Multiple objects autoplating (--merge, from command line only)

This commit is contained in:
Alessandro Ranellucci 2012-04-29 12:51:20 +02:00
parent 222e9df7f9
commit ed4a5739f6
10 changed files with 692 additions and 651 deletions

View File

@ -28,11 +28,11 @@ lib/Slic3r/GUI/OptionsGroup.pm
lib/Slic3r/GUI/SkeinPanel.pm
lib/Slic3r/Layer.pm
lib/Slic3r/Line.pm
lib/Slic3r/Perimeter.pm
lib/Slic3r/Point.pm
lib/Slic3r/Polygon.pm
lib/Slic3r/Polyline.pm
lib/Slic3r/Print.pm
lib/Slic3r/Print/Object.pm
lib/Slic3r/Skein.pm
lib/Slic3r/Surface.pm
lib/Slic3r/SVG.pm

View File

@ -95,6 +95,8 @@ The author is Alessandro Ranellucci (me).
--post-process Generated G-code will be processed with the supplied script;
call this more than once to process through multiple scripts.
--export-svg Export a SVG file containing slices instead of G-code.
--merge If multiple files are supplied, they will be composed into a single
print rather than processed individually.
Printer options:
--nozzle-diameter Diameter of nozzle in mm (default: 0.5)

View File

@ -28,11 +28,11 @@ use Slic3r::Format::STL;
use Slic3r::Geometry qw(PI);
use Slic3r::Layer;
use Slic3r::Line;
use Slic3r::Perimeter;
use Slic3r::Point;
use Slic3r::Polygon;
use Slic3r::Polyline;
use Slic3r::Print;
use Slic3r::Print::Object;
use Slic3r::Skein;
use Slic3r::Surface;
use Slic3r::TriangleMesh;

