Merge branch 'lm_improving_wipe_tower'. Summary of changes:

- wipe tower respects max volumetric flow, slowing down with PVA etc is not hardcoded anymore
- wipe tower is now allowed for multiple-extruder printers. single extruder stuff is not used in that case (ramming, cooling, etc.)
- start/end filament and toolchange custom gcodes are now inserted differently than before - see 41164a9
- some refactoring, e.g. the abstract WipeTower class was eradicated
This commit is contained in:
Lukas Matena 2019-07-15 10:25:38 +02:00
commit e674c586b0
12 changed files with 897 additions and 942 deletions

View file

@ -81,9 +81,8 @@ add_library(libslic3r STATIC
GCode/SpiralVase.hpp
GCode/ToolOrdering.cpp
GCode/ToolOrdering.hpp
GCode/WipeTower.cpp
GCode/WipeTower.hpp
GCode/WipeTowerPrusaMM.cpp
GCode/WipeTowerPrusaMM.hpp
GCode.cpp
GCode.hpp
GCodeReader.cpp

View file

@ -4,7 +4,7 @@
#include "EdgeGrid.hpp"
#include "Geometry.hpp"
#include "GCode/PrintExtents.hpp"
#include "GCode/WipeTowerPrusaMM.hpp"
#include "GCode/WipeTower.hpp"
#include "Utils.hpp"
#include <algorithm>
@ -162,9 +162,9 @@ std::string Wipe::wipe(GCode &gcodegen, bool toolchange)
return gcode;
}
static inline Point wipe_tower_point_to_object_point(GCode &gcodegen, const WipeTower::xy &wipe_tower_pt)
static inline Point wipe_tower_point_to_object_point(GCode &gcodegen, const Vec2f &wipe_tower_pt)
{
return Point(scale_(wipe_tower_pt.x - gcodegen.origin()(0)), scale_(wipe_tower_pt.y - gcodegen.origin()(1)));
return Point(scale_(wipe_tower_pt.x() - gcodegen.origin()(0)), scale_(wipe_tower_pt.y() - gcodegen.origin()(1)));
}
std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::ToolChangeResult &tcr, int new_extruder_id) const
@ -174,47 +174,97 @@ std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::T
// Toolchangeresult.gcode assumes the wipe tower corner is at the origin
// We want to rotate and shift all extrusions (gcode postprocessing) and starting and ending position
float alpha = m_wipe_tower_rotation/180.f * float(M_PI);
WipeTower::xy start_pos = tcr.start_pos;
WipeTower::xy end_pos = tcr.end_pos;
start_pos.rotate(alpha);
start_pos.translate(m_wipe_tower_pos);
end_pos.rotate(alpha);
end_pos.translate(m_wipe_tower_pos);
std::string tcr_rotated_gcode = rotate_wipe_tower_moves(tcr.gcode, tcr.start_pos, m_wipe_tower_pos, alpha);
Vec2f start_pos = tcr.start_pos;
Vec2f end_pos = tcr.end_pos;
if (!tcr.priming) {
start_pos = Eigen::Rotation2Df(alpha) * start_pos;
start_pos += m_wipe_tower_pos;
end_pos = Eigen::Rotation2Df(alpha) * end_pos;
end_pos += m_wipe_tower_pos;
}
std::string tcr_rotated_gcode = tcr.priming ? tcr.gcode : rotate_wipe_tower_moves(tcr.gcode, tcr.start_pos, m_wipe_tower_pos, alpha);
// Disable linear advance for the wipe tower operations.
gcode += (gcodegen.config().gcode_flavor == gcfRepRap ? std::string("M572 D0 S0\n") : std::string("M900 K0\n"));
// Move over the wipe tower.
// Retract for a tool change, using the toolchange retract value and setting the priming extra length.
gcode += gcodegen.retract(true);
gcodegen.m_avoid_crossing_perimeters.use_external_mp_once = true;
gcode += gcodegen.travel_to(
wipe_tower_point_to_object_point(gcodegen, start_pos),
erMixed,
"Travel to a Wipe Tower");
gcode += gcodegen.unretract();
// Let the tool change be executed by the wipe tower class.
// Inform the G-code writer about the changes done behind its back.
gcode += tcr_rotated_gcode;
// Let the m_writer know the current extruder_id, but ignore the generated G-code.
if (new_extruder_id >= 0 && gcodegen.writer().need_toolchange(new_extruder_id))
gcodegen.writer().toolchange(new_extruder_id);
if (!tcr.priming) {
// Move over the wipe tower.
// Retract for a tool change, using the toolchange retract value and setting the priming extra length.
gcode += gcodegen.retract(true);
gcodegen.m_avoid_crossing_perimeters.use_external_mp_once = true;
gcode += gcodegen.travel_to(
wipe_tower_point_to_object_point(gcodegen, start_pos),
erMixed,
"Travel to a Wipe Tower");
gcode += gcodegen.unretract();
}
// Process the end filament gcode.
std::string end_filament_gcode_str;
if (gcodegen.writer().extruder() != nullptr) {
// Process the custom end_filament_gcode in case of single_extruder_multi_material.
unsigned int old_extruder_id = gcodegen.writer().extruder()->id();
const std::string &end_filament_gcode = gcodegen.config().end_filament_gcode.get_at(old_extruder_id);
if (gcodegen.writer().extruder() != nullptr && ! end_filament_gcode.empty()) {
end_filament_gcode_str = gcodegen.placeholder_parser_process("end_filament_gcode", end_filament_gcode, old_extruder_id);
check_add_eol(end_filament_gcode_str);
}
}
// Process the custom toolchange_gcode. If it is empty, provide a simple Tn command to change the filament.
// Otherwise, leave control to the user completely.
std::string toolchange_gcode_str;
if (true /*gcodegen.writer().extruder() != nullptr*/) {
const std::string& toolchange_gcode = gcodegen.config().toolchange_gcode.value;
if (!toolchange_gcode.empty()) {
DynamicConfig config;
int previous_extruder_id = gcodegen.writer().extruder() ? (int)gcodegen.writer().extruder()->id() : -1;
config.set_key_value("previous_extruder", new ConfigOptionInt(previous_extruder_id));
config.set_key_value("next_extruder", new ConfigOptionInt((int)new_extruder_id));
config.set_key_value("layer_num", new ConfigOptionInt(gcodegen.m_layer_index));
config.set_key_value("layer_z", new ConfigOptionFloat(tcr.print_z));
toolchange_gcode_str = gcodegen.placeholder_parser_process("toolchange_gcode", toolchange_gcode, new_extruder_id, &config);
check_add_eol(toolchange_gcode_str);
}
std::string toolchange_command;
if (tcr.priming || (new_extruder_id >= 0 && gcodegen.writer().need_toolchange(new_extruder_id)))
toolchange_command = gcodegen.writer().toolchange(new_extruder_id);
if (toolchange_gcode.empty())
toolchange_gcode_str = toolchange_command;
else {
// We have informed the m_writer about the current extruder_id, we can ignore the generated G-code.
}
}
gcodegen.placeholder_parser().set("current_extruder", new_extruder_id);
// Always append the filament start G-code even if the extruder did not switch,
// because the wipe tower resets the linear advance and we want it to be re-enabled.
// Process the start filament gcode.
std::string start_filament_gcode_str;
const std::string &start_filament_gcode = gcodegen.config().start_filament_gcode.get_at(new_extruder_id);
if (! start_filament_gcode.empty()) {
// Process the start_filament_gcode for the active filament only.
DynamicConfig config;
config.set_key_value("filament_extruder_id", new ConfigOptionInt(new_extruder_id));
gcode += gcodegen.placeholder_parser_process("start_filament_gcode", start_filament_gcode, new_extruder_id, &config);
check_add_eol(gcode);
start_filament_gcode_str = gcodegen.placeholder_parser_process("start_filament_gcode", start_filament_gcode, new_extruder_id, &config);
check_add_eol(start_filament_gcode_str);
}
// Insert the end filament, toolchange, and start filament gcode into the generated gcode.
DynamicConfig config;
config.set_key_value("end_filament_gcode", new ConfigOptionString(end_filament_gcode_str));
config.set_key_value("toolchange_gcode", new ConfigOptionString(toolchange_gcode_str));
config.set_key_value("start_filament_gcode", new ConfigOptionString(start_filament_gcode_str));
std::string tcr_gcode, tcr_escaped_gcode = gcodegen.placeholder_parser_process("tcr_rotated_gcode", tcr_rotated_gcode, new_extruder_id, &config);
unescape_string_cstyle(tcr_escaped_gcode, tcr_gcode);
gcode += tcr_gcode;
check_add_eol(toolchange_gcode_str);
// A phony move to the end position at the wipe tower.
gcodegen.writer().travel_to_xy(Vec2d(end_pos.x, end_pos.y));
gcodegen.writer().travel_to_xy(end_pos.cast<double>());
gcodegen.set_last_pos(wipe_tower_point_to_object_point(gcodegen, end_pos));
// Prepare a future wipe.
@ -224,8 +274,8 @@ std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::T
gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen, end_pos));
// Wipe end point: Wipe direction away from the closer tower edge to the further tower edge.
gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen,
WipeTower::xy((std::abs(m_left - end_pos.x) < std::abs(m_right - end_pos.x)) ? m_right : m_left,
end_pos.y)));
Vec2f((std::abs(m_left - end_pos.x()) < std::abs(m_right - end_pos.x())) ? m_right : m_left,
end_pos.y())));
}
// Let the planner know we are traveling between objects.
@ -235,14 +285,14 @@ std::string WipeTowerIntegration::append_tcr(GCode &gcodegen, const WipeTower::T
// This function postprocesses gcode_original, rotates and moves all G1 extrusions and returns resulting gcode
// Starting position has to be supplied explicitely (otherwise it would fail in case first G1 command only contained one coordinate)
std::string WipeTowerIntegration::rotate_wipe_tower_moves(const std::string& gcode_original, const WipeTower::xy& start_pos, const WipeTower::xy& translation, float angle) const
std::string WipeTowerIntegration::rotate_wipe_tower_moves(const std::string& gcode_original, const Vec2f& start_pos, const Vec2f& translation, float angle) const
{
std::istringstream gcode_str(gcode_original);
std::string gcode_out;
std::string line;
WipeTower::xy pos = start_pos;
WipeTower::xy transformed_pos;
WipeTower::xy old_pos(-1000.1f, -1000.1f);
Vec2f pos = start_pos;
Vec2f transformed_pos;
Vec2f old_pos(-1000.1f, -1000.1f);
while (gcode_str) {
std::getline(gcode_str, line); // we read the gcode line by line
@ -253,25 +303,25 @@ std::string WipeTowerIntegration::rotate_wipe_tower_moves(const std::string& gco
char ch = 0;
while (line_str >> ch) {
if (ch == 'X')
line_str >> pos.x;
line_str >> pos.x();
else
if (ch == 'Y')
line_str >> pos.y;
line_str >> pos.y();
else
line_out << ch;
}
transformed_pos = pos;
transformed_pos.rotate(angle);
transformed_pos.translate(translation);
transformed_pos = Eigen::Rotation2Df(angle) * transformed_pos;
transformed_pos += translation;
if (transformed_pos != old_pos) {
line = line_out.str();
char buf[2048] = "G1";
if (transformed_pos.x != old_pos.x)
sprintf(buf + strlen(buf), " X%.3f", transformed_pos.x);
if (transformed_pos.y != old_pos.y)
sprintf(buf + strlen(buf), " Y%.3f", transformed_pos.y);
if (transformed_pos.x() != old_pos.x())
sprintf(buf + strlen(buf), " X%.3f", transformed_pos.x());
if (transformed_pos.y() != old_pos.y())
sprintf(buf + strlen(buf), " Y%.3f", transformed_pos.y());
line.replace(line.find("G1 "), 3, buf);
old_pos = transformed_pos;
@ -288,27 +338,36 @@ std::string WipeTowerIntegration::prime(GCode &gcodegen)
assert(m_layer_idx == 0);
std::string gcode;
if (&m_priming != nullptr && ! m_priming.extrusions.empty()) {
if (&m_priming != nullptr) {
// Disable linear advance for the wipe tower operations.
gcode += (gcodegen.config().gcode_flavor == gcfRepRap ? std::string("M572 D0 S0\n") : std::string("M900 K0\n"));
// Let the tool change be executed by the wipe tower class.
// Inform the G-code writer about the changes done behind its back.
gcode += m_priming.gcode;
// Let the m_writer know the current extruder_id, but ignore the generated G-code.
unsigned int current_extruder_id = m_priming.extrusions.back().tool;
gcodegen.writer().toolchange(current_extruder_id);
gcodegen.placeholder_parser().set("current_extruder", current_extruder_id);
//gcode += (gcodegen.config().gcode_flavor == gcfRepRap ? std::string("M572 D0 S0\n") : std::string("M900 K0\n"));
for (const WipeTower::ToolChangeResult& tcr : m_priming) {
if (!tcr.extrusions.empty())
gcode += append_tcr(gcodegen, tcr, tcr.new_tool);
// Let the tool change be executed by the wipe tower class.
// Inform the G-code writer about the changes done behind its back.
//gcode += tcr.gcode;
// Let the m_writer know the current extruder_id, but ignore the generated G-code.
// unsigned int current_extruder_id = tcr.extrusions.back().tool;
// gcodegen.writer().toolchange(current_extruder_id);
// gcodegen.placeholder_parser().set("current_extruder", current_extruder_id);
}
// A phony move to the end position at the wipe tower.
gcodegen.writer().travel_to_xy(Vec2d(m_priming.end_pos.x, m_priming.end_pos.y));
gcodegen.set_last_pos(wipe_tower_point_to_object_point(gcodegen, m_priming.end_pos));
/* gcodegen.writer().travel_to_xy(Vec2d(m_priming.back().end_pos.x, m_priming.back().end_pos.y));
gcodegen.set_last_pos(wipe_tower_point_to_object_point(gcodegen, m_priming.back().end_pos));
// Prepare a future wipe.
gcodegen.m_wipe.path.points.clear();
// Start the wipe at the current position.
gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen, m_priming.end_pos));
gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen, m_priming.back().end_pos));
// Wipe end point: Wipe direction away from the closer tower edge to the further tower edge.
gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen,
WipeTower::xy((std::abs(m_left - m_priming.end_pos.x) < std::abs(m_right - m_priming.end_pos.x)) ? m_right : m_left,
m_priming.end_pos.y)));
gcodegen.m_wipe.path.points.emplace_back(wipe_tower_point_to_object_point(gcodegen,
WipeTower::xy((std::abs(m_left - m_priming.back().end_pos.x) < std::abs(m_right - m_priming.back().end_pos.x)) ? m_right : m_left,
m_priming.back().end_pos.y)));*/
}
return gcode;
}
@ -807,24 +866,16 @@ void GCode::_do_export(Print &print, FILE *file)
// Write the custom start G-code
_writeln(file, start_gcode);
// Process filament-specific gcode in extruder order.
if (print.config().single_extruder_multi_material) {
if (has_wipe_tower) {
// Wipe tower will control the extruder switching, it will call the start_filament_gcode.
} else {
// Only initialize the initial extruder.
// Process filament-specific gcode.
/* if (has_wipe_tower) {
// Wipe tower will control the extruder switching, it will call the start_filament_gcode.
} else {
DynamicConfig config;
config.set_key_value("filament_extruder_id", new ConfigOptionInt(int(initial_extruder_id)));
_writeln(file, this->placeholder_parser_process("start_filament_gcode", print.config().start_filament_gcode.values[initial_extruder_id], initial_extruder_id, &config));
}
} else {
DynamicConfig config;
for (const std::string &start_gcode : print.config().start_filament_gcode.values) {
int extruder_id = (unsigned int)(&start_gcode - &print.config().start_filament_gcode.values.front());
config.set_key_value("filament_extruder_id", new ConfigOptionInt(extruder_id));
_writeln(file, this->placeholder_parser_process("start_filament_gcode", start_gcode, extruder_id, &config));
}
_writeln(file, this->placeholder_parser_process("start_filament_gcode", print.config().start_filament_gcode.values[initial_extruder_id], initial_extruder_id, &config));
}
*/
this->_print_first_layer_extruder_temperatures(file, print, start_gcode, initial_extruder_id, true);
print.throw_if_canceled();
@ -2563,7 +2614,7 @@ std::string GCode::_extrude(const ExtrusionPath &path, std::string description,
gcode += buf;
}
if (m_last_mm3_per_mm != path.mm3_per_mm)
if (last_was_wipe_tower || (m_last_mm3_per_mm != path.mm3_per_mm))
{
m_last_mm3_per_mm = path.mm3_per_mm;
@ -2741,38 +2792,58 @@ std::string GCode::set_extruder(unsigned int extruder_id, double print_z)
m_wipe.reset_path();
if (m_writer.extruder() != nullptr) {
// Process the custom end_filament_gcode in case of single_extruder_multi_material.
// Process the custom end_filament_gcode. set_extruder() is only called if there is no wipe tower
// so it should not be injected twice.
unsigned int old_extruder_id = m_writer.extruder()->id();
const std::string &end_filament_gcode = m_config.end_filament_gcode.get_at(old_extruder_id);
if (m_config.single_extruder_multi_material && ! end_filament_gcode.empty()) {
if (! end_filament_gcode.empty()) {
gcode += placeholder_parser_process("end_filament_gcode", end_filament_gcode, old_extruder_id);
check_add_eol(gcode);
}
}
m_placeholder_parser.set("current_extruder", extruder_id);
if (m_writer.extruder() != nullptr && ! m_config.toolchange_gcode.value.empty()) {
// Process the custom toolchange_gcode.
DynamicConfig config;
config.set_key_value("previous_extruder", new ConfigOptionInt((int)m_writer.extruder()->id()));
config.set_key_value("next_extruder", new ConfigOptionInt((int)extruder_id));
config.set_key_value("layer_num", new ConfigOptionInt(m_layer_index));
config.set_key_value("layer_z", new ConfigOptionFloat(print_z));
gcode += placeholder_parser_process("toolchange_gcode", m_config.toolchange_gcode.value, extruder_id, &config);
check_add_eol(gcode);
}
// If ooze prevention is enabled, park current extruder in the nearest
// standby point and set it to the standby temperature.
if (m_ooze_prevention.enable && m_writer.extruder() != nullptr)
gcode += m_ooze_prevention.pre_toolchange(*this);
// Append the toolchange command.
gcode += m_writer.toolchange(extruder_id);
// Append the filament start G-code for single_extruder_multi_material.
const std::string& toolchange_gcode = m_config.toolchange_gcode.value;
if (m_writer.extruder() != nullptr) {
// Process the custom toolchange_gcode. If it is empty, insert just a Tn command.
if (!toolchange_gcode.empty()) {
DynamicConfig config;
config.set_key_value("previous_extruder", new ConfigOptionInt((int)m_writer.extruder()->id()));
config.set_key_value("next_extruder", new ConfigOptionInt((int)extruder_id));
config.set_key_value("layer_num", new ConfigOptionInt(m_layer_index));
config.set_key_value("layer_z", new ConfigOptionFloat(print_z));
gcode += placeholder_parser_process("toolchange_gcode", toolchange_gcode, extruder_id, &config);
check_add_eol(gcode);
}
}
// We inform the writer about what is happening, but we may not use the resulting gcode.
std::string toolchange_command = m_writer.toolchange(extruder_id);
if (toolchange_gcode.empty())
gcode += toolchange_command;
else {
// user provided his own toolchange gcode, no need to do anything
}
// Set the temperature if the wipe tower didn't (not needed for non-single extruder MM)
if (m_config.single_extruder_multi_material && !m_config.wipe_tower) {
int temp = (m_layer_index == 0 ? m_config.first_layer_temperature.get_at(extruder_id) :
m_config.temperature.get_at(extruder_id));
gcode += m_writer.set_temperature(temp, false);
}
m_placeholder_parser.set("current_extruder", extruder_id);
// Append the filament start G-code.
const std::string &start_filament_gcode = m_config.start_filament_gcode.get_at(extruder_id);
if (m_config.single_extruder_multi_material && ! start_filament_gcode.empty()) {
// Process the start_filament_gcode for the active filament only.
if (! start_filament_gcode.empty()) {
// Process the start_filament_gcode for the new filament.
gcode += this->placeholder_parser_process("start_filament_gcode", start_filament_gcode, extruder_id);
check_add_eol(gcode);
}

