Weakest connection break check also implemented.

Tensile force however might be too low approximation.
This commit is contained in:
PavelMikus 2022-07-21 17:40:18 +02:00
parent 3b029cef05
commit ed1c4d99a7

View File

@ -567,6 +567,16 @@ std::tuple<LayerIslands, PixelGrid> reckon_islands(
return {result, current_layer_grid}; return {result, current_layer_grid};
} }
struct WeakestConnection {
float area = 0.0f;
Vec3f centroid_accumulator = Vec3f::Zero();
void add(const WeakestConnection &other) {
this->area += other.area;
this->centroid_accumulator += other.centroid_accumulator;
}
};
struct CoordinateFunctor { struct CoordinateFunctor {
const std::vector<Vec3f> *coordinates; const std::vector<Vec3f> *coordinates;
CoordinateFunctor(const std::vector<Vec3f> *coords) : CoordinateFunctor(const std::vector<Vec3f> *coords) :
@ -639,12 +649,12 @@ public:
float sticking_torque = sticking_arm * this->sticking_force; float sticking_torque = sticking_arm * this->sticking_force;
float mass = this->volume * params.filament_density; float mass = this->volume * params.filament_density;
const Vec3f &mass_centorid = this->volume_centroid_accumulator / this->volume; const Vec3f &mass_centroid = this->volume_centroid_accumulator / this->volume;
float weight = mass * params.gravity_constant; float weight = mass * params.gravity_constant;
float weight_arm = (pivot.head<2>() - mass_centorid.head<2>()).norm(); float weight_arm = (pivot.head<2>() - mass_centroid.head<2>()).norm();
float weight_torque = weight_arm * weight; float weight_torque = weight_arm * weight;
float bed_movement_arm = mass_centorid.z(); float bed_movement_arm = mass_centroid.z();
float bed_movement_force = params.max_acceleration * mass; float bed_movement_force = params.max_acceleration * mass;
float bed_movement_torque = bed_movement_force * bed_movement_arm; float bed_movement_torque = bed_movement_force * bed_movement_arm;
@ -673,7 +683,7 @@ public:
BOOST_LOG_TRIVIAL(debug) BOOST_LOG_TRIVIAL(debug)
<< "SSG: sticking_torque: " << sticking_torque; << "SSG: sticking_torque: " << sticking_torque;
BOOST_LOG_TRIVIAL(debug) BOOST_LOG_TRIVIAL(debug)
<< "SSG: weight_arm: " << sticking_arm; << "SSG: weight_arm: " << weight_arm;
BOOST_LOG_TRIVIAL(debug) BOOST_LOG_TRIVIAL(debug)
<< "SSG: weight_torque: " << weight_torque; << "SSG: weight_torque: " << weight_torque;
BOOST_LOG_TRIVIAL(debug) BOOST_LOG_TRIVIAL(debug)
@ -691,6 +701,73 @@ public:
return {total_torque / conflict_torque_arm, pivot_site_search_point}; return {total_torque / conflict_torque_arm, pivot_site_search_point};
} }
float is_strong_enough_while_extruding(
const WeakestConnection &connection,
const ExtrusionLine &extruded_line,
float layer_z,
const Params &params) const {
Vec2f line_dir = (extruded_line.b - extruded_line.a).normalized();
Vec3f pivot = connection.centroid_accumulator / connection.area;
float tensile_force = connection.area * params.tensile_strength;
float tensile_arm = fsqrt(connection.area / float(PI));
float tensile_torque = tensile_force * tensile_arm;
const Vec3f &mass_centroid = this->volume_centroid_accumulator / this->volume;
float mass = this->volume * params.filament_density
* ((2.0f * layer_z - pivot.z() - mass_centroid.z()) / (2.0f * layer_z));
float weight = mass * params.gravity_constant;
float weight_arm = (pivot.head<2>() - mass_centroid.head<2>()).norm();
float weight_torque = weight_arm * weight;
float bed_movement_arm = mass_centroid.z();
float bed_movement_force = params.max_acceleration * mass;
float bed_movement_torque = bed_movement_force * bed_movement_arm;
Vec3f extruder_pressure_direction = to_3d(line_dir, 0.0f);
extruder_pressure_direction.z() = -0.1f - extruded_line.malformation * 0.5f;
extruder_pressure_direction.normalize();
Vec3d endpoint = (to_3d(extruded_line.b, layer_z)).cast<double>();
float conflict_torque_arm = line_alg::distance_to(
Linef3(endpoint, endpoint + extruder_pressure_direction.cast<double>()), pivot.cast<double>());
float extruder_conflict_force = params.tolerable_extruder_conflict_force +
std::min(extruded_line.malformation, 1.0f) * params.malformations_additive_conflict_extruder_force;