View File

@ -2,7 +2,7 @@ package Slic3r::Layer;
use Moo;
use Math::Clipper ':all';
use Slic3r::Geometry qw(scale collinear X Y A B PI rad2deg_dir bounding_box_center);
use Slic3r::Geometry qw(scale unscale collinear X Y A B PI rad2deg_dir bounding_box_center shortest_path);
use Slic3r::Geometry::Clipper qw(union_ex diff_ex intersection_ex xor_ex is_counter_clockwise);
# a sequential number of layer, starting at 0
@ -58,13 +58,6 @@ has 'perimeters' => (
default => sub { [] },
);
# ordered collection of extrusion paths to build skirt loops
has 'skirts' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::ExtrusionLoop]',
default => sub { [] },
);
# ordered collection of extrusion paths to fill surfaces for support material
has 'support_fills' => (
is => 'rw',
@ -167,6 +160,143 @@ sub make_surfaces {
}
}
sub make_perimeters {
my $self = shift;
Slic3r::debugf "Making perimeters for layer %d\n", $self->id;
# this array will hold one arrayref per original surface (island);
# each item of this arrayref is an arrayref representing a depth (from outer
# perimeters to inner); each item of this arrayref is an ExPolygon:
# @perimeters = (
# [ # first island
# [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 0: outer loop
# [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 1: inner loop
# ],
# [ # second island
# ...
# ]
# )
my @perimeters = (); # one item per depth; each item
# organize islands using a shortest path search
my @surfaces = @{shortest_path([
map [ $_->contour->[0], $_ ], @{$self->slices},
])};
# for each island:
foreach my $surface (@surfaces) {
my @last_offsets = ($surface->expolygon);
my $distance = 0;
# experimental hole compensation (see ArcCompensation in the RepRap wiki)
foreach my $hole ($last_offsets[0]->holes) {
my $area = abs($hole->area);last;
next unless $area <= $Slic3r::small_perimeter_area;
my $radius = sqrt($area / PI);
my $new_radius = (scale($Slic3r::flow_width) + sqrt((scale($Slic3r::flow_width)**2) + (4*($radius**2)))) / 2;
@$hole = map Slic3r::Point->new($_), @{ +($hole->offset(+ ($new_radius - $radius)))[0] };
}
# create other offsets
push @perimeters, [];
for (my $loop = 0; $loop < $Slic3r::perimeters; $loop++) {
# offsetting a polygon can result in one or many offset polygons
@last_offsets = map $_->offset_ex(-$distance), @last_offsets if $distance;
last if !@last_offsets;
push @{ $perimeters[-1] }, [@last_offsets];
# offset distance for inner loops
$distance = scale $Slic3r::flow_spacing;
}
# create one more offset to be used as boundary for fill
{
my @fill_boundaries = map $_->offset_ex(-$distance), @last_offsets;
push @{ $self->fill_boundaries }, @fill_boundaries;
# detect the small gaps that we need to treat like thin polygons,
# thus generating the skeleton and using it to fill them
my $small_gaps = diff_ex(
[ map @$_, map $_->offset_ex(-$distance/2), map @$_, @{$perimeters[-1]} ],
[ map @$_, map $_->offset_ex(+$distance/2), @fill_boundaries ],
);
push @{ $self->thin_fills },
grep $_,
map $_->medial_axis(scale $Slic3r::flow_width),
@$small_gaps if 0;
}
}
# process one island (original surface) at time
foreach my $island (@perimeters) {
# do holes starting from innermost one
my @holes = ();
my @hole_depths = map [ map $_->holes, @$_ ], @$island;
# organize the outermost hole loops using a shortest path search
@{$hole_depths[0]} = @{shortest_path([
map [ $_->[0], $_ ], @{$hole_depths[0]},
])};
CYCLE: while (map @$_, @hole_depths) {
shift @hole_depths while !@{$hole_depths[0]};
# take first available hole
push @holes, shift @{$hole_depths[0]};
my $current_depth = 0;
while (1) {
$current_depth++;
# look for the hole containing this one if any
next CYCLE if !$hole_depths[$current_depth];
my $parent_hole;
for (@{$hole_depths[$current_depth]}) {
if ($_->encloses_point($holes[-1]->[0])) {
$parent_hole = $_;
last;
}
}
next CYCLE if !$parent_hole;
# look for other holes contained in such parent
for (@{$hole_depths[$current_depth-1]}) {
if ($parent_hole->encloses_point($_->[0])) {
# we have a sibling, so let's move onto next iteration
next CYCLE;
}
}
push @holes, $parent_hole;
@{$hole_depths[$current_depth]} = grep $_ ne $parent_hole, @{$hole_depths[$current_depth]};
}
}
foreach my $hole (@holes) {
push @{ $self->perimeters }, Slic3r::ExtrusionLoop->new(polygon => $hole, role => 'perimeter');
}
# do contours starting from innermost one
foreach my $contour (map $_->contour, map @$_, reverse @$island) {
push @{ $self->perimeters }, Slic3r::ExtrusionLoop->new(polygon => $contour, role => 'perimeter');
}
}
# detect small perimeters by checking their area
for (@{ $self->perimeters }) {
$_->role('small-perimeter') if abs($_->polygon->area) < $Slic3r::small_perimeter_area;
}
# add thin walls as perimeters
for (@{ $self->thin_walls }) {
if ($_->isa('Slic3r::Polygon')) {
push @{ $self->perimeters }, Slic3r::ExtrusionLoop->new(polygon => $_, role => 'perimeter');
} else {
push @{ $self->perimeters }, Slic3r::ExtrusionPath->new(polyline => $_, role => 'perimeter');
}
}
}
sub prepare_fill_surfaces {
my $self = shift;

