refactored and unified code for curled up filament estimation

This commit is contained in:
Pavel Mikus 2022-12-22 19:16:35 +01:00 committed by Pavel Mikuš
parent 72a25e7ad0
commit ec4cc2e694
3 changed files with 139 additions and 162 deletions

View File

@ -68,23 +68,32 @@ public:
class CurvatureEstimator class CurvatureEstimator
{ {
static const size_t sliders_count = 2; static const size_t sliders_count = 2;
SlidingWindowCurvatureAccumulator sliders[sliders_count] = {{4.0}, {12.0}}; SlidingWindowCurvatureAccumulator sliders[sliders_count] = {{4.0}, {10.0}};
public: public:
void add_point(float distance, float angle) void add_point(float distance, float angle)
{ {
if (distance < EPSILON) return; if (distance < EPSILON)
for (SlidingWindowCurvatureAccumulator &slider : sliders) { slider.add_point(distance, angle); } return;
for (SlidingWindowCurvatureAccumulator &slider : sliders) {
slider.add_point(distance, angle);
}
} }
float get_curvature() float get_curvature()
{ {
float max_curvature = std::numeric_limits<float>::min(); float max_curvature = 0.0f;
for (const SlidingWindowCurvatureAccumulator &slider : sliders) { max_curvature = std::max(max_curvature, slider.get_curvature()); } for (const SlidingWindowCurvatureAccumulator &slider : sliders) {
if (abs(slider.get_curvature()) > abs(max_curvature)) {
max_curvature = slider.get_curvature();
}
}
return max_curvature; return max_curvature;
} }
void reset() void reset()
{ {
for (SlidingWindowCurvatureAccumulator &slider : sliders) { slider.reset(); } for (SlidingWindowCurvatureAccumulator &slider : sliders) {
slider.reset();
}
} }
}; };
@ -111,7 +120,6 @@ std::vector<ExtendedPoint> estimate_points_properties(const std::vector<P>
return {}; return {};
float boundary_offset = PREV_LAYER_BOUNDARY_OFFSET ? 0.5 * flow_width : 0.0f; float boundary_offset = PREV_LAYER_BOUNDARY_OFFSET ? 0.5 * flow_width : 0.0f;
CurvatureEstimator cestim; CurvatureEstimator cestim;
float min_malformation_dist = 0.55 * flow_width;
auto maybe_unscale = [](const P &p) { return SCALED_INPUT ? unscaled(p) : p.template cast<double>(); }; auto maybe_unscale = [](const P &p) { return SCALED_INPUT ? unscaled(p) : p.template cast<double>(); };
std::vector<P> extrusion_points; std::vector<P> extrusion_points;
@ -218,7 +226,6 @@ std::vector<ExtendedPoint> estimate_points_properties(const std::vector<P>
cestim.add_point(distance, alfa); cestim.add_point(distance, alfa);
} }
if (a.distance < min_malformation_dist) { cestim.reset(); }
a.curvature = cestim.get_curvature(); a.curvature = cestim.get_curvature();
} }

View File

@ -181,31 +181,6 @@ float get_flow_width(const LayerRegion *region, ExtrusionRole role)
} }
} }
// Accumulator of current extrusion path properties
// It remembers unsuported distance and maximum accumulated curvature over that distance.
// Used to determine local stability issues (too long bridges, extrusion curves into air)
struct ExtrusionPropertiesAccumulator
{
float distance = 0; // accumulated distance
float curvature = 0; // accumulated signed ccw angles
float max_curvature = 0; // max absolute accumulated value
void add_distance(float dist) { distance += dist; }
void add_angle(float ccw_angle)
{
curvature += ccw_angle;
max_curvature = std::max(max_curvature, std::abs(curvature));
}
void reset()
{
distance = 0;
curvature = 0;
max_curvature = 0;
}
};
std::vector<ExtrusionLine> to_short_lines(const ExtrusionEntity *e, float length_limit) std::vector<ExtrusionLine> to_short_lines(const ExtrusionEntity *e, float length_limit)
{ {
assert(!e->is_collection()); assert(!e->is_collection());
@ -229,6 +204,24 @@ std::vector<ExtrusionLine> to_short_lines(const ExtrusionEntity *e, float length
return lines; return lines;
} }
float estimate_curled_up_height(
const ExtendedPoint &point, float layer_height, float flow_width, float prev_line_curled_height, Params params)
{
float curled_up_height = 0.0f;
if (fabs(point.distance) < 1.5 * flow_width) {
curled_up_height = 0.85 * prev_line_curled_height;
}
if (point.distance > params.malformation_distance_factors.first * flow_width &&
point.distance < params.malformation_distance_factors.second * flow_width && point.curvature > -0.1f) {
float dist_factor = (point.distance - params.malformation_distance_factors.first * flow_width) /
((params.malformation_distance_factors.second - params.malformation_distance_factors.first) * flow_width);
curled_up_height = layer_height * 2.0f * sqrt(sqrt(dist_factor)) * std::clamp(6.0f * point.curvature, 1.0f, 6.0f);
curled_up_height = std::min(curled_up_height, params.max_malformation_factor * layer_height);
}
return curled_up_height;
}
std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntity *entity, std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntity *entity,
const LayerRegion *layer_region, const LayerRegion *layer_region,
const LD &prev_layer_lines, const LD &prev_layer_lines,
@ -244,7 +237,9 @@ std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntit
} }
return checked_lines_out; return checked_lines_out;
} else { // single extrusion path, with possible varying parameters } else { // single extrusion path, with possible varying parameters
if (entity->length() < scale_(params.min_distance_to_allow_local_supports)) { return {}; } if (entity->length() < scale_(params.min_distance_to_allow_local_supports)) {
return {};
}
const float flow_width = get_flow_width(layer_region, entity->role()); const float flow_width = get_flow_width(layer_region, entity->role());
@ -262,11 +257,11 @@ std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntit
ExtrusionLine line_out{i > 0 ? annotated_points[i - 1].position.cast<float>() : curr_point.position.cast<float>(), ExtrusionLine line_out{i > 0 ? annotated_points[i - 1].position.cast<float>() : curr_point.position.cast<float>(),
curr_point.position.cast<float>(), line_len, entity}; curr_point.position.cast<float>(), line_len, entity};
ExtrusionLine nearest_prev_layer_line = prev_layer_lines.get_lines().size() > 0 ? const ExtrusionLine nearest_prev_layer_line = prev_layer_lines.get_lines().size() > 0 ?
prev_layer_lines.get_line(curr_point.nearest_prev_layer_line) : prev_layer_lines.get_line(curr_point.nearest_prev_layer_line) :
ExtrusionLine{}; ExtrusionLine{};
float sign = prev_layer_boundary.distance_from_lines<true>(curr_point.position) - 0.5f * flow_width < 0.0f ? -1.0f : 1.0f; float sign = (prev_layer_boundary.distance_from_lines<true>(curr_point.position) + 0.5f * flow_width) < 0.0f ? -1.0f : 1.0f;
curr_point.distance *= sign; curr_point.distance *= sign;
if (curr_point.distance > 0.9f * flow_width) { if (curr_point.distance > 0.9f * flow_width) {
@ -282,8 +277,7 @@ std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntit
} }
} else if (curr_point.distance > flow_width * (0.8 + std::clamp(curr_point.curvature, -0.2f, 0.2f))) { } else if (curr_point.distance > flow_width * (0.8 + std::clamp(curr_point.curvature, -0.2f, 0.2f))) {
bridged_distance += line_len; bridged_distance += line_len;
line_out.form_quality = nearest_prev_layer_line.form_quality - line_out.form_quality = nearest_prev_layer_line.form_quality - std::abs(curr_point.curvature);
std::abs(curr_point.curvature);
if (line_out.form_quality < 0) { if (line_out.form_quality < 0) {
line_out.support_point_generated = true; line_out.support_point_generated = true;
line_out.form_quality = 0.7f; line_out.form_quality = 0.7f;
@ -292,10 +286,8 @@ std::vector<ExtrusionLine> check_extrusion_entity_stability(const ExtrusionEntit
bridged_distance = 0.0f; bridged_distance = 0.0f;
} }
line_out.curled_up_height = 0.8 * nearest_prev_layer_line.curled_up_height; line_out.curled_up_height = estimate_curled_up_height(curr_point, layer_region->layer()->height, flow_width,
if (curr_point.distance > 0.6 * flow_width && curr_point.distance < 0.9 * flow_width && curr_point.curvature > 0.0) { nearest_prev_layer_line.curled_up_height, params);
line_out.curled_up_height = layer_region->layer()->height * (0.6f + std::min(1.0f, curr_point.curvature));
}
lines_out.push_back(line_out); lines_out.push_back(line_out);
} }
@ -765,7 +757,7 @@ SupportPoints check_stability(const PrintObject *po, const Params &params)
auto ls = to_unscaled_linesf({layer->lower_layer->lslices[link.slice_idx]}); auto ls = to_unscaled_linesf({layer->lower_layer->lslices[link.slice_idx]});
boundary_lines.insert(boundary_lines.end(), ls.begin(), ls.end()); boundary_lines.insert(boundary_lines.end(), ls.begin(), ls.end());
} }
AABBTreeLines::LinesDistancer<Linef> boundary{std::move(boundary_lines)}; AABBTreeLines::LinesDistancer<Linef> prev_layer_boundary{std::move(boundary_lines)};
std::vector<ExtrusionLine> current_slice_ext_perims_lines{}; std::vector<ExtrusionLine> current_slice_ext_perims_lines{};
@ -803,7 +795,7 @@ SupportPoints check_stability(const PrintObject *po, const Params &params)
const ExtrusionEntity *entity = fill_region->fills().entities[fill_idx]; const ExtrusionEntity *entity = fill_region->fills().entities[fill_idx];
if (entity->role() == erBridgeInfill) { if (entity->role() == erBridgeInfill) {
for (const ExtrusionLine &bridge : for (const ExtrusionLine &bridge :
check_extrusion_entity_stability(entity, fill_region, prev_layer_ext_perim_lines,boundary, params)) { check_extrusion_entity_stability(entity, fill_region, prev_layer_ext_perim_lines,prev_layer_boundary, params)) {
if (bridge.support_point_generated) { if (bridge.support_point_generated) {
reckon_new_support_point(create_support_point_position(bridge.b), -EPSILON, Vec2f::Zero()); reckon_new_support_point(create_support_point_position(bridge.b), -EPSILON, Vec2f::Zero());
} }
@ -816,7 +808,7 @@ SupportPoints check_stability(const PrintObject *po, const Params &params)
for (const auto &perimeter_idx : island.perimeters) { for (const auto &perimeter_idx : island.perimeters) {
const ExtrusionEntity *entity = perimeter_region->perimeters().entities[perimeter_idx]; const ExtrusionEntity *entity = perimeter_region->perimeters().entities[perimeter_idx];
std::vector<ExtrusionLine> perims = check_extrusion_entity_stability(entity, perimeter_region, std::vector<ExtrusionLine> perims = check_extrusion_entity_stability(entity, perimeter_region,
prev_layer_ext_perim_lines,boundary, params); prev_layer_ext_perim_lines,prev_layer_boundary, params);
for (const ExtrusionLine &perim : perims) { for (const ExtrusionLine &perim : perims) {
if (perim.support_point_generated) { if (perim.support_point_generated) {
reckon_new_support_point(create_support_point_position(perim.b), -EPSILON, Vec2f::Zero()); reckon_new_support_point(create_support_point_position(perim.b), -EPSILON, Vec2f::Zero());
@ -851,7 +843,7 @@ SupportPoints check_stability(const PrintObject *po, const Params &params)
} }
#ifdef DEBUG_FILES #ifdef DEBUG_FILES
void debug_export(Issues issues, std::string file_name) void debug_export(SupportPoints support_points, std::string file_name)
{ {
Slic3r::CNumericLocalesSetter locales_setter; Slic3r::CNumericLocalesSetter locales_setter;
{ {
@ -861,13 +853,13 @@ void debug_export(Issues issues, std::string file_name)
return; return;
} }
for (size_t i = 0; i < issues.support_points.size(); ++i) { for (size_t i = 0; i < support_points.size(); ++i) {
if (issues.support_points[i].force <= 0) { if (support_points[i].force <= 0) {
fprintf(fp, "v %f %f %f %f %f %f\n", issues.support_points[i].position(0), issues.support_points[i].position(1), fprintf(fp, "v %f %f %f %f %f %f\n", support_points[i].position(0), support_points[i].position(1),
issues.support_points[i].position(2), 0.0, 1.0, 0.0); support_points[i].position(2), 0.0, 1.0, 0.0);
} else { } else {
fprintf(fp, "v %f %f %f %f %f %f\n", issues.support_points[i].position(0), issues.support_points[i].position(1), fprintf(fp, "v %f %f %f %f %f %f\n", support_points[i].position(0), support_points[i].position(1),
issues.support_points[i].position(2), 1.0, 0.0, 0.0); support_points[i].position(2), 1.0, 0.0, 0.0);
} }
} }
@ -883,105 +875,70 @@ SupportPoints full_search(const PrintObject *po, const Params &params)
{ {
SupportPoints supp_points = check_stability(po, params); SupportPoints supp_points = check_stability(po, params);
#ifdef DEBUG_FILES #ifdef DEBUG_FILES
debug_export(issues, "issues"); debug_export(supp_points, "issues");
#endif #endif
return supp_points; return supp_points;
} }
void estimate_supports_malformations(SupportLayerPtrs &layers, float flow_width, const Params &params)
struct LayerCurlingEstimator
{
LD prev_layer_lines;
Params params;
std::function<float(const ExtrusionLine &)> flow_width_getter;
LayerCurlingEstimator(std::function<float(const ExtrusionLine &)> flow_width_getter, const Params &params)
: flow_width_getter(flow_width_getter), params(params)
{}
void estimate_curling(std::vector<ExtrusionLine> &extrusion_lines, Layer *l)
{
ExtrusionPropertiesAccumulator malformation_acc{};
for (size_t line_idx = 0; line_idx < extrusion_lines.size(); ++line_idx) {
ExtrusionLine &current_line = extrusion_lines[line_idx];
float flow_width = flow_width_getter(current_line);
float min_malformation_dist = flow_width - params.malformation_overlap_factor.first * flow_width;
float max_malformation_dist = flow_width - params.malformation_overlap_factor.second * flow_width;
float curr_angle = 0;
if (line_idx + 1 < extrusion_lines.size()) {
const Vec2f v1 = current_line.b - current_line.a;
const Vec2f v2 = extrusion_lines[line_idx + 1].b - extrusion_lines[line_idx + 1].a;
curr_angle = angle(v1, v2);
}
// malformation in concave angles does not happen
malformation_acc.add_angle(std::max(0.0f, curr_angle));
if (curr_angle < -20.0 * PI / 180.0) { malformation_acc.reset(); }
auto [dist_from_prev_layer, nearest_line_idx, nearest_point] = prev_layer_lines.distance_from_lines_extra<true>(current_line.b);
if (fabs(dist_from_prev_layer) < 2.0f * flow_width) {
const ExtrusionLine &nearest_line = prev_layer_lines.get_line(nearest_line_idx);
current_line.curled_up_height += 0.9 * nearest_line.curled_up_height;
}
if (dist_from_prev_layer > min_malformation_dist && dist_from_prev_layer < max_malformation_dist) {
float factor = 0.5f + 0.5f * std::abs(dist_from_prev_layer - (max_malformation_dist + min_malformation_dist) * 0.5) /
(max_malformation_dist - min_malformation_dist);
malformation_acc.add_distance(current_line.len);
current_line.curled_up_height += l->height * factor * (1.5f + 3.0f * (malformation_acc.max_curvature / PI));
current_line.curled_up_height = std::min(current_line.curled_up_height, float(l->height * params.max_malformation_factor));
} else {
malformation_acc.reset();
}
}
for (const ExtrusionLine &line : extrusion_lines) {
if (line.curled_up_height > 0.3f) { l->malformed_lines.push_back(Line{Point::new_scale(line.a), Point::new_scale(line.b)}); }
}
prev_layer_lines = LD(extrusion_lines);
}
};
void estimate_supports_malformations(SupportLayerPtrs &layers, float supports_flow_width, const Params &params)
{ {
#ifdef DEBUG_FILES #ifdef DEBUG_FILES
FILE *debug_file = boost::nowide::fopen(debug_out_path("supports_malformations.obj").c_str(), "w"); FILE *debug_file = boost::nowide::fopen(debug_out_path("supports_malformations.obj").c_str(), "w");
#endif #endif
auto flow_width_getter = [=](const ExtrusionLine& l) {
return supports_flow_width;
};
LayerCurlingEstimator lce{flow_width_getter, params}; AABBTreeLines::LinesDistancer<ExtrusionLine> prev_layer_lines{};
for (SupportLayer *l : layers) { for (SupportLayer *l : layers) {
std::vector<ExtrusionLine> extrusion_lines; std::vector<ExtrusionLine> current_layer_lines;
for (const ExtrusionEntity *extrusion : l->support_fills.flatten().entities) { for (const ExtrusionEntity *extrusion : l->support_fills.flatten().entities) {
Polyline pl = extrusion->as_polyline(); Polyline pl = extrusion->as_polyline();
Polygon pol(pl.points); Polygon pol(pl.points);
pol.make_counter_clockwise(); pol.make_counter_clockwise();
pl = pol.split_at_first_point();
for (int point_idx = 0; point_idx < int(pl.points.size() - 1); ++point_idx) { auto annotated_points = estimate_points_properties<true, true, false, false>(pol.points, prev_layer_lines, flow_width);
Vec2f start = unscaled(pl.points[point_idx]).cast<float>();
Vec2f next = unscaled(pl.points[point_idx + 1]).cast<float>(); for (size_t i = 0; i < annotated_points.size(); ++i) {
ExtrusionLine line{start, next, (start - next).norm(), extrusion}; ExtendedPoint &curr_point = annotated_points[i];
extrusion_lines.push_back(line); float line_len = i > 0 ? ((annotated_points[i - 1].position - curr_point.position).norm()) : 0.0f;
ExtrusionLine line_out{i > 0 ? annotated_points[i - 1].position.cast<float>() : curr_point.position.cast<float>(),
curr_point.position.cast<float>(), line_len, extrusion};
const ExtrusionLine nearest_prev_layer_line = prev_layer_lines.get_lines().size() > 0 ?
prev_layer_lines.get_line(curr_point.nearest_prev_layer_line) :
ExtrusionLine{};
Vec2f v1 = (nearest_prev_layer_line.b - nearest_prev_layer_line.a);
Vec2f v2 = (curr_point.position.cast<float>() - nearest_prev_layer_line.a);
auto d = (v1.x() * v2.y()) - (v1.y() * v2.x());
if (d > 0) {
curr_point.distance *= -1.0f;
}
line_out.curled_up_height = estimate_curled_up_height(curr_point, l->height, flow_width,
nearest_prev_layer_line.curled_up_height, params);
current_layer_lines.push_back(line_out);
} }
} }
lce.estimate_curling(extrusion_lines, l); for (const ExtrusionLine &line : current_layer_lines) {
if (line.curled_up_height > 0.3f) {
l->malformed_lines.push_back(Line{Point::new_scale(line.a), Point::new_scale(line.b)});
}
}
#ifdef DEBUG_FILES #ifdef DEBUG_FILES
for (const ExtrusionLine &line : extrusion_lines) { for (const ExtrusionLine &line : current_layer_lines) {
if (line.malformation > 0.3f) { if (line.curled_up_height > 0.3f) {
Vec3f color = value_to_rgbf(-EPSILON, l->height * params.max_malformation_factor, line.malformation); Vec3f color = value_to_rgbf(-EPSILON, l->height * params.max_malformation_factor, line.curled_up_height);
fprintf(debug_file, "v %f %f %f %f %f %f\n", line.b[0], line.b[1], l->print_z, color[0], color[1], color[2]); fprintf(debug_file, "v %f %f %f %f %f %f\n", line.b[0], line.b[1], l->print_z, color[0], color[1], color[2]);
} }
} }
#endif #endif
prev_layer_lines = LD{current_layer_lines};
} }
#ifdef DEBUG_FILES #ifdef DEBUG_FILES
@ -994,44 +951,58 @@ void estimate_malformations(LayerPtrs &layers, const Params &params)
#ifdef DEBUG_FILES #ifdef DEBUG_FILES
FILE *debug_file = boost::nowide::fopen(debug_out_path("object_malformations.obj").c_str(), "w"); FILE *debug_file = boost::nowide::fopen(debug_out_path("object_malformations.obj").c_str(), "w");
#endif #endif
auto flow_width_getter = [](const ExtrusionLine &l) { return 0.0; };
LayerCurlingEstimator lce{flow_width_getter, params}; LD prev_layer_lines{};
for (Layer *l : layers) { for (Layer *l : layers) {
if (l->regions().empty()) { std::vector<Linef> boundary_lines = l->lower_layer != nullptr ? to_unscaled_linesf(l->lower_layer->lslices) : std::vector<Linef>();
continue; AABBTreeLines::LinesDistancer<Linef> prev_layer_boundary{std::move(boundary_lines)};
} std::vector<ExtrusionLine> current_layer_lines;
struct Visitor { for (const LayerRegion *layer_region : l->regions()) {
Visitor(const Params &params) : params(params) {} for (const ExtrusionEntity *extrusion : layer_region->perimeters().flatten().entities) {
void recursive_do(const ExtrusionEntityCollection &collection, const LayerRegion *region) { Points extrusion_pts;
for (const ExtrusionEntity* entity : collection.entities) extrusion->collect_points(extrusion_pts);
if (entity->is_collection()) float flow_width = get_flow_width(layer_region, extrusion->role());
this->recursive_do(*static_cast<const ExtrusionEntityCollection*>(entity), region); auto annotated_points = estimate_points_properties<true, false, false, false>(extrusion_pts, prev_layer_lines, flow_width,
else { params.bridge_distance);
append(extrusion_lines, to_short_lines(entity, params.bridge_distance)); for (size_t i = 0; i < annotated_points.size(); ++i) {
extrusions_widths.emplace(entity, get_flow_width(region, entity->role())); ExtendedPoint &curr_point = annotated_points[i];
float line_len = i > 0 ? ((annotated_points[i - 1].position - curr_point.position).norm()) : 0.0f;
ExtrusionLine line_out{i > 0 ? annotated_points[i - 1].position.cast<float>() : curr_point.position.cast<float>(),
curr_point.position.cast<float>(), line_len, extrusion};
const ExtrusionLine nearest_prev_layer_line = prev_layer_lines.get_lines().size() > 0 ?