float extruder_conflict_torque = extruder_conflict_force * conflict_torque_arm;
float total_torque = bed_movement_torque + extruder_conflict_torque + weight_torque - tensile_torque;
#if 1
BOOST_LOG_TRIVIAL(debug)
<< "pivot: " << pivot.x() << " " << pivot.y() << " " << pivot.z();
BOOST_LOG_TRIVIAL(debug)
<< "mass_centroid: " << mass_centroid.x() << " " << mass_centroid.y() << " "
<< mass_centroid.z();
BOOST_LOG_TRIVIAL(debug)
<< "SSG: tensile_force: " << tensile_force;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: tensile_arm: " << tensile_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: tensile_torque: " << tensile_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: weight_arm: " << weight_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: weight_torque: " << weight_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: bed_movement_arm: " << bed_movement_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: bed_movement_torque: " << bed_movement_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: conflict_torque_arm: " << conflict_torque_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: extruder_conflict_torque: " << extruder_conflict_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: total_torque: " << total_torque << " layer_z: " << layer_z;
#endif
return total_torque / conflict_torque_arm;
}
void add_pivot_point(const Vec3f pivot_point, float sticking_force) { void add_pivot_point(const Vec3f pivot_point, float sticking_force) {
this->pivot_points.push_back(pivot_point); this->pivot_points.push_back(pivot_point);
this->sticking_force += sticking_force; this->sticking_force += sticking_force;
@ -705,16 +782,6 @@ public:
}; };
struct WeakestConnection {
float area = 0.0f;
Vec3f centroid_accumulator = Vec3f::Zero();
void add(const WeakestConnection &other) {
this->area += other.area;
this->centroid_accumulator += other.centroid_accumulator;
}
};
void debug_print_graph(const std::vector<LayerIslands> &islands_graph) { void debug_print_graph(const std::vector<LayerIslands> &islands_graph) {
std::cout << "BUILT ISLANDS GRAPH:" << std::endl; std::cout << "BUILT ISLANDS GRAPH:" << std::endl;
for (size_t layer_idx = 0; layer_idx < islands_graph.size(); ++layer_idx) { for (size_t layer_idx = 0; layer_idx < islands_graph.size(); ++layer_idx) {
@ -793,10 +860,21 @@ Issues check_global_stability(SupportGridFilter supports_presence_grid,
} }
auto estimate_strength = [layer_z](const WeakestConnection &conn) { auto estimate_strength = [layer_z](const WeakestConnection &conn) {
float radius = fsqrt(conn.area / PI); float radius = fsqrt(conn.area / PI);
float arm_len_estimate = std::max(0.001f, layer_z - (conn.centroid_accumulator.z() / conn.area)); float arm_len_estimate = std::max(1.3f, layer_z - (conn.centroid_accumulator.z() / conn.area));
return radius * conn.area / arm_len_estimate; return radius * conn.area / arm_len_estimate;
}; };
std::cout << "new_weakest_connection info: " << std::endl;
std::cout << "area: " << new_weakest_connection.area << std::endl;
std::cout << "centroid acc: " << new_weakest_connection.centroid_accumulator.x() << " "
<< new_weakest_connection.centroid_accumulator.y() << " "
<< new_weakest_connection.centroid_accumulator.z() << std::endl;
std::cout << "transfered_weakest_connection info: " << std::endl;
std::cout << "area: " << transfered_weakest_connection.area << std::endl;
std::cout << "centroid acc: " << transfered_weakest_connection.centroid_accumulator.x() << " "
<< transfered_weakest_connection.centroid_accumulator.y() << " "
<< transfered_weakest_connection.centroid_accumulator.z() << std::endl;
if (estimate_strength(transfered_weakest_connection) < estimate_strength(new_weakest_connection)) { if (estimate_strength(transfered_weakest_connection) < estimate_strength(new_weakest_connection)) {
new_weakest_connection = transfered_weakest_connection; new_weakest_connection = transfered_weakest_connection;
} }
@ -833,6 +911,12 @@ Issues check_global_stability(SupportGridFilter supports_presence_grid,
for (size_t island_idx = 0; island_idx < islands_graph[layer_idx].islands.size(); ++island_idx) { for (size_t island_idx = 0; island_idx < islands_graph[layer_idx].islands.size(); ++island_idx) {