View File

@ -1,146 +0,0 @@
package Slic3r::Perimeter;
use Moo;
use Math::Clipper ':all';
use Slic3r::Geometry qw(X Y PI shortest_path scale unscale);
use Slic3r::Geometry::Clipper qw(diff_ex);
sub make_perimeter {
my $self = shift;
my ($layer) = @_;
Slic3r::debugf "Making perimeters for layer %d\n", $layer->id;
# this array will hold one arrayref per original surface (island);
# each item of this arrayref is an arrayref representing a depth (from outer
# perimeters to inner); each item of this arrayref is an ExPolygon:
# @perimeters = (
# [ # first island
# [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 0: outer loop
# [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 1: inner loop
# ],
# [ # second island
# ...
# ]
# )
my @perimeters = (); # one item per depth; each item
# organize islands using a shortest path search
my @surfaces = @{shortest_path([
map [ $_->contour->[0], $_ ], @{$layer->slices},
])};
# for each island:
foreach my $surface (@surfaces) {
my @last_offsets = ($surface->expolygon);
my $distance = 0;
# experimental hole compensation (see ArcCompensation in the RepRap wiki)
foreach my $hole ($last_offsets[0]->holes) {
my $area = abs($hole->area);last;
next unless $area <= $Slic3r::small_perimeter_area;
my $radius = sqrt($area / PI);
my $new_radius = (scale($Slic3r::flow_width) + sqrt((scale($Slic3r::flow_width)**2) + (4*($radius**2)))) / 2;
@$hole = map Slic3r::Point->new($_), @{ +($hole->offset(+ ($new_radius - $radius)))[0] };
}
# create other offsets
push @perimeters, [];
for (my $loop = 0; $loop < $Slic3r::perimeters; $loop++) {
# offsetting a polygon can result in one or many offset polygons
@last_offsets = map $_->offset_ex(-$distance), @last_offsets if $distance;
last if !@last_offsets;
push @{ $perimeters[-1] }, [@last_offsets];
# offset distance for inner loops
$distance = scale $Slic3r::flow_spacing;
}
# create one more offset to be used as boundary for fill
{
my @fill_boundaries = map $_->offset_ex(-$distance), @last_offsets;
push @{ $layer->fill_boundaries }, @fill_boundaries;
# detect the small gaps that we need to treat like thin polygons,
# thus generating the skeleton and using it to fill them
my $small_gaps = diff_ex(
[ map @$_, map $_->offset_ex(-$distance/2), map @$_, @{$perimeters[-1]} ],
[ map @$_, map $_->offset_ex(+$distance/2), @fill_boundaries ],
);
push @{ $layer->thin_fills },
grep $_,
map $_->medial_axis(scale $Slic3r::flow_width),
@$small_gaps if 0;
}
}
# process one island (original surface) at time
foreach my $island (@perimeters) {
# do holes starting from innermost one
my @holes = ();
my @hole_depths = map [ map $_->holes, @$_ ], @$island;
# organize the outermost hole loops using a shortest path search
@{$hole_depths[0]} = @{shortest_path([
map [ $_->[0], $_ ], @{$hole_depths[0]},
])};
CYCLE: while (map @$_, @hole_depths) {
shift @hole_depths while !@{$hole_depths[0]};
# take first available hole
push @holes, shift @{$hole_depths[0]};
my $current_depth = 0;
while (1) {
$current_depth++;
# look for the hole containing this one if any
next CYCLE if !$hole_depths[$current_depth];
my $parent_hole;
for (@{$hole_depths[$current_depth]}) {
if ($_->encloses_point($holes[-1]->[0])) {
$parent_hole = $_;
last;
}
}
next CYCLE if !$parent_hole;
# look for other holes contained in such parent
for (@{$hole_depths[$current_depth-1]}) {
if ($parent_hole->encloses_point($_->[0])) {
# we have a sibling, so let's move onto next iteration
next CYCLE;
}
}
push @holes, $parent_hole;
@{$hole_depths[$current_depth]} = grep $_ ne $parent_hole, @{$hole_depths[$current_depth]};
}
}
foreach my $hole (@holes) {
push @{ $layer->perimeters }, Slic3r::ExtrusionLoop->new(polygon => $hole, role => 'perimeter');
}
# do contours starting from innermost one
foreach my $contour (map $_->contour, map @$_, reverse @$island) {
push @{ $layer->perimeters }, Slic3r::ExtrusionLoop->new(polygon => $contour, role => 'perimeter');
}
}
# detect small perimeters by checking their area
for (@{ $layer->perimeters }) {
$_->role('small-perimeter') if abs($_->polygon->area) < $Slic3r::small_perimeter_area;
}
# add thin walls as perimeters
for (@{ $layer->thin_walls }) {
if ($_->isa('Slic3r::Polygon')) {
push @{ $layer->perimeters }, Slic3r::ExtrusionLoop->new(polygon => $_, role => 'perimeter');
} else {
push @{ $layer->perimeters }, Slic3r::ExtrusionPath->new(polyline => $_, role => 'perimeter');
}
}
}
1;

