move(vertices), std::move(facets));
|
||||
}
|
||||
|
||||
// Generates mesh for a sphere centered about the origin, using the generated angle
|
||||
// to determine the granularity.
|
||||
// Default angle is 1 degree.
|
||||
TriangleMesh make_sphere(double rho, double fa) {
|
||||
Pointf3s vertices;
|
||||
std::vector<Vec3crd> facets;
|
||||
//FIXME better to discretize an Icosahedron recursively http://www.songho.ca/opengl/gl_sphere.html
|
||||
TriangleMesh make_sphere(double radius, double fa)
|
||||
{
|
||||
int sectorCount = ceil(2. * M_PI / fa);
|
||||
int stackCount = ceil(M_PI / fa);
|
||||
float sectorStep = 2. * M_PI / sectorCount;
|
||||
float stackStep = M_PI / stackCount;
|
||||
|
||||
// Algorithm:
|
||||
// Add points one-by-one to the sphere grid and form facets using relative coordinates.
|
||||
// Sphere is composed effectively of a mesh of stacked circles.
|
||||
Pointf3s vertices;
|
||||
vertices.reserve((stackCount - 1) * sectorCount + 2);
|
||||
for (int i = 0; i <= stackCount; ++ i) {
|
||||
// from pi/2 to -pi/2
|
||||
double stackAngle = 0.5 * M_PI - stackStep * i;
|
||||
double xy = radius * cos(stackAngle);
|
||||
double z = radius * sin(stackAngle);
|
||||
if (i == 0 || i == stackCount)
|
||||
vertices.emplace_back(Vec3d(xy, 0., z));
|
||||
else
|
||||
for (int j = 0; j < sectorCount; ++ j) {
|
||||
// from 0 to 2pi
|
||||
double sectorAngle = sectorStep * j;
|
||||
vertices.emplace_back(Vec3d(xy * cos(sectorAngle), xy * sin(sectorAngle), z));
|
||||
}
|
||||
}
|
||||
|
||||
// adjust via rounding to get an even multiple for any provided angle.
|
||||
double angle = (2*PI / floor(2*PI / fa));
|
||||
|
||||
// Ring to be scaled to generate the steps of the sphere
|
||||
std::vector<double> ring;
|
||||
for (double i = 0; i < 2*PI; i+=angle) {
|
||||
ring.emplace_back(i);
|
||||
}
|
||||
const size_t steps = ring.size();
|
||||
const double increment = (double)(1.0 / (double)steps);
|
||||
|
||||
// special case: first ring connects to 0,0,0
|
||||
// insert and form facets.
|
||||
vertices.emplace_back(Vec3d(0.0, 0.0, -rho));
|
||||
size_t id = vertices.size();
|
||||
for (size_t i = 0; i < ring.size(); i++) {
|
||||
// Fixed scaling
|
||||
const double z = -rho + increment*rho*2.0;
|
||||
// radius of the circle for this step.
|
||||
const double r = sqrt(abs(rho*rho - z*z));
|
||||
Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
|
||||
vertices.emplace_back(Vec3d(b(0), b(1), z));
|
||||
facets.emplace_back((i == 0) ? Vec3crd(1, 0, ring.size()) : Vec3crd(id, 0, id - 1));
|
||||
++ id;
|
||||
}
|
||||
|
||||
// General case: insert and form facets for each step, joining it to the ring below it.
|
||||
for (size_t s = 2; s < steps - 1; s++) {
|
||||
const double z = -rho + increment*(double)s*2.0*rho;
|
||||
const double r = sqrt(abs(rho*rho - z*z));
|
||||
|
||||
for (size_t i = 0; i < ring.size(); i++) {
|
||||
Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
|
||||
vertices.emplace_back(Vec3d(b(0), b(1), z));
|
||||
if (i == 0) {
|
||||
// wrap around
|
||||
facets.emplace_back(Vec3crd(id + ring.size() - 1 , id, id - 1));
|
||||
facets.emplace_back(Vec3crd(id, id - ring.size(), id - 1));
|
||||
} else {
|
||||
facets.emplace_back(Vec3crd(id , id - ring.size(), (id - 1) - ring.size()));
|
||||
facets.emplace_back(Vec3crd(id, id - 1 - ring.size() , id - 1));
|
||||
}
|
||||
id++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// special case: last ring connects to 0,0,rho*2.0
|
||||
// only form facets.
|
||||
vertices.emplace_back(Vec3d(0.0, 0.0, rho));
|
||||
for (size_t i = 0; i < ring.size(); i++) {
|
||||
if (i == 0) {
|
||||
// third vertex is on the other side of the ring.
|
||||
facets.emplace_back(Vec3crd(id, id - ring.size(), id - 1));
|
||||
} else {
|
||||
facets.emplace_back(Vec3crd(id, id - ring.size() + i, id - ring.size() + (i - 1)));
|
||||
}
|
||||
}
|
||||
id++;
|
||||
TriangleMesh mesh(vertices, facets);
|
||||
return mesh;
|
||||
std::vector<Vec3crd> facets;
|
||||
facets.reserve(2 * (stackCount - 1) * sectorCount);
|
||||
for (int i = 0; i < stackCount; ++ i) {
|
||||
// Beginning of current stack.
|
||||
int k1 = (i == 0) ? 0 : (1 + (i - 1) * sectorCount);
|
||||
int k1_first = k1;
|
||||
// Beginning of next stack.
|
||||
int k2 = (i == 0) ? 1 : (k1 + sectorCount);
|
||||
int k2_first = k2;
|
||||
for (int j = 0; j < sectorCount; ++ j) {
|
||||
// 2 triangles per sector excluding first and last stacks
|
||||
int k1_next = k1;
|
||||
int k2_next = k2;
|
||||
if (i != 0) {
|
||||
k1_next = (j + 1 == sectorCount) ? k1_first : (k1 + 1);
|
||||
facets.emplace_back(Vec3crd(k1, k2, k1_next));
|
||||
}
|
||||
if (i + 1 != stackCount) {
|
||||
k2_next = (j + 1 == sectorCount) ? k2_first : (k2 + 1);
|
||||
facets.emplace_back(Vec3crd(k1_next, k2, k2_next));
|
||||
}
|
||||
k1 = k1_next;
|
||||
k2 = k2_next;
|
||||
}
|
||||
}
|
||||
return TriangleMesh(std::move(vertices), std::move(facets));
|
||||
}
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue