Move support material code to its own class

This commit is contained in:
Alessandro Ranellucci 2013-09-17 23:27:57 +02:00
parent 6adce9f66b
commit e8323fc339
3 changed files with 476 additions and 450 deletions

View File

@ -69,6 +69,7 @@ use Slic3r::Polyline;
use Slic3r::Print;
use Slic3r::Print::Object;
use Slic3r::Print::Region;
use Slic3r::Print::SupportMaterial;
use Slic3r::Surface;
use Slic3r::TriangleMesh;
our $build = eval "use Slic3r::Build; 1";

View File

@ -2,7 +2,6 @@ package Slic3r::Print::Object;
use Moo;
use List::Util qw(min max sum first);
use Slic3r::ExtrusionPath ':roles';
use Slic3r::Geometry qw(X Y Z PI scale unscale deg2rad rad2deg scaled_epsilon chained_path_points);
use Slic3r::Geometry::Clipper qw(diff diff_ex intersection intersection_ex union union_ex
offset offset_ex offset2 offset2_ex CLIPPER_OFFSET_SCALE JT_MITER);
@ -790,455 +789,7 @@ sub generate_support_material {
my $self = shift;
return unless $self->config->support_material && $self->layer_count >= 2;
my $flow = $self->print->support_material_flow;
# how much we extend support around the actual contact area
#my $margin = $flow->scaled_width / 2;
my $margin = scale 3;
# increment used to reach $margin in steps to avoid trespassing thin objects
my $margin_step = $margin/3;
# if user specified a custom angle threshold, convert it to radians
my $threshold_rad;
if ($self->config->support_material_threshold) {
$threshold_rad = deg2rad($self->config->support_material_threshold + 1); # +1 makes the threshold inclusive
Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad);
}
# shape of contact area
my $contact_loops = 1;
my $circle_radius = 1.5 * $flow->scaled_width;
my $circle_distance = 3 * $circle_radius;
my $circle = Slic3r::Polygon->new(map [ $circle_radius * cos $_, $circle_radius * sin $_ ], (5*PI/3, 4*PI/3, PI, 2*PI/3, PI/3, 0));
# determine contact areas
my %contact = (); # contact_z => [ polygons ]
my %overhang = (); # contact_z => [ expolygons ] - this stores the actual overhang supported by each contact layer
for my $layer_id (1 .. $#{$self->layers}) {
my $layer = $self->layers->[$layer_id];
my $lower_layer = $self->layers->[$layer_id-1];
# detect overhangs and contact areas needed to support them
my (@overhang, @contact) = ();
foreach my $layerm (@{$layer->regions}) {
my $fw = $layerm->perimeter_flow->scaled_width;
my $diff;
# If a threshold angle was specified, use a different logic for detecting overhangs.
if (defined $threshold_rad || $layer_id <= $self->config->support_material_enforce_layers) {
my $d = defined $threshold_rad
? scale $lower_layer->height * ((cos $threshold_rad) / (sin $threshold_rad))
: 0;
$diff = diff(
offset([ map $_->p, @{$layerm->slices} ], -$d),
[ map @$_, @{$lower_layer->slices} ],
);
# only enforce spacing from the object ($fw/2) if the threshold angle
# is not too high: in that case, $d will be very small (as we need to catch
# very short overhangs), and such contact area would be eaten by the
# enforced spacing, resulting in high threshold angles to be almost ignored
$diff = diff(
offset($diff, $d - $fw/2),
[ map @$_, @{$lower_layer->slices} ],
) if $d > $fw/2;
} else {
$diff = diff(
offset([ map $_->p, @{$layerm->slices} ], -$fw/2),
[ map @$_, @{$lower_layer->slices} ],
);
# $diff now contains the ring or stripe comprised between the boundary of
# lower slices and the centerline of the last perimeter in this overhanging layer.
# Void $diff means that there's no upper perimeter whose centerline is
# outside the lower slice boundary, thus no overhang
}
next if !@$diff;
push @overhang, @{union_ex($diff)}; # NOTE: this is not the full overhang as it misses the outermost half of the perimeter width!
# Let's define the required contact area by using a max gap of half the upper
# extrusion width and extending the area according to the configured margin.
# We increment the area in steps because we don't want our support to overflow
# on the other side of the object (if it's very thin).
{
my @slices_margin = @{offset([ map @$_, @{$lower_layer->slices} ], $fw/2)};
for ($fw/2, map {$margin_step} 1..($margin / $margin_step)) {
$diff = diff(
offset($diff, $_),
\@slices_margin,
);
}
}
push @contact, @$diff;
}
next if !@contact;
# now apply the contact areas to the layer were they need to be made
{
# get the average nozzle diameter used on this layer
my @nozzle_diameters = map $_->nozzle_diameter,
map { $_->perimeter_flow, $_->solid_infill_flow }
@{$layer->regions};
my $nozzle_diameter = sum(@nozzle_diameters)/@nozzle_diameters;
my $contact_z = $layer->print_z - $nozzle_diameter * 1.5;
###$contact_z = $layer->print_z - $layer->height;
# ignore this contact area if it's too low
next if $contact_z < $Slic3r::Config->get_value('first_layer_height');
$contact{$contact_z} = [ @contact ];
$overhang{$contact_z} = [ @overhang ];
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("contact_" . $contact_z . ".svg",
expolygons => union_ex(\@contact),
red_expolygons => \@overhang,
);
}
}
}
my @contact_z = sort keys %contact;
# find object top surfaces
# we'll use them to clip our support and detect where does it stick
my %top = (); # print_z => [ expolygons ]
{
my $projection = [];
foreach my $layer (reverse @{$self->layers}) {
if (my @top = map @{$_->slices->filter_by_type(S_TYPE_TOP)}, @{$layer->regions}) {
# compute projection of the contact areas above this top layer
# first add all the 'new' contact areas to the current projection
# ('new' means all the areas that are lower than the last top layer
# we considered)
my $min_top = min(keys %top) // max(keys %contact);
# use <= instead of just < because otherwise we'd ignore any contact regions
# having the same Z of top layers
push @$projection, map @{$contact{$_}}, grep { $_ > $layer->print_z && $_ <= $min_top } keys %contact;
# now find whether any projection falls onto this top surface
my $touching = intersection($projection, [ map $_->p, @top ]);
if (@$touching) {
# grow top surfaces so that interface and support generation are generated
# with some spacing from object - it looks we don't need the actual
# top shapes so this can be done here
$top{ $layer->print_z } = offset($touching, $flow->scaled_spacing);
}
# remove the areas that touched from the projection that will continue on
# next, lower, top surfaces
$projection = diff($projection, $touching);
}
}
}
my @top_z = sort keys %top;
# we now know the upper and lower boundaries for our support material object
# (@contact_z and @top_z), so we can generate intermediate layers
my @support_layers = _compute_support_layers(\@contact_z, \@top_z, $self->config, $flow);
# if we wanted to apply some special logic to the first support layers lying on
# object's top surfaces this is the place to detect them
# let's now generate interface layers below contact areas
my %interface = (); # layer_id => [ polygons ]
my $interface_layers = $self->config->support_material_interface_layers;
for my $layer_id (0 .. $#support_layers) {
my $z = $support_layers[$layer_id];
my $this = $contact{$z} // next;
# count contact layer as interface layer
for (my $i = $layer_id-1; $i >= 0 && $i > $layer_id-$interface_layers; $i--) {
$z = $support_layers[$i];