View file

@ -83,7 +83,7 @@ class WipeTowerIntegration {
public:
WipeTowerIntegration(
const PrintConfig &print_config,
const WipeTower::ToolChangeResult &priming,
const std::vector<WipeTower::ToolChangeResult> &priming,
const std::vector<std::vector<WipeTower::ToolChangeResult>> &tool_changes,
const WipeTower::ToolChangeResult &final_purge) :
m_left(/*float(print_config.wipe_tower_x.value)*/ 0.f),
@ -108,15 +108,15 @@ private:
std::string append_tcr(GCode &gcodegen, const WipeTower::ToolChangeResult &tcr, int new_extruder_id) const;
// Postprocesses gcode: rotates and moves all G1 extrusions and returns result
std::string rotate_wipe_tower_moves(const std::string& gcode_original, const WipeTower::xy& start_pos, const WipeTower::xy& translation, float angle) const;
std::string rotate_wipe_tower_moves(const std::string& gcode_original, const Vec2f& start_pos, const Vec2f& translation, float angle) const;
// Left / right edges of the wipe tower, for the planning of wipe moves.
const float m_left;
const float m_right;
const WipeTower::xy m_wipe_tower_pos;
const Vec2f m_wipe_tower_pos;
const float m_wipe_tower_rotation;
// Reference to cached values at the Printer class.
const WipeTower::ToolChangeResult &m_priming;
const std::vector<WipeTower::ToolChangeResult> &m_priming;
const std::vector<std::vector<WipeTower::ToolChangeResult>> &m_tool_changes;
const WipeTower::ToolChangeResult &m_final_purge;
// Current layer index.

View file

@ -149,8 +149,8 @@ BoundingBoxf get_wipe_tower_extrusions_extents(const Print &print, const coordf_
const WipeTower::Extrusion &e = tcr.extrusions[i];
if (e.width > 0) {
Vec2d delta = 0.5 * Vec2d(e.width, e.width);
Vec2d p1 = trafo * Vec2d((&e - 1)->pos.x, (&e - 1)->pos.y);
Vec2d p2 = trafo * Vec2d(e.pos.x, e.pos.y);
Vec2d p1 = trafo * (&e - 1)->pos.cast<double>();
Vec2d p2 = trafo * e.pos.cast<double>();
bbox.merge(p1.cwiseMin(p2) - delta);
bbox.merge(p1.cwiseMax(p2) + delta);
}
@ -165,18 +165,19 @@ BoundingBoxf get_wipe_tower_priming_extrusions_extents(const Print &print)
{
BoundingBoxf bbox;
if (print.wipe_tower_data().priming != nullptr) {
const WipeTower::ToolChangeResult &tcr = *print.wipe_tower_data().priming;
for (size_t i = 1; i < tcr.extrusions.size(); ++ i) {
const WipeTower::Extrusion &e = tcr.extrusions[i];
if (e.width > 0) {
Vec2d p1((&e - 1)->pos.x, (&e - 1)->pos.y);
Vec2d p2(e.pos.x, e.pos.y);
bbox.merge(p1);
coordf_t radius = 0.5 * e.width;
bbox.min(0) = std::min(bbox.min(0), std::min(p1(0), p2(0)) - radius);
bbox.min(1) = std::min(bbox.min(1), std::min(p1(1), p2(1)) - radius);
bbox.max(0) = std::max(bbox.max(0), std::max(p1(0), p2(0)) + radius);
bbox.max(1) = std::max(bbox.max(1), std::max(p1(1), p2(1)) + radius);
for (const WipeTower::ToolChangeResult &tcr : *print.wipe_tower_data().priming) {
for (size_t i = 1; i < tcr.extrusions.size(); ++ i) {
const WipeTower::Extrusion &e = tcr.extrusions[i];
if (e.width > 0) {
const Vec2d& p1 = (&e - 1)->pos.cast<double>();
const Vec2d& p2 = e.pos.cast<double>();
bbox.merge(p1);
coordf_t radius = 0.5 * e.width;
bbox.min(0) = std::min(bbox.min(0), std::min(p1(0), p2(0)) - radius);
bbox.min(1) = std::min(bbox.min(1), std::min(p1(1), p2(1)) - radius);
bbox.max(0) = std::max(bbox.max(0), std::max(p1(0), p2(0)) + radius);
bbox.max(1) = std::max(bbox.max(1), std::max(p1(1), p2(1)) + radius);
}
}
}
}

