Added a spatial index to speed up alignment score calculation.
This commit is contained in:
parent
8e516bc3e4
commit
e7e212cb52
@ -8,6 +8,8 @@
|
||||
#include <numeric>
|
||||
#include <ClipperUtils.hpp>
|
||||
|
||||
#include <boost/geometry/index/rtree.hpp>
|
||||
|
||||
namespace Slic3r {
|
||||
namespace arr {
|
||||
|
||||
@ -93,6 +95,11 @@ void toSVG(SVG& svg, const Model& model) {
|
||||
}
|
||||
}
|
||||
|
||||
namespace bgi = boost::geometry::index;
|
||||
|
||||
using SpatElement = std::pair<Box, unsigned>;
|
||||
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
|
||||
|
||||
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
|
||||
objfunc(const PointImpl& bincenter,
|
||||
double /*bin_area*/,
|
||||
@ -100,7 +107,9 @@ objfunc(const PointImpl& bincenter,
|
||||
double /*pile_area*/,
|
||||
const Item &item,
|
||||
double norm, // A norming factor for physical dimensions
|
||||
std::vector<double>& areacache
|
||||
std::vector<double>& areacache, // pile item areas will be cached
|
||||
// a spatial index to quickly get neighbors of the candidate item
|
||||
SpatIndex& spatindex
|
||||
)
|
||||
{
|
||||
using pl = PointLike;
|
||||
@ -111,18 +120,23 @@ objfunc(const PointImpl& bincenter,
|
||||
static const double DENSITY_RATIO = 1.0 - ROUNDNESS_RATIO;
|
||||
|
||||
// We will treat big items (compared to the print bed) differently
|
||||
NfpPlacer::Pile bigs;
|
||||
bigs.reserve(pile.size());
|
||||
|
||||
if(pile.size() < areacache.size()) areacache.clear();
|
||||
|
||||
auto normarea = [norm](double area) { return std::sqrt(area)/norm; };
|
||||
|
||||
// If a new bin has been created:
|
||||
if(pile.size() < areacache.size()) {
|
||||
areacache.clear();
|
||||
spatindex.clear();
|
||||
}
|
||||
|
||||
// We must fill the caches:
|
||||
int idx = 0;
|
||||
for(auto& p : pile) {
|
||||
if(idx == areacache.size()) areacache.emplace_back(sl::area(p));
|
||||
if( normarea(areacache[idx]) > BIG_ITEM_TRESHOLD)
|
||||
bigs.emplace_back(p);
|
||||
if(idx == areacache.size()) {
|
||||
areacache.emplace_back(sl::area(p));
|
||||
if(normarea(areacache[idx]) > BIG_ITEM_TRESHOLD)
|
||||
spatindex.insert({sl::boundingBox(p), idx});
|
||||
}
|
||||
|
||||
idx++;
|
||||
}
|
||||
|
||||
@ -136,25 +150,26 @@ objfunc(const PointImpl& bincenter,
|
||||
|
||||
// The bounding box of the big items (they will accumulate in the center
|
||||
// of the pile
|
||||
auto bigbb = bigs.empty()? fullbb : ShapeLike::boundingBox(bigs);
|
||||
Box bigbb;
|
||||
if(spatindex.empty()) bigbb = fullbb;
|
||||
else {
|
||||
auto boostbb = spatindex.bounds();
|
||||
boost::geometry::convert(boostbb, bigbb);
|
||||
}
|
||||
|
||||
// The size indicator of the candidate item. This is not the area,
|
||||
// but almost...
|
||||
double item_normarea = normarea(item.area());
|
||||
|
||||
// Will hold the resulting score
|
||||
double score = 0;
|
||||
|
||||
double item_normarea = normarea(item.area());
|
||||
|
||||
if(item_normarea > BIG_ITEM_TRESHOLD) {
|
||||
// This branch is for the bigger items..
|
||||
// Here we will use the closest point of the item bounding box to
|
||||
// the already arranged pile. So not the bb center nor the a choosen
|
||||
// corner but whichever is the closest to the center. This will
|
||||
// prevent unwanted strange arrangements.
|
||||
|
||||
// Now the distance of the gravity center will be calculated to the
|
||||
// five anchor points and the smallest will be chosen.
|
||||
// prevent some unwanted strange arrangements.
|
||||
|
||||
auto minc = ibb.minCorner(); // bottom left corner
|
||||
auto maxc = ibb.maxCorner(); // top right corner
|
||||
@ -163,7 +178,7 @@ objfunc(const PointImpl& bincenter,
|
||||
auto top_left = PointImpl{getX(minc), getY(maxc)};
|
||||
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
||||
|
||||
// Now the distnce of the gravity center will be calculated to the
|
||||
// Now the distance of the gravity center will be calculated to the
|
||||
// five anchor points and the smallest will be chosen.