const Island &island = islands_graph[layer_idx].islands[island_idx]; const Island &island = islands_graph[layer_idx].islands[island_idx];
ObjectPart &part = active_object_parts.at(prev_island_to_object_part_mapping[island_idx]); ObjectPart &part = active_object_parts.at(prev_island_to_object_part_mapping[island_idx]);
WeakestConnection &weakest_conn = prev_island_to_weakest_connection[island_idx];
std::cout << "Weakest connection info: " << std::endl;
std::cout << "area: " << weakest_conn.area << std::endl;
std::cout << "centroid acc: " << weakest_conn.centroid_accumulator.x() << " "
<< weakest_conn.centroid_accumulator.y() << " "
<< weakest_conn.centroid_accumulator.z() << std::endl;
std::vector<ExtrusionLine> dummy { }; std::vector<ExtrusionLine> dummy { };
LinesDistancer island_lines_dist(dummy); LinesDistancer island_lines_dist(dummy);
@ -845,6 +929,10 @@ Issues check_global_stability(SupportGridFilter supports_presence_grid,
} else { } else {
unchecked_dist = line.len; unchecked_dist = line.len;
auto [force, pivot_site_search_point] = part.is_stable_while_extruding(line, layer_z, params); auto [force, pivot_site_search_point] = part.is_stable_while_extruding(line, layer_z, params);
if (force <= 0) {
force = part.is_strong_enough_while_extruding(weakest_conn, line, layer_z, params);
}
if (force > 0) { if (force > 0) {
if (island_lines_dist.get_lines().empty()) { if (island_lines_dist.get_lines().empty()) {
island_lines_dist = LinesDistancer(island.external_lines); island_lines_dist = LinesDistancer(island.external_lines);
@ -862,6 +950,9 @@ Issues check_global_stability(SupportGridFilter supports_presence_grid,
issues.support_points.emplace_back(support_point, force, issues.support_points.emplace_back(support_point, force,
to_3d(Vec2f(line.b - line.a).normalized(), 0.0f)); to_3d(Vec2f(line.b - line.a).normalized(), 0.0f));
supports_presence_grid.take_position(support_point); supports_presence_grid.take_position(support_point);
weakest_conn.area += area;
weakest_conn.centroid_accumulator += support_point * area;
} }
} }
} }
@ -872,223 +963,6 @@ Issues check_global_stability(SupportGridFilter supports_presence_grid,
return issues; return issues;
} }
/*
void a() {
// islands_graph.back() refers to the top most (current) layer
for (size_t island_idx = 0; island_idx < islands_graph.back().islands.size(); ++island_idx) {
Island &island = islands_graph.back().islands[island_idx];
std::vector<ExtrusionLine> island_external_lines;
for (size_t lidx : islands_lines[island_idx]) {
island_external_lines.push_back(layer_lines[lidx]);
}
LinesDistancer island_lines_dist(island_external_lines);
Accumulator acc = island; // in acc, we accumulate the mass and other properties of the object part as we traverse the islands down to bed
// There is one object part for each island at the top most layer, and each one is computed individually -
// Some of the calculations will be done multiple times
int layer_idx = islands_graph.size() - 1;
// traverse the islands graph down, and for each connection area, calculate if it holds or breaks
while (acc.connected_islands.size() > 0) {
//test for break between layer_idx and layer_idx -1;
LayerIslands below = islands_graph[layer_idx - 1]; // must exist, see while condition
layer_idx--;
// initialize variables that we will accumulate over all islands, which are connected to the current object part
std::vector<Vec2f> pivot_points;
Vec2f sticking_centroid;
float connection_area = 0;
for (const auto &pair : acc.connected_islands) {
const Island &below_i = below.islands[pair.first];
Vec2f centroid = (below_i.volume_centroid_accumulator / below_i.volume).head<2>(); // centroid of the island 'below_i'; TODO it should be centroid of the connection area
pivot_points.push_back(centroid); // for object parts, we also consider breaking pivots in the centroids of the islands
sticking_centroid += centroid * pair.second; // pair.second is connection area in mm^2
connection_area += pair.second;
}
sticking_centroid /= connection_area; //normalize to get final sticking centroid
for (const Vec3f &p_point : acc.pivot_points) {