View file

@ -1,95 +1,30 @@
#ifndef slic3r_WipeTower_hpp_
#define slic3r_WipeTower_hpp_
#ifndef WipeTower_
#define WipeTower_
#include <math.h>
#include <utility>
#include <cmath>
#include <string>
#include <vector>
#include <sstream>
#include <utility>
#include <algorithm>
#include "libslic3r/PrintConfig.hpp"
namespace Slic3r
{
// A pure virtual WipeTower definition.
class WipeTowerWriter;
class WipeTower
{
public:
// Internal point class, to make the wipe tower independent from other slic3r modules.
// This is important for Prusa Research as we want to build the wipe tower post-processor independently from slic3r.
struct xy
struct Extrusion
{
xy(float x = 0.f, float y = 0.f) : x(x), y(y) {}
xy(const xy& pos,float xp,float yp) : x(pos.x+xp), y(pos.y+yp) {}
xy operator+(const xy &rhs) const { xy out(*this); out.x += rhs.x; out.y += rhs.y; return out; }
xy operator-(const xy &rhs) const { xy out(*this); out.x -= rhs.x; out.y -= rhs.y; return out; }
xy& operator+=(const xy &rhs) { x += rhs.x; y += rhs.y; return *this; }
xy& operator-=(const xy &rhs) { x -= rhs.x; y -= rhs.y; return *this; }
bool operator==(const xy &rhs) const { return x == rhs.x && y == rhs.y; }
bool operator!=(const xy &rhs) const { return x != rhs.x || y != rhs.y; }
// Rotate the point around center of the wipe tower about given angle (in degrees)
xy rotate(float width, float depth, float angle) const {
xy out(0,0);
float temp_x = x - width / 2.f;
float temp_y = y - depth / 2.f;
angle *= float(M_PI/180.);
out.x += temp_x * cos(angle) - temp_y * sin(angle) + width / 2.f;
out.y += temp_x * sin(angle) + temp_y * cos(angle) + depth / 2.f;
return out;
}
// Rotate the point around origin about given angle in degrees
void rotate(float angle) {
float temp_x = x * cos(angle) - y * sin(angle);
y = x * sin(angle) + y * cos(angle);
x = temp_x;
}
void translate(const xy& vect) {
x += vect.x;
y += vect.y;
}
float x;
float y;
};
WipeTower() {}
virtual ~WipeTower() {}
// Return the wipe tower position.
virtual const xy& position() const = 0;
// Return the wipe tower width.
virtual float width() const = 0;
// The wipe tower is finished, there should be no more tool changes or wipe tower prints.
virtual bool finished() const = 0;
// Switch to a next layer.
virtual void set_layer(
// Print height of this layer.
float print_z,
// Layer height, used to calculate extrusion the rate.
float layer_height,
// Maximum number of tool changes on this layer or the layers below.
size_t max_tool_changes,
// Is this the first layer of the print? In that case print the brim first.
bool is_first_layer,
// Is this the last layer of the wipe tower?
bool is_last_layer) = 0;
enum Purpose {
PURPOSE_MOVE_TO_TOWER,
PURPOSE_EXTRUDE,
PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE,
};
// Extrusion path of the wipe tower, for 3D preview of the generated tool paths.
struct Extrusion
{
Extrusion(const xy &pos, float width, unsigned int tool) : pos(pos), width(width), tool(tool) {}
Extrusion(const Vec2f &pos, float width, unsigned int tool) : pos(pos), width(width), tool(tool) {}
// End position of this extrusion.
xy pos;
Vec2f pos;
// Width of a squished extrusion, corrected for the roundings of the squished extrusions.
// This is left zero if it is a travel move.
float width;
@ -108,10 +43,10 @@ public:
std::vector<Extrusion> extrusions;
// Initial position, at which the wipe tower starts its action.
// At this position the extruder is loaded and there is no Z-hop applied.
xy start_pos;
Vec2f start_pos;
// Last point, at which the normal G-code generator of Slic3r shall continue.
// At this position the extruder is loaded and there is no Z-hop applied.
xy end_pos;
Vec2f end_pos;
// Time elapsed over this tool change.
// This is useful not only for the print time estimation, but also for the control of layer cooling.
float elapsed_time;
@ -119,50 +54,375 @@ public:
// Is this a priming extrusion? (If so, the wipe tower rotation & translation will not be applied later)
bool priming;
// Initial tool
int initial_tool;
// New tool
int new_tool;
// Sum the total length of the extrusion.
float total_extrusion_length_in_plane() {
float e_length = 0.f;
for (size_t i = 1; i < this->extrusions.size(); ++ i) {
const Extrusion &e = this->extrusions[i];
if (e.width > 0) {
xy v = e.pos - (&e - 1)->pos;
e_length += sqrt(v.x*v.x+v.y*v.y);
Vec2f v = e.pos - (&e - 1)->pos;
e_length += v.norm();
}
}
return e_length;
}
};
// x -- x coordinates of wipe tower in mm ( left bottom corner )
// y -- y coordinates of wipe tower in mm ( left bottom corner )
// width -- width of wipe tower in mm ( default 60 mm - leave as it is )
// wipe_area -- space available for one toolchange in mm
WipeTower(bool semm, float x, float y, float width, float rotation_angle, float cooling_tube_retraction,
float cooling_tube_length, float parking_pos_retraction, float extra_loading_move,
float bridging, bool set_extruder_trimpot, GCodeFlavor flavor,
const std::vector<std::vector<float>>& wiping_matrix, unsigned int initial_tool) :
m_semm(semm),
m_wipe_tower_pos(x, y),
m_wipe_tower_width(width),
m_wipe_tower_rotation_angle(rotation_angle),
m_y_shift(0.f),
m_z_pos(0.f),
m_is_first_layer(false),
m_gcode_flavor(flavor),
m_bridging(bridging),
m_current_tool(initial_tool),
wipe_volumes(wiping_matrix)
{
// If this is a single extruder MM printer, we will use all the SE-specific config values.
// Otherwise, the defaults will be used to turn off the SE stuff.
if (m_semm) {
m_cooling_tube_retraction = cooling_tube_retraction;
m_cooling_tube_length = cooling_tube_length;
m_parking_pos_retraction = parking_pos_retraction;
m_extra_loading_move = extra_loading_move;
m_set_extruder_trimpot = set_extruder_trimpot;
}
}
virtual ~WipeTower() {}
// Set the extruder properties.
void set_extruder(size_t idx, std::string material, int temp, int first_layer_temp, float loading_speed, float loading_speed_start,
float unloading_speed, float unloading_speed_start, float delay, int cooling_moves,
float cooling_initial_speed, float cooling_final_speed, std::string ramming_parameters, float max_volumetric_speed, float nozzle_diameter)
{
//while (m_filpar.size() < idx+1) // makes sure the required element is in the vector
m_filpar.push_back(FilamentParameters());
m_filpar[idx].material = material;
m_filpar[idx].temperature = temp;
m_filpar[idx].first_layer_temperature = first_layer_temp;
// If this is a single extruder MM printer, we will use all the SE-specific config values.
// Otherwise, the defaults will be used to turn off the SE stuff.
if (m_semm) {
m_filpar[idx].loading_speed = loading_speed;
m_filpar[idx].loading_speed_start = loading_speed_start;
m_filpar[idx].unloading_speed = unloading_speed;
m_filpar[idx].unloading_speed_start = unloading_speed_start;
m_filpar[idx].delay = delay;
m_filpar[idx].cooling_moves = cooling_moves;
m_filpar[idx].cooling_initial_speed = cooling_initial_speed;
m_filpar[idx].cooling_final_speed = cooling_final_speed;
}
if (max_volumetric_speed != 0.f)
m_filpar[idx].max_e_speed = (max_volumetric_speed / Filament_Area);
m_filpar[idx].nozzle_diameter = nozzle_diameter; // to be used in future with (non-single) multiextruder MM
m_perimeter_width = nozzle_diameter * Width_To_Nozzle_Ratio; // all extruders are now assumed to have the same diameter
std::stringstream stream{m_semm ? ramming_parameters : std::string()};
float speed = 0.f;
stream >> m_filpar[idx].ramming_line_width_multiplicator >> m_filpar[idx].ramming_step_multiplicator;
m_filpar[idx].ramming_line_width_multiplicator /= 100;
m_filpar[idx].ramming_step_multiplicator /= 100;
while (stream >> speed)
m_filpar[idx].ramming_speed.push_back(speed);
m_used_filament_length.resize(std::max(m_used_filament_length.size(), idx + 1)); // makes sure that the vector is big enough so we don't have to check later
}
// Appends into internal structure m_plan containing info about the future wipe tower
// to be used before building begins. The entries must be added ordered in z.
void plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool, bool brim, float wipe_volume = 0.f);
// Iterates through prepared m_plan, generates ToolChangeResults and appends them to "result"
void generate(std::vector<std::vector<ToolChangeResult>> &result);
float get_depth() const { return m_wipe_tower_depth; }
// Switch to a next layer.
void set_layer(
// Print height of this layer.
float print_z,
// Layer height, used to calculate extrusion the rate.
float layer_height,
// Maximum number of tool changes on this layer or the layers below.
size_t max_tool_changes,
// Is this the first layer of the print? In that case print the brim first.
bool is_first_layer,
// Is this the last layer of the waste tower?
bool is_last_layer)
{
m_z_pos = print_z;
m_layer_height = layer_height;
m_is_first_layer = is_first_layer;
m_print_brim = is_first_layer;
m_depth_traversed = 0.f;
m_current_shape = (! is_first_layer && m_current_shape == SHAPE_NORMAL) ? SHAPE_REVERSED : SHAPE_NORMAL;
if (is_first_layer) {
this->m_num_layer_changes = 0;
this->m_num_tool_changes = 0;
}
else
++ m_num_layer_changes;
// Calculate extrusion flow from desired line width, nozzle diameter, filament diameter and layer_height:
m_extrusion_flow = extrusion_flow(layer_height);
// Advance m_layer_info iterator, making sure we got it right
while (!m_plan.empty() && m_layer_info->z < print_z - WT_EPSILON && m_layer_info+1 != m_plan.end())
++m_layer_info;
}
// Return the wipe tower position.
const Vec2f& position() const { return m_wipe_tower_pos; }
// Return the wipe tower width.