# Compute interface area on this layer as diff of upper contact area
# (or upper interface area) and layer slices.
# This diff is responsible of the contact between support material and
# the top surfaces of the object. We should probably offset the top
# surfaces before performing the diff, but this needs investigation.
$this = $interface{$i} = diff(
[
@$this, # clipped projection of the current contact regions
@{ $interface{$i} || [] }, # interface regions already applied to this layer
],
[
@{ $top{$z} || [] }, # top slices on this layer
@{ $contact{$z} || [] }, # contact regions on this layer
],
1,
);
}
}
# let's now generate support layers under interface layers
my %support = (); # layer_id => [ polygons ]
{
for my $i (reverse 0 .. $#support_layers-1) {
my $z = $support_layers[$i];
$support{$i} = diff(
[
@{ $support{$i+1} || [] }, # support regions on upper layer
@{ $interface{$i+1} || [] }, # interface regions on upper layer
],
[
@{ $top{$z} || [] }, # top slices on this layer
@{ $interface{$i} || [] }, # interface regions on this layer
@{ $contact{$z} || [] }, # contact regions on this layer
],
1,
);
}
}
push @{$self->support_layers}, map Slic3r::Layer::Support->new(
object => $self,
id => $_,
height => ($_ == 0) ? $support_layers[$_] : ($support_layers[$_] - $support_layers[$_-1]),
print_z => $support_layers[$_],
slice_z => -1,
slices => [],
), 0 .. $#support_layers;
Slic3r::debugf "Generating patterns\n";
# prepare fillers
my $pattern = $self->config->support_material_pattern;
my @angles = ($self->config->support_material_angle);
if ($pattern eq 'rectilinear-grid') {
$pattern = 'rectilinear';
push @angles, $angles[0] + 90;
}
my %fillers = (
interface => $self->fill_maker->filler('rectilinear'),
support => $self->fill_maker->filler($pattern),
);
my $interface_angle = $self->config->support_material_angle + 90;
my $interface_spacing = $self->config->support_material_interface_spacing + $flow->spacing;
my $interface_density = $interface_spacing == 0 ? 1 : $flow->spacing / $interface_spacing;
my $support_spacing = $self->config->support_material_spacing + $flow->spacing;
my $support_density = $support_spacing == 0 ? 1 : $flow->spacing / $support_spacing;
my $process_layer = sub {
my ($layer_id) = @_;
my $layer = $self->support_layers->[$layer_id];
my $overhang = $overhang{$support_layers[$layer_id]} || [];
my $contact = $contact{$support_layers[$layer_id]} || [];
my $interface = $interface{$layer_id} || [];
my $support = $support{$layer_id} || [];
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("layer_" . $support_layers[$layer_id] . ".svg",
red_expolygons => union_ex($contact),
green_expolygons => union_ex($interface),
);
}
# islands
$layer->support_islands->append(@{union_ex([ @$interface, @$support, @$contact ])});
# contact
my $contact_infill = [];
if ($contact && $contact_loops > 0) {
$contact = [ grep $_->is_counter_clockwise, @$contact ];
# generate the outermost loop
my @loops0;
{
# find centerline of the external loop of the contours
my @external_loops = @{offset($contact, -$flow->scaled_width/2)};
# apply a pattern to the loop
my @positions = map Slic3r::Polygon->new(@$_)->split_at_first_point->regular_points($circle_distance), @external_loops;
@loops0 = @{diff(
[ @external_loops ],
[ map $circle->clone->translate(@$_), @positions ],
)};
}
# make more loops
my @loops = @loops0;
for my $i (2..$contact_loops) {
my $d = ($i-1) * $flow->scaled_spacing;
push @loops, @{offset2(\@loops0, -$d -0.5*$flow->scaled_spacing, +0.5*$flow->scaled_spacing)};
}
# clip such loops to the side oriented towards the object
@loops = map Slic3r::Polyline->new(@$_),
@{ Boost::Geometry::Utils::multi_polygon_multi_linestring_intersection(
[ map $_->pp, @{offset_ex([ map @$_, @$overhang ], +scale 3)} ],
[ map Slic3r::Polygon->new(@$_)->split_at_first_point->pp, @loops ],
) };
# add the contact infill area to the interface area
$contact_infill = offset2(\@loops0, -($contact_loops + 0.5) * $flow->scaled_spacing, +0.5*$flow->scaled_spacing);
# transform loops into ExtrusionPath objects
@loops = map Slic3r::ExtrusionPath->new(
polyline => $_,
role => EXTR_ROLE_SUPPORTMATERIAL,
flow_spacing => $flow->spacing,
), @loops;
$layer->support_interface_fills->append(@loops);
}
# interface and contact infill
if (@$interface || @$contact_infill) {
$fillers{interface}->angle($interface_angle);
# steal some space from support
$interface = intersection(
offset([ @$interface, @$contact_infill ], scale 3),
[ @$interface, @$support, @$contact_infill ],
1,
);
$support{$layer_id} = diff(
$support,
$interface,
);
my @paths = ();
foreach my $expolygon (@{union_ex($interface)}) {
my @p = $fillers{interface}->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
density => $interface_density,
flow_spacing => $flow->spacing,
complete => 1,
);
my $params = shift @p;
push @paths, map Slic3r::ExtrusionPath->new(
polyline => Slic3r::Polyline->new(@$_),
role => EXTR_ROLE_SUPPORTMATERIAL,
height => undef,
flow_spacing => $params->{flow_spacing},
), @p;
}
$layer->support_interface_fills->append(@paths);
}
# support or flange
if (@$support) {
my $filler = $fillers{support};
$filler->angle($angles[ ($layer_id) % @angles ]);
my $density = $support_density;
my $flow_spacing = $flow->spacing;
# TODO: use offset2_ex()
my $to_infill = union_ex($support, 1);
my @paths = ();
# base flange
if ($layer_id == 0) {
$filler = $fillers{interface};
$filler->angle($self->config->support_material_angle + 90);
$density = 0.5;
$flow_spacing = $self->print->first_layer_support_material_flow->spacing;
} else {
# draw a perimeter all around support infill
# TODO: use brim ordering algorithm
push @paths, map Slic3r::ExtrusionPath->new(
polyline => $_->split_at_first_point,
role => EXTR_ROLE_SUPPORTMATERIAL,
height => undef,
flow_spacing => $flow->spacing,
), map @$_, @$to_infill;
# TODO: use offset2_ex()
$to_infill = offset_ex([ map @$_, @$to_infill ], -$flow->scaled_spacing);
}
foreach my $expolygon (@$to_infill) {
my @p = $filler->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
density => $density,
flow_spacing => $flow_spacing,
complete => 1,
);
my $params = shift @p;
push @paths, map Slic3r::ExtrusionPath->new(
polyline => Slic3r::Polyline->new(@$_),
role => EXTR_ROLE_SUPPORTMATERIAL,
height => undef,
flow_spacing => $params->{flow_spacing},
), @p;
}
$layer->support_fills->append(@paths);
}
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("islands_" . $support_layers[$layer_id] . ".svg",
red_expolygons => union_ex($contact),
green_expolygons => union_ex($interface),
green_polylines => [ map $_->unpack->polyline, @{$layer->support_contact_fills} ],
polylines => [ map $_->unpack->polyline, @{$layer->support_fills} ],
);
}
};
Slic3r::parallelize(
items => [ 0 .. $#{$self->support_layers} ],
thread_cb => sub {
my $q = shift;
while (defined (my $layer_id = $q->dequeue)) {
$process_layer->($layer_id);
}
},
no_threads_cb => sub {
$process_layer->($_) for 0 .. $#{$self->support_layers};
},
);
}
sub _compute_support_layers {
my ($contact_z, $top_z, $config, $flow) = @_;
# quick table to check whether a given Z is a top surface
my %top = map { $_ => 1 } @$top_z;
# determine layer height for any non-contact layer
# we use max() to prevent many ultra-thin layers to be inserted in case
# layer_height > nozzle_diameter * 0.75
my $support_material_height = max($config->layer_height, $flow->nozzle_diameter * 0.75);
my @support_layers = sort { $a <=> $b } @$contact_z, @$top_z,
(map { $_ + $flow->nozzle_diameter } @$top_z);
# enforce first layer height
my $first_layer_height = $config->get_value('first_layer_height');
shift @support_layers while @support_layers && $support_layers[0] <= $first_layer_height;
unshift @support_layers, $first_layer_height;
for (my $i = $#support_layers; $i >= 0; $i--) {
my $target_height = $support_material_height;