View File

@ -1,38 +1,34 @@
package Slic3r::Print;
use Moo;
use Config;
use Math::ConvexHull 1.0.4 qw(convex_hull);
use Slic3r::Geometry qw(X Y Z PI MIN MAX scale unscale move_points);
use Slic3r::Geometry::Clipper qw(explode_expolygons safety_offset diff_ex intersection_ex
union_ex offset JT_ROUND JT_MITER);
use Slic3r::Geometry qw(X Y Z PI scale unscale move_points);
use Slic3r::Geometry::Clipper qw(diff_ex union_ex offset JT_ROUND);
has 'x_length' => (is => 'ro', required => 1);
has 'y_length' => (is => 'ro', required => 1);
has 'objects' => (is => 'rw', default => sub {[]});
has 'copies' => (is => 'rw', default => sub {[]}); # obj_idx => [copies...]
has 'total_x_length' => (is => 'rw'); # including duplicates
has 'total_y_length' => (is => 'rw'); # including duplicates
has 'copies' => (is => 'rw', default => sub {[]});
has 'total_extrusion_length' => (is => 'rw');
has 'layers' => (
traits => ['Array'],
# ordered collection of extrusion paths to build skirt loops
has 'skirt' => (
is => 'rw',
#isa => 'ArrayRef[Slic3r::Layer]',
#isa => 'ArrayRef[Slic3r::ExtrusionLoop]',
default => sub { [] },
);
has 'total_extrusion_length' => (is => 'rw');
sub new_from_mesh {
my $class = shift;
sub add_object_from_mesh {
my $self = shift;
my ($mesh) = @_;
$mesh->rotate($Slic3r::rotate);
$mesh->scale($Slic3r::scale / $Slic3r::scaling_factor);
$mesh->align_to_origin;
# initialize print job
# initialize print object
my @size = $mesh->size;
my $print = $class->new(
my $object = Slic3r::Print::Object->new(
x_length => $size[X],
y_length => $size[Y],
);
@ -42,7 +38,7 @@ sub new_from_mesh {
my $apply_lines = sub {
my $lines = shift;
foreach my $layer_id (keys %$lines) {
my $layer = $print->layer($layer_id);
my $layer = $object->layer($layer_id);
$layer->add_line($_) for @{ $lines->{$layer_id} };
}
};
@ -53,7 +49,7 @@ sub new_from_mesh {
my $q = shift;
my $result_lines = {};
while (defined (my $facet_id = $q->dequeue)) {
my $lines = $mesh->slice_facet($print, $facet_id);
my $lines = $mesh->slice_facet($object, $facet_id);
foreach my $layer_id (keys %$lines) {
$result_lines->{$layer_id} ||= [];
push @{ $result_lines->{$layer_id} }, @{ $lines->{$layer_id} };
@ -66,19 +62,19 @@ sub new_from_mesh {
},
no_threads_cb => sub {
for (0..$#{$mesh->facets}) {
my $lines = $mesh->slice_facet($print, $_);
my $lines = $mesh->slice_facet($object, $_);
$apply_lines->($lines);
}
},
);
}
die "Invalid input file\n" if !@{$print->layers};
die "Invalid input file\n" if !@{$object->layers};
# remove last layer if empty
# (we might have created it because of the $max_layer = ... + 1 code below)
pop @{$print->layers} if !@{$print->layers->[-1]->surfaces} && !@{$print->layers->[-1]->lines};
pop @{$object->layers} if !@{$object->layers->[-1]->surfaces} && !@{$object->layers->[-1]->lines};
foreach my $layer (@{ $print->layers }) {
foreach my $layer (@{ $object->layers }) {
Slic3r::debugf "Making surfaces for layer %d (slice z = %f):\n",
$layer->id, unscale $layer->slice_z if $Slic3r::debug;
@ -98,8 +94,8 @@ sub new_from_mesh {
# detect slicing errors
my $warning_thrown = 0;
for (my $i = 0; $i <= $#{$print->layers}; $i++) {
my $layer = $print->layers->[$i];
for my $i (0 .. $#{$object->layers}) {
my $layer = $object->layers->[$i];
next unless $layer->slicing_errors;
if (!$warning_thrown) {
warn "The model has overlapping or self-intersecting facets. I tried to repair it, "
@ -112,15 +108,15 @@ sub new_from_mesh {
Slic3r::debugf "Attempting to repair layer %d\n", $i;
my (@upper_surfaces, @lower_surfaces);
for (my $j = $i+1; $j <= $#{$print->layers}; $j++) {
if (!$print->layers->[$j]->slicing_errors) {
@upper_surfaces = @{$print->layers->[$j]->slices};