|
||||
std::array<double, 5> dists;
|
||||
auto cc = fullbb.center(); // The gravity center
|
||||
@ -173,35 +188,45 @@ objfunc(const PointImpl& bincenter,
|
||||
dists[3] = pl::distance(top_left, cc);
|
||||
dists[4] = pl::distance(bottom_right, cc);
|
||||
|
||||
// The smalles distance from the arranged pile center:
|
||||
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
|
||||
|
||||
// Density is the pack density: how big is the arranged pile
|
||||
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
||||
|
||||
// Prepare a variable for the alignment score.
|
||||
// This will indicate: how well is the candidate item aligned with
|
||||
// its neighbors. We will check the aligment with all neighbors and
|
||||
// return the score for the best alignment. So it is enough for the
|
||||
// candidate to be aligned with only one item.
|
||||
auto alignment_score = std::numeric_limits<double>::max();
|
||||
|
||||
auto& trsh = item.transformedShape();
|
||||
|
||||
idx = 0;
|
||||
for(auto& p : pile) {
|
||||
auto querybb = item.boundingBox();
|
||||
|
||||
// Query the spatial index for the neigbours
|
||||
std::vector<SpatElement> result;
|
||||
spatindex.query(bgi::intersects(querybb), std::back_inserter(result));
|
||||
|
||||
for(auto& e : result) { // now get the score for the best alignment
|
||||
auto idx = e.second;
|
||||
auto& p = pile[idx];
|
||||
auto parea = areacache[idx];
|
||||
if(normarea(areacache[idx]) > BIG_ITEM_TRESHOLD) {
|
||||
auto chull = sl::convexHull(sl::Shapes<PolygonImpl>{p, trsh});
|
||||
auto carea = sl::area(chull);
|
||||
|
||||
auto ascore = carea - (item.area() + parea);
|
||||
ascore = std::sqrt(ascore) / norm;
|
||||
auto bb = sl::boundingBox(sl::Shapes<PolygonImpl>{p, trsh});
|
||||
auto bbarea = bb.area();
|
||||
auto ascore = 1.0 - (item.area() + parea)/bbarea;
|
||||
|
||||
if(ascore < alignment_score) alignment_score = ascore;
|
||||
}
|
||||
idx++;
|
||||
}
|
||||
|
||||
// The final mix of the score is the balance between the distance
|
||||
// from the full pile center, the pack density and the
|
||||
// alignment with the neigbours
|
||||
auto C = 0.33;
|
||||
score = C * dist + C * density + C * alignment_score;
|
||||
|
||||
} else if( item_normarea < BIG_ITEM_TRESHOLD && bigs.empty()) {
|
||||
} else if( item_normarea < BIG_ITEM_TRESHOLD && spatindex.empty()) {
|
||||
// If there are no big items, only small, we should consider the
|
||||
// density here as well to not get silly results
|
||||
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
|
||||
@ -234,7 +259,7 @@ void fillConfig(PConf& pcfg) {
|
||||
|
||||
// The accuracy of optimization.
|
||||
// Goes from 0.0 to 1.0 and scales performance as well
|
||||
pcfg.accuracy = 0.5f;
|
||||
pcfg.accuracy = 0.6f;
|
||||
}
|
||||
|
||||
template<class TBin>
|
||||
@ -254,6 +279,7 @@ protected:
|
||||
PConfig pconf_; // Placement configuration
|
||||
double bin_area_;
|
||||
std::vector<double> areacache_;
|
||||
SpatIndex rtree_;
|
||||
public:
|
||||
|
||||
_ArrBase(const TBin& bin, Distance dist,
|
||||
@ -286,7 +312,7 @@ public:
|
||||
double /*penality*/) {
|
||||
|
||||
auto result = objfunc(bin.center(), bin_area_, pile,
|
||||
pile_area, item, norm, areacache_);
|
||||
pile_area, item, norm, areacache_, rtree_);
|
||||
double score = std::get<0>(result);
|
||||
auto& fullbb = std::get<1>(result);
|
||||
|
||||
@ -318,7 +344,7 @@ public:
|
||||
|
||||
auto binbb = ShapeLike::boundingBox(bin);
|
||||
auto result = objfunc(binbb.center(), bin_area_, pile,
|
||||
pile_area, item, norm, areacache_);
|
||||
pile_area, item, norm, areacache_, rtree_);
|
||||
double score = std::get<0>(result);
|
||||
|
||||
pile.emplace_back(item.transformedShape());
|
||||
@ -352,7 +378,7 @@ public:
|
||||
double /*penality*/) {
|
||||
|
||||
auto result = objfunc({0, 0}, 0, pile, pile_area,
|
||||
item, norm, areacache_);
|
||||
item, norm, areacache_, rtree_);
|
||||
return std::get<0>(result);
|
||||
};
|
||||
|
||||
@ -530,7 +556,7 @@ bool arrange(Model &model, coordf_t min_obj_distance,
|
||||
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
|
||||
P irrbed = ShapeLike::create<PolygonImpl>(std::move(ctour));
|
||||
|
||||
std::cout << ShapeLike::toString(irrbed) << std::endl;
|
||||
// std::cout << ShapeLike::toString(irrbed) << std::endl;
|
||||
|
||||
AutoArranger<P> arrange(irrbed, min_obj_distance, progressind);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user