if ($i > 0 && $top{ $support_layers[$i-1] }) {
$target_height = $flow->nozzle_diameter;
}
# enforce first layer height
if (($i == 0 && $support_layers[$i] > $target_height + $first_layer_height)
|| ($support_layers[$i] - $support_layers[$i-1] > $target_height + Slic3r::Geometry::epsilon)) {
splice @support_layers, $i, 0, ($support_layers[$i] - $target_height);
$i++;
}
}
# remove duplicates and make sure all 0.x values have the leading 0
{
my %sl = map { 1 * $_ => 1 } @support_layers;
@support_layers = sort { $a <=> $b } keys %sl;
}
return @support_layers;
Slic3r::Print::SupportMaterial->new(object => $self)->generate;
}
1;

View File

@ -0,0 +1,474 @@
package Slic3r::Print::SupportMaterial;
use Moo;
use List::Util qw(sum min max);
use Slic3r::ExtrusionPath ':roles';
use Slic3r::Geometry qw(scale PI);
use Slic3r::Geometry::Clipper qw(offset diff union_ex intersection offset_ex offset2);
use Slic3r::Surface ':types';
has 'object' => (is => 'ro', required => 1);
sub flow {
my ($self) = @_;
return $self->object->print->support_material_flow;
}
sub generate {
my $self = shift;
return unless $self->object->config->support_material && $self->object->layer_count >= 2;
my $flow = $self->flow;
# how much we extend support around the actual contact area
#my $margin = $flow->scaled_width / 2;
my $margin = scale 3;
# increment used to reach $margin in steps to avoid trespassing thin objects
my $margin_step = $margin/3;
# if user specified a custom angle threshold, convert it to radians
my $threshold_rad;
if ($self->object->config->support_material_threshold) {
$threshold_rad = deg2rad($self->object->config->support_material_threshold + 1); # +1 makes the threshold inclusive
Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad);
}
# shape of contact area
my $contact_loops = 1;
my $circle_radius = 1.5 * $flow->scaled_width;
my $circle_distance = 3 * $circle_radius;
my $circle = Slic3r::Polygon->new(map [ $circle_radius * cos $_, $circle_radius * sin $_ ], (5*PI/3, 4*PI/3, PI, 2*PI/3, PI/3, 0));
# determine contact areas
my %contact = (); # contact_z => [ polygons ]
my %overhang = (); # contact_z => [ expolygons ] - this stores the actual overhang supported by each contact layer
for my $layer_id (1 .. $#{$self->object->layers}) {
my $layer = $self->object->layers->[$layer_id];
my $lower_layer = $self->object->layers->[$layer_id-1];
# detect overhangs and contact areas needed to support them
my (@overhang, @contact) = ();
foreach my $layerm (@{$layer->regions}) {
my $fw = $layerm->perimeter_flow->scaled_width;
my $diff;
# If a threshold angle was specified, use a different logic for detecting overhangs.
if (defined $threshold_rad || $layer_id <= $self->object->config->support_material_enforce_layers) {
my $d = defined $threshold_rad
? scale $lower_layer->height * ((cos $threshold_rad) / (sin $threshold_rad))
: 0;
$diff = diff(
offset([ map $_->p, @{$layerm->slices} ], -$d),
[ map @$_, @{$lower_layer->slices} ],
);
# only enforce spacing from the object ($fw/2) if the threshold angle
# is not too high: in that case, $d will be very small (as we need to catch
# very short overhangs), and such contact area would be eaten by the
# enforced spacing, resulting in high threshold angles to be almost ignored
$diff = diff(
offset($diff, $d - $fw/2),
[ map @$_, @{$lower_layer->slices} ],
) if $d > $fw/2;
} else {
$diff = diff(
offset([ map $_->p, @{$layerm->slices} ], -$fw/2),
[ map @$_, @{$lower_layer->slices} ],
);
# $diff now contains the ring or stripe comprised between the boundary of
# lower slices and the centerline of the last perimeter in this overhanging layer.
# Void $diff means that there's no upper perimeter whose centerline is
# outside the lower slice boundary, thus no overhang
}
next if !@$diff;
push @overhang, @{union_ex($diff)}; # NOTE: this is not the full overhang as it misses the outermost half of the perimeter width!