prev_layer_lines.get_line(curr_point.nearest_prev_layer_line) :
ExtrusionLine{};
float sign = (prev_layer_boundary.distance_from_lines<true>(curr_point.position) + 0.5f * flow_width) < 0.0f ? -1.0f :
1.0f;
curr_point.distance *= sign;
line_out.curled_up_height = estimate_curled_up_height(curr_point, layer_region->layer()->height, flow_width,
nearest_prev_layer_line.curled_up_height, params);
current_layer_lines.push_back(line_out);
}
} }
} }
const Params &params;
std::unordered_map<const ExtrusionEntity*, float> extrusions_widths;
std::vector<ExtrusionLine> extrusion_lines;
} visitor(params);
for (const LayerRegion *region : l->regions()) for (const ExtrusionLine &line : current_layer_lines) {
visitor.recursive_do(region->perimeters(), region); if (line.curled_up_height > 0.3f) {
l->malformed_lines.push_back(Line{Point::new_scale(line.a), Point::new_scale(line.b)});
lce.flow_width_getter = [&](const ExtrusionLine &l) { return visitor.extrusions_widths[l.origin_entity]; }; }
}
lce.estimate_curling(visitor.extrusion_lines, l);
#ifdef DEBUG_FILES #ifdef DEBUG_FILES
for (const ExtrusionLine &line : extrusion_lines) { for (const ExtrusionLine &line : current_layer_lines) {
if (line.malformation > 0.3f) { if (line.curled_up_height > 0.3f) {
Vec3f color = value_to_rgbf(-EPSILON, l->height * params.max_malformation_factor, line.malformation); Vec3f color = value_to_rgbf(-EPSILON, l->height * params.max_malformation_factor, line.curled_up_height);
fprintf(debug_file, "v %f %f %f %f %f %f\n", line.b[0], line.b[1], l->print_z, color[0], color[1], color[2]); fprintf(debug_file, "v %f %f %f %f %f %f\n", line.b[0], line.b[1], l->print_z, color[0], color[1], color[2]);
} }
} }
#endif #endif
prev_layer_lines = LD{current_layer_lines};
} }
#ifdef DEBUG_FILES #ifdef DEBUG_FILES
@ -1039,6 +1010,5 @@ void estimate_malformations(LayerPtrs &layers, const Params &params)
#endif #endif
} }
} //SupportableIssues End } // namespace SupportSpotsGenerator
} } // namespace Slic3r

View File

@ -28,7 +28,7 @@ struct Params {
// the algorithm should use the following units for all computations: distance [mm], mass [g], time [s], force [g*mm/s^2] // the algorithm should use the following units for all computations: distance [mm], mass [g], time [s], force [g*mm/s^2]
const float bridge_distance = 12.0f; //mm const float bridge_distance = 12.0f; //mm
const float bridge_distance_decrease_by_curvature_factor = 10.0f; // allowed bridge distance = bridge_distance / (1 + this factor * curvature ) const float bridge_distance_decrease_by_curvature_factor = 10.0f; // allowed bridge distance = bridge_distance / (1 + this factor * curvature )
const std::pair<float,float> malformation_overlap_factor = std::pair<float, float> { 0.50, -0.1 }; const std::pair<float,float> malformation_distance_factors = std::pair<float, float> { 0.4, 1.2 };
const float max_malformation_factor = 10.0f; const float max_malformation_factor = 10.0f;
const float min_distance_between_support_points = 3.0f; //mm const float min_distance_between_support_points = 3.0f; //mm