for (my $j = $i+1; $j <= $#{$object->layers}; $j++) {
if (!$object->layers->[$j]->slicing_errors) {
@upper_surfaces = @{$object->layers->[$j]->slices};
last;
}
}
for (my $j = $i-1; $j >= 0; $j--) {
if (!$print->layers->[$j]->slicing_errors) {
@lower_surfaces = @{$print->layers->[$j]->slices};
if (!$object->layers->[$j]->slicing_errors) {
@lower_surfaces = @{$object->layers->[$j]->slices};
last;
}
}
@ -139,46 +135,67 @@ sub new_from_mesh {
}
# remove empty layers from bottom
while (@{$print->layers} && !@{$print->layers->[0]->slices} && !@{$print->layers->[0]->thin_walls}) {
shift @{$print->layers};
for (my $i = 0; $i <= $#{$print->layers}; $i++) {
$print->layers->[$i]->id($i);
while (@{$object->layers} && !@{$object->layers->[0]->slices} && !@{$object->layers->[0]->thin_walls}) {
shift @{$object->layers};
for (my $i = 0; $i <= $#{$object->layers}; $i++) {
$object->layers->[$i]->id($i);
}
}
warn "No layers were detected. You might want to repair your STL file and retry.\n"
if !@{$print->layers};
if !@{$object->layers};
return $print;
push @{$self->objects}, $object;
return $object;
}
sub BUILD {
sub layer_count {
my $self = shift;
my $count = 0;
foreach my $object (@{$self->objects}) {
$count = @{$object->layers} if @{$object->layers} > $count;
}
return $count;
}
sub arrange_objects {
my $self = shift;
my $dist = scale $Slic3r::duplicate_distance;
if ($Slic3r::duplicate_grid->[X] > 1 || $Slic3r::duplicate_grid->[Y] > 1) {
$self->total_x_length($self->x_length * $Slic3r::duplicate_grid->[X] + $dist * ($Slic3r::duplicate_grid->[X] - 1));
$self->total_y_length($self->y_length * $Slic3r::duplicate_grid->[Y] + $dist * ($Slic3r::duplicate_grid->[Y] - 1));
if (@{$self->objects} > 1) {
die "Grid duplication is not supported with multiple objects\n";
}
my $object = $self->objects->[0];
$self->total_x_length($object->x_length * $Slic3r::duplicate_grid->[X] + $dist * ($Slic3r::duplicate_grid->[X] - 1));
$self->total_y_length($object->y_length * $Slic3r::duplicate_grid->[Y] + $dist * ($Slic3r::duplicate_grid->[Y] - 1));
# generate offsets for copies
push @{$self->copies}, [];
for my $x_copy (1..$Slic3r::duplicate_grid->[X]) {
for my $y_copy (1..$Slic3r::duplicate_grid->[Y]) {
push @{$self->copies}, [
push @{$self->copies->[0]}, [
($self->x_length + $dist) * ($x_copy-1),
($self->y_length + $dist) * ($y_copy-1),
];
}
}
} elsif ($Slic3r::duplicate > 1) {
} elsif ($Slic3r::duplicate > 1 || @{$self->objects} > 1) {
my $total_parts = @{$self->objects} * $Slic3r::duplicate;
my $linint = sub {
my ($value, $oldmin, $oldmax, $newmin, $newmax) = @_;
return ($value - $oldmin) * ($newmax - $newmin) / ($oldmax - $oldmin) + $newmin;
};
# use actual part size plus separation distance (half on each side) in spacing algorithm
my $partx = unscale($self->x_length) + $Slic3r::duplicate_distance;
my $party = unscale($self->y_length) + $Slic3r::duplicate_distance;
# use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm
my $partx = my $party = 0;
foreach my $object (@{$self->objects}) {
$partx = $object->x_length if $object->x_length > $partx;
$party = $object->y_length if $object->y_length > $party;
}
$partx = unscale($partx) + $Slic3r::duplicate_distance;
$party = unscale($party) + $Slic3r::duplicate_distance;
# margin needed for the skirt
my $skirt_margin;
@ -192,7 +209,7 @@ sub BUILD {
my $cellw = int(($Slic3r::bed_size->[X] - $skirt_margin + $Slic3r::duplicate_distance) / $partx);
my $cellh = int(($Slic3r::bed_size->[Y] - $skirt_margin + $Slic3r::duplicate_distance) / $party);
die "$Slic3r::duplicate parts won't fit in your print area!\n" if $Slic3r::duplicate > ($cellw * $cellh);
die "$total_parts parts won't fit in your print area!\n" if $total_parts > ($cellw * $cellh);
# width and height of space used by cells
my $w = $cellw * $partx;
@ -250,7 +267,7 @@ sub BUILD {
my ($lx, $ty, $rx, $by) = (0, 0, 0, 0);
# now find cells actually used by objects, map out the extents so we can position correctly
for my $i (1..$Slic3r::duplicate) {
for my $i (1..$total_parts) {
my $c = $cellsorder[$i - 1];
my $cx = $c->[1]->{index}->[0];
my $cy = $c->[1]->{index}->[1];
@ -265,446 +282,66 @@ sub BUILD {
}
}
# now we actually place objects into cells, positioned such that the left and bottom borders are at 0
for my $i (1..$Slic3r::duplicate) {
for (0..$#{$self->objects}) {
my @copies = ();
for (1..$Slic3r::duplicate) {
my $c = shift @cellsorder;
my $cx = $c->[1]->{index}->[0] - $lx;
my $cy = $c->[1]->{index}->[1] - $ty;
push @{$self->copies}, [scale($cx * $partx), scale($cy * $party)];
push @copies, [scale($cx * $partx), scale($cy * $party)];
}
push @{$self->copies}, [@copies];
}
# save size of area used
$self->total_x_length(scale(($rx - $lx + 1) * $partx - $Slic3r::duplicate_distance));
$self->total_y_length(scale(($by - $ty + 1) * $party - $Slic3r::duplicate_distance));
} else {
$self->total_x_length($self->x_length);
$self->total_y_length($self->y_length);
push @{$self->copies}, [0, 0];
$self->total_x_length($self->objects->[0]->x_length);
$self->total_y_length($self->objects->[0]->y_length);
push @{$self->copies}, [[0, 0]];
}
}
sub layer_count {
my $self = shift;
return scalar @{ $self->layers };
}
sub max_length {
my $self = shift;
return ($self->x_length > $self->y_length) ? $self->x_length : $self->y_length;
return ($self->total_x_length > $self->total_y_length) ? $self->total_x_length : $self->total_y_length;
}
sub layer {
my $self = shift;
my ($layer_id) = @_;
# extend our print by creating all necessary layers
if ($self->layer_count < $layer_id + 1) {
for (my $i = $self->layer_count; $i <= $layer_id; $i++) {
push @{ $self->layers }, Slic3r::Layer->new(id => $i);
}
}
return $self->layers->[$layer_id];
}
sub detect_surfaces_type {
my $self = shift;
Slic3r::debugf "Detecting solid surfaces...\n";
# prepare a reusable subroutine to make surface differences
my $surface_difference = sub {
my ($subject_surfaces, $clip_surfaces, $result_type) = @_;
my $expolygons = diff_ex(
[ map { ref $_ eq 'ARRAY' ? $_ : ref $_ eq 'Slic3r::ExPolygon' ? @$_ : $_->p } @$subject_surfaces ],
[ map { ref $_ eq 'ARRAY' ? $_ : ref $_ eq 'Slic3r::ExPolygon' ? @$_ : $_->p } @$clip_surfaces ],
1,
);
return grep $_->contour->is_printable,
map Slic3r::Surface->new(expolygon => $_, surface_type => $result_type),
@$expolygons;
};
for (my $i = 0; $i < $self->layer_count; $i++) {
my $layer = $self->layers->[$i];
my $upper_layer = $self->layers->[$i+1];
my $lower_layer = $i > 0 ? $self->layers->[$i-1] : undef;
my (@bottom, @top, @internal) = ();
# find top surfaces (difference between current surfaces
# of current layer and upper one)
if ($upper_layer) {
@top = $surface_difference->($layer->slices, $upper_layer->slices, 'top');
} else {
# if no upper layer, all surfaces of this one are solid
@top = @{$layer->slices};
$_->surface_type('top') for @top;
}
# find bottom surfaces (difference between current surfaces
# of current layer and lower one)
if ($lower_layer) {
@bottom = $surface_difference->($layer->slices, $lower_layer->slices, 'bottom');
} else {
# if no lower layer, all surfaces of this one are solid
@bottom = @{$layer->slices};
$_->surface_type('bottom') for @bottom;
}