float width() const { return m_wipe_tower_width; }
// The wipe tower is finished, there should be no more tool changes or wipe tower prints.
bool finished() const { return m_max_color_changes == 0; }
// Returns gcode to prime the nozzles at the front edge of the print bed.
virtual ToolChangeResult prime(
std::vector<ToolChangeResult> prime(
// print_z of the first layer.
float first_layer_height,
// Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object.
const std::vector<unsigned int> &tools,
// If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower.
// If false, the last priming are will be large enough to wipe the last extruder sufficiently.
bool last_wipe_inside_wipe_tower) = 0;
bool last_wipe_inside_wipe_tower);
// Returns gcode for toolchange and the end position.
// if new_tool == -1, just unload the current filament over the wipe tower.
virtual ToolChangeResult tool_change(unsigned int new_tool, bool last_in_layer) = 0;
// Returns gcode for a toolchange and a final print head position.
// On the first layer, extrude a brim around the future wipe tower first.
ToolChangeResult tool_change(unsigned int new_tool, bool last_in_layer);
// Close the current wipe tower layer with a perimeter and possibly fill the unfilled space with a zig-zag.
// Fill the unfilled space with a sparse infill.
// Call this method only if layer_finished() is false.
virtual ToolChangeResult finish_layer() = 0;
ToolChangeResult finish_layer();
// Is the current layer finished? A layer is finished if either the wipe tower is finished, or
// the wipe tower has been completely covered by the tool change extrusions,
// or the rest of the tower has been filled by a sparse infill with the finish_layer() method.
virtual bool layer_finished() const = 0;
// Is the current layer finished?
bool layer_finished() const {
return ( (m_is_first_layer ? m_wipe_tower_depth - m_perimeter_width : m_layer_info->depth) - WT_EPSILON < m_depth_traversed);
}
// Returns used filament length per extruder:
virtual std::vector<float> get_used_filament() const = 0;
std::vector<float> get_used_filament() const { return m_used_filament_length; }
int get_number_of_toolchanges() const { return m_num_tool_changes; }
// Returns total number of toolchanges:
virtual int get_number_of_toolchanges() const = 0;
struct FilamentParameters {
std::string material = "PLA";
int temperature = 0;
int first_layer_temperature = 0;
float loading_speed = 0.f;
float loading_speed_start = 0.f;
float unloading_speed = 0.f;
float unloading_speed_start = 0.f;
float delay = 0.f ;
int cooling_moves = 0;
float cooling_initial_speed = 0.f;
float cooling_final_speed = 0.f;
float ramming_line_width_multiplicator = 0.f;
float ramming_step_multiplicator = 0.f;
float max_e_speed = std::numeric_limits<float>::max();
std::vector<float> ramming_speed;
float nozzle_diameter;
};
private:
WipeTower();
enum wipe_shape // A fill-in direction
{
SHAPE_NORMAL = 1,
SHAPE_REVERSED = -1
};
const bool m_peters_wipe_tower = false; // sparse wipe tower inspired by Peter's post processor - not finished yet
const float Filament_Area = float(M_PI * 1.75f * 1.75f / 4.f); // filament area in mm^2
const float Width_To_Nozzle_Ratio = 1.25f; // desired line width (oval) in multiples of nozzle diameter - may not be actually neccessary to adjust
const float WT_EPSILON = 1e-3f;
bool m_semm = true; // Are we using a single extruder multimaterial printer?
Vec2f m_wipe_tower_pos; // Left front corner of the wipe tower in mm.
float m_wipe_tower_width; // Width of the wipe tower.
float m_wipe_tower_depth = 0.f; // Depth of the wipe tower
float m_wipe_tower_rotation_angle = 0.f; // Wipe tower rotation angle in degrees (with respect to x axis)
float m_internal_rotation = 0.f;
float m_y_shift = 0.f; // y shift passed to writer
float m_z_pos = 0.f; // Current Z position.
float m_layer_height = 0.f; // Current layer height.
size_t m_max_color_changes = 0; // Maximum number of color changes per layer.
bool m_is_first_layer = false;// Is this the 1st layer of the print? If so, print the brim around the waste tower.
int m_old_temperature = -1; // To keep track of what was the last temp that we set (so we don't issue the command when not neccessary)
// G-code generator parameters.
float m_cooling_tube_retraction = 0.f;
float m_cooling_tube_length = 0.f;
float m_parking_pos_retraction = 0.f;
float m_extra_loading_move = 0.f;
float m_bridging = 0.f;
bool m_set_extruder_trimpot = false;
bool m_adhesion = true;
GCodeFlavor m_gcode_flavor;
float m_perimeter_width = 0.4f * Width_To_Nozzle_Ratio; // Width of an extrusion line, also a perimeter spacing for 100% infill.
float m_extrusion_flow = 0.038f; //0.029f;// Extrusion flow is derived from m_perimeter_width, layer height and filament diameter.
// Extruder specific parameters.
std::vector<FilamentParameters> m_filpar;
// State of the wipe tower generator.
unsigned int m_num_layer_changes = 0; // Layer change counter for the output statistics.
unsigned int m_num_tool_changes = 0; // Tool change change counter for the output statistics.
///unsigned int m_idx_tool_change_in_layer = 0; // Layer change counter in this layer. Counting up to m_max_color_changes.
bool m_print_brim = true;
// A fill-in direction (positive Y, negative Y) alternates with each layer.
wipe_shape m_current_shape = SHAPE_NORMAL;
unsigned int m_current_tool = 0;
const std::vector<std::vector<float>> wipe_volumes;
float m_depth_traversed = 0.f; // Current y position at the wipe tower.
bool m_left_to_right = true;
float m_extra_spacing = 1.f;
// Calculates extrusion flow needed to produce required line width for given layer height
float extrusion_flow(float layer_height = -1.f) const // negative layer_height - return current m_extrusion_flow
{
if ( layer_height < 0 )
return m_extrusion_flow;
return layer_height * ( m_perimeter_width - layer_height * (1.f-float(M_PI)/4.f)) / Filament_Area;
}
// Calculates length of extrusion line to extrude given volume
float volume_to_length(float volume, float line_width, float layer_height) const {
return std::max(0.f, volume / (layer_height * (line_width - layer_height * (1.f - float(M_PI) / 4.f))));
}
// Calculates depth for all layers and propagates them downwards
void plan_tower();
// Goes through m_plan and recalculates depths and width of the WT to make it exactly square - experimental
void make_wipe_tower_square();
// Goes through m_plan, calculates border and finish_layer extrusions and subtracts them from last wipe
void save_on_last_wipe();
struct box_coordinates
{
box_coordinates(float left, float bottom, float width, float height) :
ld(left , bottom ),
lu(left , bottom + height),
rd(left + width, bottom ),
ru(left + width, bottom + height) {}
box_coordinates(const Vec2f &pos, float width, float height) : box_coordinates(pos(0), pos(1), width, height) {}
void translate(const Vec2f &shift) {
ld += shift; lu += shift;
rd += shift; ru += shift;
}
void translate(const float dx, const float dy) { translate(Vec2f(dx, dy)); }
void expand(const float offset) {
ld += Vec2f(- offset, - offset);
lu += Vec2f(- offset, offset);
rd += Vec2f( offset, - offset);
ru += Vec2f( offset, offset);
}
void expand(const float offset_x, const float offset_y) {
ld += Vec2f(- offset_x, - offset_y);
lu += Vec2f(- offset_x, offset_y);
rd += Vec2f( offset_x, - offset_y);
ru += Vec2f( offset_x, offset_y);
}
Vec2f ld; // left down
Vec2f lu; // left upper
Vec2f rd; // right lower
Vec2f ru; // right upper
};
// to store information about tool changes for a given layer
struct WipeTowerInfo{
struct ToolChange {
unsigned int old_tool;
unsigned int new_tool;
float required_depth;
float ramming_depth;
float first_wipe_line;
float wipe_volume;
ToolChange(unsigned int old, unsigned int newtool, float depth=0.f, float ramming_depth=0.f, float fwl=0.f, float wv=0.f)
: old_tool{old}, new_tool{newtool}, required_depth{depth}, ramming_depth{ramming_depth}, first_wipe_line{fwl}, wipe_volume{wv} {}
};
float z; // z position of the layer
float height; // layer height
float depth; // depth of the layer based on all layers above
float extra_spacing;
float toolchanges_depth() const { float sum = 0.f; for (const auto &a : tool_changes) sum += a.required_depth; return sum; }
std::vector<ToolChange> tool_changes;
WipeTowerInfo(float z_par, float layer_height_par)
: z{z_par}, height{layer_height_par}, depth{0}, extra_spacing{1.f} {}
};
std::vector<WipeTowerInfo> m_plan; // Stores information about all layers and toolchanges for the future wipe tower (filled by plan_toolchange(...))
std::vector<WipeTowerInfo>::iterator m_layer_info = m_plan.end();
// Stores information about used filament length per extruder:
std::vector<float> m_used_filament_length;
// Returns gcode for wipe tower brim
// sideOnly -- set to false -- experimental, draw brim on sides of wipe tower
// offset -- set to 0 -- experimental, offset to replace brim in front / rear of wipe tower
ToolChangeResult toolchange_Brim(bool sideOnly = false, float y_offset = 0.f);
void toolchange_Unload(
WipeTowerWriter &writer,
const box_coordinates &cleaning_box,
const std::string& current_material,
const int new_temperature);
void toolchange_Change(
WipeTowerWriter &writer,
const unsigned int new_tool,
const std::string& new_material);
void toolchange_Load(
WipeTowerWriter &writer,
const box_coordinates &cleaning_box);
void toolchange_Wipe(
WipeTowerWriter &writer,
const box_coordinates &cleaning_box,
float wipe_volume);
};
}; // namespace Slic3r
#endif /* slic3r_WipeTower_hpp_ */
#endif // WipeTowerPrusaMM_hpp_