# Let's define the required contact area by using a max gap of half the upper
# extrusion width and extending the area according to the configured margin.
# We increment the area in steps because we don't want our support to overflow
# on the other side of the object (if it's very thin).
{
my @slices_margin = @{offset([ map @$_, @{$lower_layer->slices} ], $fw/2)};
for ($fw/2, map {$margin_step} 1..($margin / $margin_step)) {
$diff = diff(
offset($diff, $_),
\@slices_margin,
);
}
}
push @contact, @$diff;
}
next if !@contact;
# now apply the contact areas to the layer were they need to be made
{
# get the average nozzle diameter used on this layer
my @nozzle_diameters = map $_->nozzle_diameter,
map { $_->perimeter_flow, $_->solid_infill_flow }
@{$layer->regions};
my $nozzle_diameter = sum(@nozzle_diameters)/@nozzle_diameters;
my $contact_z = $layer->print_z - $nozzle_diameter * 1.5;
###$contact_z = $layer->print_z - $layer->height;
# ignore this contact area if it's too low
next if $contact_z < $Slic3r::Config->get_value('first_layer_height');
$contact{$contact_z} = [ @contact ];
$overhang{$contact_z} = [ @overhang ];
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("contact_" . $contact_z . ".svg",
expolygons => union_ex(\@contact),
red_expolygons => \@overhang,
);
}
}
}
my @contact_z = sort keys %contact;
# find object top surfaces
# we'll use them to clip our support and detect where does it stick
my %top = (); # print_z => [ expolygons ]
{
my $projection = [];
foreach my $layer (reverse @{$self->object->layers}) {
if (my @top = map @{$_->slices->filter_by_type(S_TYPE_TOP)}, @{$layer->regions}) {
# compute projection of the contact areas above this top layer
# first add all the 'new' contact areas to the current projection
# ('new' means all the areas that are lower than the last top layer
# we considered)
my $min_top = min(keys %top) // max(keys %contact);
# use <= instead of just < because otherwise we'd ignore any contact regions
# having the same Z of top layers
push @$projection, map @{$contact{$_}}, grep { $_ > $layer->print_z && $_ <= $min_top } keys %contact;
# now find whether any projection falls onto this top surface
my $touching = intersection($projection, [ map $_->p, @top ]);
if (@$touching) {
# grow top surfaces so that interface and support generation are generated
# with some spacing from object - it looks we don't need the actual
# top shapes so this can be done here
$top{ $layer->print_z } = offset($touching, $flow->scaled_spacing);
}
# remove the areas that touched from the projection that will continue on
# next, lower, top surfaces
$projection = diff($projection, $touching);
}
}
}
my @top_z = sort keys %top;
# we now know the upper and lower boundaries for our support material object
# (@contact_z and @top_z), so we can generate intermediate layers
my @support_layers = $self->_compute_support_layers(\@contact_z, \@top_z);
# if we wanted to apply some special logic to the first support layers lying on
# object's top surfaces this is the place to detect them
# let's now generate interface layers below contact areas
my %interface = (); # layer_id => [ polygons ]
my $interface_layers = $self->object->config->support_material_interface_layers;
for my $layer_id (0 .. $#support_layers) {
my $z = $support_layers[$layer_id];
my $this = $contact{$z} // next;
# count contact layer as interface layer
for (my $i = $layer_id-1; $i >= 0 && $i > $layer_id-$interface_layers; $i--) {
$z = $support_layers[$i];