pivot_points.push_back(p_point.head<2>());
}
// Now we have accumulated pivot points, connection area and sticking centroid of the whole layer to the current object part
// create KD tree over current pivot points
auto coord_fn = [&pivot_points](size_t idx, size_t dim) {
return pivot_points[idx][dim];
};
KDTreeIndirect<2, float, decltype(coord_fn)> pivot_points_tree(coord_fn, pivot_points.size());
// iterate over extrusions at top layer island, check each for stability
for (const ExtrusionLine &line : island_external_lines) {
Vec2f line_dir = (line.b - line.a).normalized();
Vec2f pivot_site_search_point = line.b + line_dir * 300.0f;
size_t pivot_idx = find_closest_point(pivot_points_tree, pivot_site_search_point);
const Vec2f &pivot = pivot_points[pivot_idx];
float sticking_arm = (pivot - sticking_centroid).norm();
float sticking_torque = sticking_arm * connection_area * params.tensile_strength; // For breakage in between layers, we compute with tensile strength, not bed adhesion
float mass = acc.volume * params.filament_density;
const Vec3f &mass_centorid = acc.volume_centroid_accumulator / acc.volume;
float weight = mass * params.gravity_constant;
float weight_arm = (pivot - mass_centorid.head<2>()).norm();
float weight_torque = weight_arm * weight;
float bed_movement_arm = mass_centorid.z();
float bed_movement_force = params.max_acceleration * mass;
float bed_movement_torque = bed_movement_force * bed_movement_arm;
Vec3f extruder_pressure_direction = to_3d(line_dir, 0.0f);
extruder_pressure_direction.z() = -0.2 - line.malformation * 0.5;
extruder_pressure_direction.normalize();
float conflict_torque_arm = (to_3d(Vec2f(pivot - line.b), layer_z).cross(
extruder_pressure_direction)).norm();
float extruder_conflict_force = params.tolerable_extruder_conflict_force +
std::min(line.malformation, 1.0f) * params.malformations_additive_conflict_extruder_force;
float extruder_conflict_torque = extruder_conflict_force * conflict_torque_arm;
float total_torque = bed_movement_torque + extruder_conflict_torque - weight_torque - sticking_torque;
if (total_torque > 0) {
Vec2f target_point { };
size_t _idx { };
island_lines_dist.signed_distance_from_lines(pivot_site_search_point, _idx, target_point);
if (!supports_presence_grid.position_taken(to_3d(target_point, layer_z))) {
float area = params.support_points_interface_radius * params.support_points_interface_radius
* float(PI);
float sticking_force = area * params.support_adhesion;
Vec3f support_point = to_3d(target_point, layer_z);
island.pivot_points.push_back(support_point);
island.sticking_force += sticking_force;
island.sticking_centroid_accumulator += sticking_force * support_point;
issues.support_points.emplace_back(support_point,
extruder_conflict_torque - sticking_torque, extruder_pressure_direction);
supports_presence_grid.take_position(to_3d(target_point, layer_z));
}
}
#if 0
BOOST_LOG_TRIVIAL(debug)
<< "SSG: sticking_arm: " << sticking_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: sticking_torque: " << sticking_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: weight_arm: " << sticking_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: weight_torque: " << weight_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: bed_movement_arm: " << bed_movement_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: bed_movement_torque: " << bed_movement_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: conflict_torque_arm: " << conflict_torque_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: extruder_conflict_torque: " << extruder_conflict_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: total_torque: " << total_torque << " layer_z: " << layer_z;
#endif
}
std::unordered_map<size_t, float> tmp = acc.connected_islands;
acc.connected_islands.clear();
// finally, add gathered islands to accumulator, and continue down to next layer
for (const auto &pair : tmp) {
const Island &below_i = below.islands[pair.first];
for (const auto &below_islands : below_i.connected_islands) {
acc.connected_islands[below_islands.first] += below_islands.second;
}
for (const Vec3f &pivot_p : below_i.pivot_points) {
acc.pivot_points.push_back(pivot_p);