View file

@ -1,388 +0,0 @@
#ifndef WipeTowerPrusaMM_hpp_
#define WipeTowerPrusaMM_hpp_
#include <cmath>
#include <string>
#include <sstream>
#include <utility>
#include <algorithm>
#include "WipeTower.hpp"
#include "PrintConfig.hpp"
namespace Slic3r
{
namespace PrusaMultiMaterial {
class Writer;
};
class WipeTowerPrusaMM : public WipeTower
{
public:
enum material_type
{
INVALID = -1,
PLA = 0, // E:210C B:55C
ABS = 1, // E:255C B:100C
PET = 2, // E:240C B:90C
HIPS = 3, // E:220C B:100C
FLEX = 4, // E:245C B:80C
SCAFF = 5, // E:215C B:55C
EDGE = 6, // E:240C B:80C
NGEN = 7, // E:230C B:80C
PVA = 8, // E:210C B:80C
PC = 9
};
// Parse material name into material_type.
static material_type parse_material(const char *name);
static std::string to_string(material_type material);
// x -- x coordinates of wipe tower in mm ( left bottom corner )
// y -- y coordinates of wipe tower in mm ( left bottom corner )
// width -- width of wipe tower in mm ( default 60 mm - leave as it is )
// wipe_area -- space available for one toolchange in mm
WipeTowerPrusaMM(float x, float y, float width, float rotation_angle, float cooling_tube_retraction,
float cooling_tube_length, float parking_pos_retraction, float extra_loading_move,
float bridging, bool set_extruder_trimpot, GCodeFlavor flavor,
const std::vector<std::vector<float>>& wiping_matrix, unsigned int initial_tool) :
m_wipe_tower_pos(x, y),
m_wipe_tower_width(width),
m_wipe_tower_rotation_angle(rotation_angle),
m_y_shift(0.f),
m_z_pos(0.f),
m_is_first_layer(false),
m_cooling_tube_retraction(cooling_tube_retraction),
m_cooling_tube_length(cooling_tube_length),
m_parking_pos_retraction(parking_pos_retraction),
m_extra_loading_move(extra_loading_move),
m_bridging(bridging),
m_set_extruder_trimpot(set_extruder_trimpot),
m_gcode_flavor(flavor),
m_current_tool(initial_tool),
wipe_volumes(wiping_matrix)
{}
virtual ~WipeTowerPrusaMM() {}
// Set the extruder properties.
void set_extruder(size_t idx, material_type material, int temp, int first_layer_temp, float loading_speed, float loading_speed_start,
float unloading_speed, float unloading_speed_start, float delay, int cooling_moves,
float cooling_initial_speed, float cooling_final_speed, std::string ramming_parameters, float nozzle_diameter)
{
//while (m_filpar.size() < idx+1) // makes sure the required element is in the vector
m_filpar.push_back(FilamentParameters());
m_filpar[idx].material = material;
if (material == FLEX || material == SCAFF || material == PVA) {
// MMU2 lowers the print speed using the speed override (M220) for printing of soluble PVA/BVOH and flex materials.
// Therefore it does not make sense to use the new M220 B and M220 R (backup / restore).
m_retain_speed_override = false;
}
m_filpar[idx].temperature = temp;
m_filpar[idx].first_layer_temperature = first_layer_temp;
m_filpar[idx].loading_speed = loading_speed;
m_filpar[idx].loading_speed_start = loading_speed_start;
m_filpar[idx].unloading_speed = unloading_speed;
m_filpar[idx].unloading_speed_start = unloading_speed_start;
m_filpar[idx].delay = delay;
m_filpar[idx].cooling_moves = cooling_moves;
m_filpar[idx].cooling_initial_speed = cooling_initial_speed;
m_filpar[idx].cooling_final_speed = cooling_final_speed;
m_filpar[idx].nozzle_diameter = nozzle_diameter; // to be used in future with (non-single) multiextruder MM
m_perimeter_width = nozzle_diameter * Width_To_Nozzle_Ratio; // all extruders are now assumed to have the same diameter
std::stringstream stream{ramming_parameters};
float speed = 0.f;
stream >> m_filpar[idx].ramming_line_width_multiplicator >> m_filpar[idx].ramming_step_multiplicator;
m_filpar[idx].ramming_line_width_multiplicator /= 100;
m_filpar[idx].ramming_step_multiplicator /= 100;
while (stream >> speed)
m_filpar[idx].ramming_speed.push_back(speed);
m_used_filament_length.resize(std::max(m_used_filament_length.size(), idx + 1)); // makes sure that the vector is big enough so we don't have to check later
}
// Appends into internal structure m_plan containing info about the future wipe tower
// to be used before building begins. The entries must be added ordered in z.
void plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool, bool brim, float wipe_volume = 0.f);
// Iterates through prepared m_plan, generates ToolChangeResults and appends them to "result"
void generate(std::vector<std::vector<WipeTower::ToolChangeResult>> &result);
float get_depth() const { return m_wipe_tower_depth; }
// Switch to a next layer.
virtual void set_layer(
// Print height of this layer.
float print_z,
// Layer height, used to calculate extrusion the rate.
float layer_height,
// Maximum number of tool changes on this layer or the layers below.
size_t max_tool_changes,
// Is this the first layer of the print? In that case print the brim first.
bool is_first_layer,
// Is this the last layer of the waste tower?
bool is_last_layer)
{
m_z_pos = print_z;
m_layer_height = layer_height;
m_is_first_layer = is_first_layer;
m_print_brim = is_first_layer;
m_depth_traversed = 0.f;
m_current_shape = (! is_first_layer && m_current_shape == SHAPE_NORMAL) ? SHAPE_REVERSED : SHAPE_NORMAL;
if (is_first_layer) {
this->m_num_layer_changes = 0;
this->m_num_tool_changes = 0;
}
else
++ m_num_layer_changes;
// Calculate extrusion flow from desired line width, nozzle diameter, filament diameter and layer_height:
m_extrusion_flow = extrusion_flow(layer_height);
// Advance m_layer_info iterator, making sure we got it right
while (!m_plan.empty() && m_layer_info->z < print_z - WT_EPSILON && m_layer_info+1 != m_plan.end())
++m_layer_info;
}
// Return the wipe tower position.
virtual const xy& position() const { return m_wipe_tower_pos; }
// Return the wipe tower width.
virtual float width() const { return m_wipe_tower_width; }
// The wipe tower is finished, there should be no more tool changes or wipe tower prints.
virtual bool finished() const { return m_max_color_changes == 0; }
// Returns gcode to prime the nozzles at the front edge of the print bed.
virtual ToolChangeResult prime(
// print_z of the first layer.
float first_layer_height,
// Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object.
const std::vector<unsigned int> &tools,
// If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower.
// If false, the last priming are will be large enough to wipe the last extruder sufficiently.
bool last_wipe_inside_wipe_tower);
// Returns gcode for a toolchange and a final print head position.
// On the first layer, extrude a brim around the future wipe tower first.
virtual ToolChangeResult tool_change(unsigned int new_tool, bool last_in_layer);
// Fill the unfilled space with a sparse infill.
// Call this method only if layer_finished() is false.
virtual ToolChangeResult finish_layer();
// Is the current layer finished?
virtual bool layer_finished() const {
return ( (m_is_first_layer ? m_wipe_tower_depth - m_perimeter_width : m_layer_info->depth) - WT_EPSILON < m_depth_traversed);
}
virtual std::vector<float> get_used_filament() const override { return m_used_filament_length; }
virtual int get_number_of_toolchanges() const override { return m_num_tool_changes; }
private:
WipeTowerPrusaMM();
enum wipe_shape // A fill-in direction
{
SHAPE_NORMAL = 1,
SHAPE_REVERSED = -1
};
const bool m_peters_wipe_tower = false; // sparse wipe tower inspired by Peter's post processor - not finished yet
const float Filament_Area = float(M_PI * 1.75f * 1.75f / 4.f); // filament area in mm^2
const float Width_To_Nozzle_Ratio = 1.25f; // desired line width (oval) in multiples of nozzle diameter - may not be actually neccessary to adjust
const float WT_EPSILON = 1e-3f;
xy m_wipe_tower_pos; // Left front corner of the wipe tower in mm.
float m_wipe_tower_width; // Width of the wipe tower.
float m_wipe_tower_depth = 0.f; // Depth of the wipe tower
float m_wipe_tower_rotation_angle = 0.f; // Wipe tower rotation angle in degrees (with respect to x axis)
float m_internal_rotation = 0.f;
float m_y_shift = 0.f; // y shift passed to writer
float m_z_pos = 0.f; // Current Z position.
float m_layer_height = 0.f; // Current layer height.
size_t m_max_color_changes = 0; // Maximum number of color changes per layer.
bool m_is_first_layer = false;// Is this the 1st layer of the print? If so, print the brim around the waste tower.
int m_old_temperature = -1; // To keep track of what was the last temp that we set (so we don't issue the command when not neccessary)
// G-code generator parameters.
float m_cooling_tube_retraction = 0.f;
float m_cooling_tube_length = 0.f;
float m_parking_pos_retraction = 0.f;
float m_extra_loading_move = 0.f;
float m_bridging = 0.f;
bool m_set_extruder_trimpot = false;
bool m_retain_speed_override = true;
bool m_adhesion = true;
GCodeFlavor m_gcode_flavor;
float m_perimeter_width = 0.4f * Width_To_Nozzle_Ratio; // Width of an extrusion line, also a perimeter spacing for 100% infill.
float m_extrusion_flow = 0.038f; //0.029f;// Extrusion flow is derived from m_perimeter_width, layer height and filament diameter.
struct FilamentParameters {
material_type material = PLA;
int temperature = 0;
int first_layer_temperature = 0;
float loading_speed = 0.f;
float loading_speed_start = 0.f;
float unloading_speed = 0.f;
float unloading_speed_start = 0.f;
float delay = 0.f ;
int cooling_moves = 0;
float cooling_initial_speed = 0.f;
float cooling_final_speed = 0.f;
float ramming_line_width_multiplicator = 0.f;
float ramming_step_multiplicator = 0.f;
std::vector<float> ramming_speed;
float nozzle_diameter;
};
// Extruder specific parameters.
std::vector<FilamentParameters> m_filpar;
// State of the wipe tower generator.
unsigned int m_num_layer_changes = 0; // Layer change counter for the output statistics.
unsigned int m_num_tool_changes = 0; // Tool change change counter for the output statistics.
///unsigned int m_idx_tool_change_in_layer = 0; // Layer change counter in this layer. Counting up to m_max_color_changes.
bool m_print_brim = true;
// A fill-in direction (positive Y, negative Y) alternates with each layer.
wipe_shape m_current_shape = SHAPE_NORMAL;
unsigned int m_current_tool = 0;
const std::vector<std::vector<float>> wipe_volumes;
float m_depth_traversed = 0.f; // Current y position at the wipe tower.
bool m_left_to_right = true;
float m_extra_spacing = 1.f;
// Calculates extrusion flow needed to produce required line width for given layer height
float extrusion_flow(float layer_height = -1.f) const // negative layer_height - return current m_extrusion_flow
{
if ( layer_height < 0 )
return m_extrusion_flow;
return layer_height * ( m_perimeter_width - layer_height * (1.f-float(M_PI)/4.f)) / Filament_Area;
}
// Calculates length of extrusion line to extrude given volume
float volume_to_length(float volume, float line_width, float layer_height) const {
return std::max(0.f, volume / (layer_height * (line_width - layer_height * (1.f - float(M_PI) / 4.f))));
}
// Calculates depth for all layers and propagates them downwards
void plan_tower();
// Goes through m_plan and recalculates depths and width of the WT to make it exactly square - experimental
void make_wipe_tower_square();
// Goes through m_plan, calculates border and finish_layer extrusions and subtracts them from last wipe
void save_on_last_wipe();
struct box_coordinates
{
box_coordinates(float left, float bottom, float width, float height) :
ld(left , bottom ),
lu(left , bottom + height),
rd(left + width, bottom ),
ru(left + width, bottom + height) {}
box_coordinates(const xy &pos, float width, float height) : box_coordinates(pos.x, pos.y, width, height) {}
void translate(const xy &shift) {
ld += shift; lu += shift;
rd += shift; ru += shift;
}
void translate(const float dx, const float dy) { translate(xy(dx, dy)); }
void expand(const float offset) {
ld += xy(- offset, - offset);
lu += xy(- offset, offset);
rd += xy( offset, - offset);
ru += xy( offset, offset);
}
void expand(const float offset_x, const float offset_y) {
ld += xy(- offset_x, - offset_y);
lu += xy(- offset_x, offset_y);
rd += xy( offset_x, - offset_y);
ru += xy( offset_x, offset_y);
}
xy ld; // left down
xy lu; // left upper
xy rd; // right lower
xy ru; // right upper
};
// to store information about tool changes for a given layer
struct WipeTowerInfo{
struct ToolChange {
unsigned int old_tool;
unsigned int new_tool;
float required_depth;
float ramming_depth;
float first_wipe_line;
float wipe_volume;
ToolChange(unsigned int old, unsigned int newtool, float depth=0.f, float ramming_depth=0.f, float fwl=0.f, float wv=0.f)
: old_tool{old}, new_tool{newtool}, required_depth{depth}, ramming_depth{ramming_depth}, first_wipe_line{fwl}, wipe_volume{wv} {}
};
float z; // z position of the layer
float height; // layer height
float depth; // depth of the layer based on all layers above
float extra_spacing;
float toolchanges_depth() const { float sum = 0.f; for (const auto &a : tool_changes) sum += a.required_depth; return sum; }
std::vector<ToolChange> tool_changes;
WipeTowerInfo(float z_par, float layer_height_par)
: z{z_par}, height{layer_height_par}, depth{0}, extra_spacing{1.f} {}
};
std::vector<WipeTowerInfo> m_plan; // Stores information about all layers and toolchanges for the future wipe tower (filled by plan_toolchange(...))
std::vector<WipeTowerInfo>::iterator m_layer_info = m_plan.end();
// Stores information about used filament length per extruder:
std::vector<float> m_used_filament_length;
// Returns gcode for wipe tower brim
// sideOnly -- set to false -- experimental, draw brim on sides of wipe tower
// offset -- set to 0 -- experimental, offset to replace brim in front / rear of wipe tower
ToolChangeResult toolchange_Brim(bool sideOnly = false, float y_offset = 0.f);
void toolchange_Unload(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box,
const material_type current_material,
const int new_temperature);
void toolchange_Change(
PrusaMultiMaterial::Writer &writer,
const unsigned int new_tool,
material_type new_material);
void toolchange_Load(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box);
void toolchange_Wipe(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box,
float wipe_volume);
};
}; // namespace Slic3r
#endif /* WipeTowerPrusaMM_hpp_ */