# Compute interface area on this layer as diff of upper contact area
# (or upper interface area) and layer slices.
# This diff is responsible of the contact between support material and
# the top surfaces of the object. We should probably offset the top
# surfaces before performing the diff, but this needs investigation.
$this = $interface{$i} = diff(
[
@$this, # clipped projection of the current contact regions
@{ $interface{$i} || [] }, # interface regions already applied to this layer
],
[
@{ $top{$z} || [] }, # top slices on this layer
@{ $contact{$z} || [] }, # contact regions on this layer
],
1,
);
}
}
# let's now generate support layers under interface layers
my %support = (); # layer_id => [ polygons ]
{
for my $i (reverse 0 .. $#support_layers-1) {
my $z = $support_layers[$i];
$support{$i} = diff(
[
@{ $support{$i+1} || [] }, # support regions on upper layer
@{ $interface{$i+1} || [] }, # interface regions on upper layer
],
[
@{ $top{$z} || [] }, # top slices on this layer
@{ $interface{$i} || [] }, # interface regions on this layer
@{ $contact{$z} || [] }, # contact regions on this layer
],
1,
);
}
}
push @{$self->object->support_layers}, map Slic3r::Layer::Support->new(
object => $self->object,
id => $_,
height => ($_ == 0) ? $support_layers[$_] : ($support_layers[$_] - $support_layers[$_-1]),
print_z => $support_layers[$_],
slice_z => -1,
slices => [],
), 0 .. $#support_layers;
Slic3r::debugf "Generating patterns\n";
# prepare fillers
my $pattern = $self->object->config->support_material_pattern;
my @angles = ($self->object->config->support_material_angle);
if ($pattern eq 'rectilinear-grid') {
$pattern = 'rectilinear';
push @angles, $angles[0] + 90;
}
my %fillers = (
interface => $self->object->fill_maker->filler('rectilinear'),
support => $self->object->fill_maker->filler($pattern),
);
my $interface_angle = $self->object->config->support_material_angle + 90;
my $interface_spacing = $self->object->config->support_material_interface_spacing + $flow->spacing;
my $interface_density = $interface_spacing == 0 ? 1 : $flow->spacing / $interface_spacing;
my $support_spacing = $self->object->config->support_material_spacing + $flow->spacing;
my $support_density = $support_spacing == 0 ? 1 : $flow->spacing / $support_spacing;
my $process_layer = sub {
my ($layer_id) = @_;
my $layer = $self->object->support_layers->[$layer_id];
my $overhang = $overhang{$support_layers[$layer_id]} || [];
my $contact = $contact{$support_layers[$layer_id]} || [];
my $interface = $interface{$layer_id} || [];
my $support = $support{$layer_id} || [];
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("layer_" . $support_layers[$layer_id] . ".svg",
red_expolygons => union_ex($contact),
green_expolygons => union_ex($interface),
);
}
# islands
$layer->support_islands->append(@{union_ex([ @$interface, @$support, @$contact ])});
# contact
my $contact_infill = [];
if ($contact && $contact_loops > 0) {
$contact = [ grep $_->is_counter_clockwise, @$contact ];
# generate the outermost loop
my @loops0;
{
# find centerline of the external loop of the contours
my @external_loops = @{offset($contact, -$flow->scaled_width/2)};
# apply a pattern to the loop
my @positions = map Slic3r::Polygon->new(@$_)->split_at_first_point->regular_points($circle_distance), @external_loops;
@loops0 = @{diff(
[ @external_loops ],
[ map $circle->clone->translate(@$_), @positions ],
)};
}
# make more loops
my @loops = @loops0;
for my $i (2..$contact_loops) {
my $d = ($i-1) * $flow->scaled_spacing;
push @loops, @{offset2(\@loops0, -$d -0.5*$flow->scaled_spacing, +0.5*$flow->scaled_spacing)};
}
# clip such loops to the side oriented towards the object
@loops = map Slic3r::Polyline->new(@$_),
@{ Boost::Geometry::Utils::multi_polygon_multi_linestring_intersection(
[ map $_->pp, @{offset_ex([ map @$_, @$overhang ], +scale 3)} ],
[ map Slic3r::Polygon->new(@$_)->split_at_first_point->pp, @loops ],
) };
# add the contact infill area to the interface area
$contact_infill = offset2(\@loops0, -($contact_loops + 0.5) * $flow->scaled_spacing, +0.5*$flow->scaled_spacing);
# transform loops into ExtrusionPath objects
@loops = map Slic3r::ExtrusionPath->new(
polyline => $_,
role => EXTR_ROLE_SUPPORTMATERIAL,
flow_spacing => $flow->spacing,
), @loops;