}
acc.sticking_centroid_accumulator += below_i.sticking_centroid_accumulator;
acc.sticking_force += below_i.sticking_force;
acc.volume += below_i.volume;
acc.volume_centroid_accumulator += below_i.volume_centroid_accumulator;
}
}
// We have arrived to the bed level, now check for stability of the object part on the bed
std::vector<Vec2f> pivot_points;
for (const Vec3f &p_point : acc.pivot_points) {
pivot_points.push_back(p_point.head<2>());
}
auto coord_fn = [&pivot_points](size_t idx, size_t dim) {
return pivot_points[idx][dim];
};
KDTreeIndirect<2, float, decltype(coord_fn)> pivot_points_tree(coord_fn, pivot_points.size());
for (const ExtrusionLine &line : island_external_lines) {
Vec2f line_dir = (line.b - line.a).normalized();
Vec2f pivot_site_search_point = line.b + line_dir * 300.0f;
size_t pivot_idx = find_closest_point(pivot_points_tree, pivot_site_search_point);
const Vec2f &pivot = pivot_points[pivot_idx];
const Vec2f &sticking_centroid = acc.sticking_centroid_accumulator.head<2>() / acc.sticking_force;
float sticking_arm = (pivot - sticking_centroid).norm();
float sticking_torque = sticking_arm * acc.sticking_force;
float mass = acc.volume * params.filament_density;
const Vec3f &mass_centorid = acc.volume_centroid_accumulator / acc.volume;
float weight = mass * params.gravity_constant;
float weight_arm = (pivot - mass_centorid.head<2>()).norm();
float weight_torque = weight_arm * weight;
float bed_movement_arm = mass_centorid.z();
float bed_movement_force = params.max_acceleration * mass;
float bed_movement_torque = bed_movement_force * bed_movement_arm;
Vec3f extruder_pressure_direction = to_3d(line_dir, 0.0f);
extruder_pressure_direction.z() = -0.2 - line.malformation * 0.5;
extruder_pressure_direction.normalize();
float conflict_torque_arm = (to_3d(Vec2f(pivot - line.b), layer_z).cross(
extruder_pressure_direction)).norm();
float extruder_conflict_force = params.tolerable_extruder_conflict_force +
std::min(line.malformation, 1.0f) * params.malformations_additive_conflict_extruder_force;
float extruder_conflict_torque = extruder_conflict_force * conflict_torque_arm;
float total_torque = bed_movement_torque + extruder_conflict_torque - weight_torque - sticking_torque;
if (total_torque > 0) {
Vec2f target_point;
size_t _idx;
island_lines_dist.signed_distance_from_lines(pivot_site_search_point, _idx, target_point);
if (!supports_presence_grid.position_taken(to_3d(target_point, layer_z))) {
float area = params.support_points_interface_radius * params.support_points_interface_radius
* float(PI);
float sticking_force = area * params.support_adhesion;
Vec3f support_point = to_3d(target_point, layer_z);
island.pivot_points.push_back(support_point);
island.sticking_force += sticking_force;
island.sticking_centroid_accumulator += sticking_force * support_point;
issues.support_points.emplace_back(support_point,
extruder_conflict_torque - sticking_torque, extruder_pressure_direction);
supports_presence_grid.take_position(to_3d(target_point, layer_z));
}
}
#if 0
BOOST_LOG_TRIVIAL(debug)
<< "SSG: sticking_arm: " << sticking_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: sticking_torque: " << sticking_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: weight_arm: " << sticking_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: weight_torque: " << weight_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: bed_movement_arm: " << bed_movement_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: bed_movement_torque: " << bed_movement_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: conflict_torque_arm: " << conflict_torque_arm;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: extruder_conflict_torque: " << extruder_conflict_torque;
BOOST_LOG_TRIVIAL(debug)
<< "SSG: total_torque: " << total_torque << " layer_z: " << layer_z;
#endif
}
}
return issues;
}
*/
std::tuple<Issues, std::vector<LayerIslands>> check_extrusions_and_build_graph(const PrintObject *po, std::tuple<Issues, std::vector<LayerIslands>> check_extrusions_and_build_graph(const PrintObject *po,
const Params &params) { const Params &params) {
#ifdef DEBUG_FILES #ifdef DEBUG_FILES