View file

@ -7,7 +7,7 @@
#include "I18N.hpp"
#include "SupportMaterial.hpp"
#include "GCode.hpp"
#include "GCode/WipeTowerPrusaMM.hpp"
#include "GCode/WipeTower.hpp"
#include "Utils.hpp"
//#include "PrintExport.hpp"
@ -93,7 +93,6 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
"filament_density",
"filament_notes",
"filament_cost",
"filament_max_volumetric_speed",
"first_layer_acceleration",
"first_layer_bed_temperature",
"first_layer_speed",
@ -188,6 +187,7 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
|| opt_key == "filament_cooling_initial_speed"
|| opt_key == "filament_cooling_final_speed"
|| opt_key == "filament_ramming_parameters"
|| opt_key == "filament_max_volumetric_speed"
|| opt_key == "gcode_flavor"
|| opt_key == "high_current_on_filament_swap"
|| opt_key == "infill_first"
@ -1091,17 +1091,15 @@ std::string Print::validate() const
return L("The Spiral Vase option can only be used when printing single material objects.");
}
if (m_config.single_extruder_multi_material) {
for (size_t i=1; i<m_config.nozzle_diameter.values.size(); ++i)
if (m_config.nozzle_diameter.values[i] != m_config.nozzle_diameter.values[i-1])
return L("All extruders must have the same diameter for single extruder multimaterial printer.");
}
if (this->has_wipe_tower() && ! m_objects.empty()) {
if (m_config.gcode_flavor != gcfRepRap && m_config.gcode_flavor != gcfRepetier && m_config.gcode_flavor != gcfMarlin)
return L("The Wipe Tower is currently only supported for the Marlin, RepRap/Sprinter and Repetier G-code flavors.");
if (! m_config.use_relative_e_distances)
return L("The Wipe Tower is currently only supported with the relative extruder addressing (use_relative_e_distances=1).");
for (size_t i=1; i<m_config.nozzle_diameter.values.size(); ++i)
if (m_config.nozzle_diameter.values[i] != m_config.nozzle_diameter.values[i-1])
return L("All extruders must have the same diameter for the Wipe Tower.");
if (m_objects.size() > 1) {
bool has_custom_layering = false;
@ -1610,7 +1608,6 @@ void Print::_make_brim()
bool Print::has_wipe_tower() const
{
return
m_config.single_extruder_multi_material.value &&
! m_config.spiral_vase.value &&
m_config.wipe_tower.value &&
m_config.nozzle_diameter.values.size() > 1;
@ -1674,12 +1671,13 @@ void Print::_make_wipe_tower()
this->throw_if_canceled();
// Initialize the wipe tower.
WipeTowerPrusaMM wipe_tower(
WipeTower wipe_tower(
m_config.single_extruder_multi_material.value,
float(m_config.wipe_tower_x.value), float(m_config.wipe_tower_y.value),
float(m_config.wipe_tower_width.value),
float(m_config.wipe_tower_rotation_angle.value), float(m_config.cooling_tube_retraction.value),
float(m_config.cooling_tube_length.value), float(m_config.parking_pos_retraction.value),
float(m_config.extra_loading_move.value), float(m_config.wipe_tower_bridging),
float(m_config.extra_loading_move.value), float(m_config.wipe_tower_bridging),
m_config.high_current_on_filament_swap.value, m_config.gcode_flavor, wipe_volumes,
m_wipe_tower_data.tool_ordering.first_extruder());
@ -1688,9 +1686,10 @@ void Print::_make_wipe_tower()
// Set the extruder & material properties at the wipe tower object.
for (size_t i = 0; i < number_of_extruders; ++ i)
wipe_tower.set_extruder(
i,
WipeTowerPrusaMM::parse_material(m_config.filament_type.get_at(i).c_str()),
m_config.filament_type.get_at(i),
m_config.temperature.get_at(i),
m_config.first_layer_temperature.get_at(i),
(float)m_config.filament_loading_speed.get_at(i),
@ -1702,9 +1701,10 @@ void Print::_make_wipe_tower()
(float)m_config.filament_cooling_initial_speed.get_at(i),
(float)m_config.filament_cooling_final_speed.get_at(i),
m_config.filament_ramming_parameters.get_at(i),
(float)m_config.nozzle_diameter.get_at(i));
m_config.filament_max_volumetric_speed.get_at(i),
m_config.nozzle_diameter.get_at(i));
m_wipe_tower_data.priming = Slic3r::make_unique<WipeTower::ToolChangeResult>(
m_wipe_tower_data.priming = Slic3r::make_unique<std::vector<WipeTower::ToolChangeResult>>(
wipe_tower.prime((float)this->skirt_first_layer_height(), m_wipe_tower_data.tool_ordering.all_extruders(), false));
// Lets go through the wipe tower layers and determine pairs of extruder changes for each