$layer->support_interface_fills->append(@loops);
}
# interface and contact infill
if (@$interface || @$contact_infill) {
$fillers{interface}->angle($interface_angle);
# steal some space from support
$interface = intersection(
offset([ @$interface, @$contact_infill ], scale 3),
[ @$interface, @$support, @$contact_infill ],
1,
);
$support{$layer_id} = diff(
$support,
$interface,
);
my @paths = ();
foreach my $expolygon (@{union_ex($interface)}) {
my @p = $fillers{interface}->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
density => $interface_density,
flow_spacing => $flow->spacing,
complete => 1,
);
my $params = shift @p;
push @paths, map Slic3r::ExtrusionPath->new(
polyline => Slic3r::Polyline->new(@$_),
role => EXTR_ROLE_SUPPORTMATERIAL,
height => undef,
flow_spacing => $params->{flow_spacing},
), @p;
}
$layer->support_interface_fills->append(@paths);
}
# support or flange
if (@$support) {
my $filler = $fillers{support};
$filler->angle($angles[ ($layer_id) % @angles ]);
my $density = $support_density;
my $flow_spacing = $flow->spacing;
# TODO: use offset2_ex()
my $to_infill = union_ex($support, 1);
my @paths = ();
# base flange
if ($layer_id == 0) {
$filler = $fillers{interface};
$filler->angle($self->object->config->support_material_angle + 90);
$density = 0.5;
$flow_spacing = $self->object->print->first_layer_support_material_flow->spacing;
} else {
# draw a perimeter all around support infill
# TODO: use brim ordering algorithm
push @paths, map Slic3r::ExtrusionPath->new(
polyline => $_->split_at_first_point,
role => EXTR_ROLE_SUPPORTMATERIAL,
height => undef,
flow_spacing => $flow->spacing,
), map @$_, @$to_infill;
# TODO: use offset2_ex()
$to_infill = offset_ex([ map @$_, @$to_infill ], -$flow->scaled_spacing);
}
foreach my $expolygon (@$to_infill) {
my @p = $filler->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
density => $density,
flow_spacing => $flow_spacing,
complete => 1,
);
my $params = shift @p;
push @paths, map Slic3r::ExtrusionPath->new(
polyline => Slic3r::Polyline->new(@$_),
role => EXTR_ROLE_SUPPORTMATERIAL,
height => undef,
flow_spacing => $params->{flow_spacing},
), @p;
}
$layer->support_fills->append(@paths);
}
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("islands_" . $support_layers[$layer_id] . ".svg",
red_expolygons => union_ex($contact),
green_expolygons => union_ex($interface),
green_polylines => [ map $_->unpack->polyline, @{$layer->support_contact_fills} ],
polylines => [ map $_->unpack->polyline, @{$layer->support_fills} ],
);
}
};
Slic3r::parallelize(
items => [ 0 .. $#{$self->object->support_layers} ],
thread_cb => sub {
my $q = shift;
while (defined (my $layer_id = $q->dequeue)) {
$process_layer->($layer_id);
}
},
no_threads_cb => sub {
$process_layer->($_) for 0 .. $#{$self->object->support_layers};
},
);
}
sub _compute_support_layers {
my ($self, $contact_z, $top_z) = @_;
my $flow = $self->flow;
# quick table to check whether a given Z is a top surface
my %top = map { $_ => 1 } @$top_z;
# determine layer height for any non-contact layer
# we use max() to prevent many ultra-thin layers to be inserted in case
# layer_height > nozzle_diameter * 0.75
my $support_material_height = max($self->object->config->layer_height, $flow->nozzle_diameter * 0.75);
my @support_layers = sort { $a <=> $b } @$contact_z, @$top_z,
(map { $_ + $flow->nozzle_diameter } @$top_z);
# enforce first layer height
my $first_layer_height = $self->object->config->get_value('first_layer_height');
shift @support_layers while @support_layers && $support_layers[0] <= $first_layer_height;
unshift @support_layers, $first_layer_height;
for (my $i = $#support_layers; $i >= 0; $i--) {
my $target_height = $support_material_height;
if ($i > 0 && $top{ $support_layers[$i-1] }) {
$target_height = $flow->nozzle_diameter;
}
# enforce first layer height
if (($i == 0 && $support_layers[$i] > $target_height + $first_layer_height)
|| ($support_layers[$i] - $support_layers[$i-1] > $target_height + Slic3r::Geometry::epsilon)) {
splice @support_layers, $i, 0, ($support_layers[$i] - $target_height);
$i++;
}
}
# remove duplicates and make sure all 0.x values have the leading 0
{
my %sl = map { 1 * $_ => 1 } @support_layers;
@support_layers = sort { $a <=> $b } keys %sl;
}
return @support_layers;
}
1;