View file

@ -216,7 +216,7 @@ struct WipeTowerData
// Cache it here, so it does not need to be recalculated during the G-code generation.
ToolOrdering tool_ordering;
// Cache of tool changes per print layer.
std::unique_ptr<WipeTower::ToolChangeResult> priming;
std::unique_ptr<std::vector<WipeTower::ToolChangeResult>> priming;
std::vector<std::vector<WipeTower::ToolChangeResult>> tool_changes;
std::unique_ptr<WipeTower::ToolChangeResult> final_purge;
std::vector<float> used_filament;

View file

@ -2038,11 +2038,10 @@ void GLCanvas3D::reload_scene(bool refresh_immediately, bool force_full_scene_re
// Should the wipe tower be visualized ?
unsigned int extruders_count = (unsigned int)dynamic_cast<const ConfigOptionFloats*>(m_config->option("nozzle_diameter"))->values.size();
bool semm = dynamic_cast<const ConfigOptionBool*>(m_config->option("single_extruder_multi_material"))->value;
bool wt = dynamic_cast<const ConfigOptionBool*>(m_config->option("wipe_tower"))->value;
bool co = dynamic_cast<const ConfigOptionBool*>(m_config->option("complete_objects"))->value;
if ((extruders_count > 1) && semm && wt && !co)
if ((extruders_count > 1) && wt && !co)
{
// Height of a print (Show at least a slab)
double height = std::max(m_model->bounding_box().max(2), 10.0);
@ -4617,7 +4616,7 @@ void GLCanvas3D::_load_wipe_tower_toolpaths(const std::vector<std::string>& str_
{
const Print *print;
const std::vector<float> *tool_colors;
WipeTower::xy wipe_tower_pos;
Vec2f wipe_tower_pos;
float wipe_tower_angle;
// Number of vertices (each vertex is 6x4=24 bytes long)
@ -4648,12 +4647,13 @@ void GLCanvas3D::_load_wipe_tower_toolpaths(const std::vector<std::string>& str_
ctxt.print = print;
ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors;
if (print->wipe_tower_data().priming && print->config().single_extruder_multi_material_priming)
ctxt.priming.emplace_back(*print->wipe_tower_data().priming.get());
for (int i=0; i<print->wipe_tower_data().priming.get()->size(); ++i)
ctxt.priming.emplace_back(print->wipe_tower_data().priming.get()->at(i));
if (print->wipe_tower_data().final_purge)
ctxt.final.emplace_back(*print->wipe_tower_data().final_purge.get());
ctxt.wipe_tower_angle = ctxt.print->config().wipe_tower_rotation_angle.value/180.f * PI;
ctxt.wipe_tower_pos = WipeTower::xy(ctxt.print->config().wipe_tower_x.value, ctxt.print->config().wipe_tower_y.value);
ctxt.wipe_tower_pos = Vec2f(ctxt.print->config().wipe_tower_x.value, ctxt.print->config().wipe_tower_y.value);
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - start";
@ -4715,19 +4715,19 @@ void GLCanvas3D::_load_wipe_tower_toolpaths(const std::vector<std::string>& str_
WipeTower::Extrusion e_prev = extrusions.extrusions[i-1];
if (!extrusions.priming) { // wipe tower extrusions describe the wipe tower at the origin with no rotation
e_prev.pos.rotate(ctxt.wipe_tower_angle);
e_prev.pos.translate(ctxt.wipe_tower_pos);
e_prev.pos = Eigen::Rotation2Df(ctxt.wipe_tower_angle) * e_prev.pos;
e_prev.pos += ctxt.wipe_tower_pos;
}
for (; i < j; ++i) {
WipeTower::Extrusion e = extrusions.extrusions[i];
assert(e.width > 0.f);
if (!extrusions.priming) {
e.pos.rotate(ctxt.wipe_tower_angle);
e.pos.translate(ctxt.wipe_tower_pos);
e.pos = Eigen::Rotation2Df(ctxt.wipe_tower_angle) * e.pos;
e.pos += ctxt.wipe_tower_pos;
}
lines.emplace_back(Point::new_scale(e_prev.pos.x, e_prev.pos.y), Point::new_scale(e.pos.x, e.pos.y));
lines.emplace_back(Point::new_scale(e_prev.pos.x(), e_prev.pos.y()), Point::new_scale(e.pos.x(), e.pos.y()));
widths.emplace_back(e.width);
e_prev = e;
@ -5271,7 +5271,7 @@ void GLCanvas3D::_load_fff_shells()
double max_z = print->objects()[0]->model_object()->get_model()->bounding_box().max(2);
const PrintConfig& config = print->config();
unsigned int extruders_count = config.nozzle_diameter.size();
if ((extruders_count > 1) && config.single_extruder_multi_material && config.wipe_tower && !config.complete_objects) {
if ((extruders_count > 1) && config.wipe_tower && !config.complete_objects) {
float depth = print->get_wipe_tower_depth();
// Calculate wipe tower brim spacing.

View file

@ -874,11 +874,10 @@ void Tab::update_wiping_button_visibility() {
return; // ys_FIXME
bool wipe_tower_enabled = dynamic_cast<ConfigOptionBool*>( (m_preset_bundle->prints.get_edited_preset().config ).option("wipe_tower"))->value;
bool multiple_extruders = dynamic_cast<ConfigOptionFloats*>((m_preset_bundle->printers.get_edited_preset().config).option("nozzle_diameter"))->values.size() > 1;
bool single_extruder_mm = dynamic_cast<ConfigOptionBool*>( (m_preset_bundle->printers.get_edited_preset().config).option("single_extruder_multi_material"))->value;
auto wiping_dialog_button = wxGetApp().sidebar().get_wiping_dialog_button();
if (wiping_dialog_button) {
wiping_dialog_button->Show(wipe_tower_enabled && multiple_extruders && single_extruder_mm);
wiping_dialog_button->Show(wipe_tower_enabled && multiple_extruders);
wiping_dialog_button->GetParent()->Layout();
}
}
@ -1557,6 +1556,9 @@ void TabFilament::build()
};
optgroup->append_line(line);
optgroup = page->new_optgroup(_(L("Wipe tower parameters")));
optgroup->append_single_option_line("filament_minimal_purge_on_wipe_tower");
optgroup = page->new_optgroup(_(L("Toolchange parameters with single extruder MM printers")));
optgroup->append_single_option_line("filament_loading_speed_start");
optgroup->append_single_option_line("filament_loading_speed");
@ -1568,7 +1570,6 @@ void TabFilament::build()
optgroup->append_single_option_line("filament_cooling_moves");
optgroup->append_single_option_line("filament_cooling_initial_speed");
optgroup->append_single_option_line("filament_cooling_final_speed");
optgroup->append_single_option_line("filament_minimal_purge_on_wipe_tower");
line = optgroup->create_single_option_line("filament_ramming_parameters");// { _(L("Ramming")), "" };
line.widget = [this](wxWindow* parent) {

View file

@ -172,7 +172,7 @@ void WipingPanel::format_sizer(wxSizer* sizer, wxPanel* page, wxGridSizer* grid_
wxSize text_size = GetTextExtent(info);
auto info_str = new wxStaticText(page, wxID_ANY, info ,wxDefaultPosition, wxDefaultSize, wxALIGN_CENTER);
info_str->Wrap(int(0.6*text_size.x));
sizer->Add( info_str, 0, wxALIGN_CENTER_HORIZONTAL | wxEXPAND);
sizer->Add( info_str, 0, wxEXPAND);
auto table_sizer = new wxBoxSizer(wxVERTICAL);
sizer->Add(table_sizer, 0, wxALIGN_CENTER | wxCENTER, table_lshift);
table_sizer->Add(new wxStaticText(page, wxID_ANY, table_title), 0, wxALIGN_CENTER | wxTOP, 50);