# now, if the object contained a thin membrane, we could have overlapping bottom
# and top surfaces; let's do an intersection to discover them and consider them
# as bottom surfaces (to allow for bridge detection)
if (@top && @bottom) {
my $overlapping = intersection_ex([ map $_->p, @top ], [ map $_->p, @bottom ]);
Slic3r::debugf " layer %d contains %d membrane(s)\n", $layer->id, scalar(@$overlapping);
@top = $surface_difference->([@top], $overlapping, 'top');
}
# find internal surfaces (difference between top/bottom surfaces and others)
@internal = $surface_difference->($layer->slices, [@top, @bottom], 'internal');
# save surfaces to layer
@{$layer->slices} = (@bottom, @top, @internal);
Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
$layer->id, scalar(@bottom), scalar(@top), scalar(@internal);
}
# clip surfaces to the fill boundaries
foreach my $layer (@{$self->layers}) {
@{$layer->surfaces} = ();
foreach my $surface (@{$layer->slices}) {
my $intersection = intersection_ex(
[ $surface->p ],
[ map @$_, @{$layer->fill_boundaries} ],
);
push @{$layer->surfaces}, map Slic3r::Surface->new
(expolygon => $_, surface_type => $surface->surface_type),
@$intersection;
}
# free memory
@{$layer->fill_boundaries} = ();
}
}
sub discover_horizontal_shells {
my $self = shift;
Slic3r::debugf "==> DISCOVERING HORIZONTAL SHELLS\n";
for (my $i = 0; $i < $self->layer_count; $i++) {
my $layer = $self->layers->[$i];
foreach my $type (qw(top bottom)) {
# find surfaces of current type for current layer
# and offset them to take perimeters into account
my @surfaces = map $_->offset($Slic3r::perimeters * scale $Slic3r::flow_width),
grep $_->surface_type eq $type, @{$layer->fill_surfaces} or next;
my $surfaces_p = [ map $_->p, @surfaces ];
Slic3r::debugf "Layer %d has %d surfaces of type '%s'\n",
$i, scalar(@surfaces), $type;
for (my $n = $type eq 'top' ? $i-1 : $i+1;
abs($n - $i) <= $Slic3r::solid_layers-1;
$type eq 'top' ? $n-- : $n++) {
next if $n < 0 || $n >= $self->layer_count;
Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
my @neighbor_surfaces = @{$self->layers->[$n]->surfaces};
my @neighbor_fill_surfaces = @{$self->layers->[$n]->fill_surfaces};
# find intersection between neighbor and current layer's surfaces
# intersections have contours and holes
my $new_internal_solid = intersection_ex(
$surfaces_p,
[ map $_->p, grep $_->surface_type =~ /internal/, @neighbor_surfaces ],
undef, 1,
);
next if !@$new_internal_solid;
# internal-solid are the union of the existing internal-solid surfaces
# and new ones
my $internal_solid = union_ex([
( map $_->p, grep $_->surface_type eq 'internal-solid', @neighbor_fill_surfaces ),
( map @$_, @$new_internal_solid ),
]);
# subtract intersections from layer surfaces to get resulting inner surfaces
my $internal = diff_ex(
[ map $_->p, grep $_->surface_type eq 'internal', @neighbor_fill_surfaces ],
[ map @$_, @$internal_solid ],
);
Slic3r::debugf " %d internal-solid and %d internal surfaces found\n",
scalar(@$internal_solid), scalar(@$internal);
# Note: due to floating point math we're going to get some very small
# polygons as $internal; they will be removed by removed_small_features()
# assign resulting inner surfaces to layer
my $neighbor_fill_surfaces = $self->layers->[$n]->fill_surfaces;
@$neighbor_fill_surfaces = ();
push @$neighbor_fill_surfaces, Slic3r::Surface->new
(expolygon => $_, surface_type => 'internal')
for @$internal;
# assign new internal-solid surfaces to layer
push @$neighbor_fill_surfaces, Slic3r::Surface->new
(expolygon => $_, surface_type => 'internal-solid')
for @$internal_solid;
# assign top and bottom surfaces to layer
foreach my $s (Slic3r::Surface->group(grep $_->surface_type =~ /top|bottom/, @neighbor_fill_surfaces)) {
my $solid_surfaces = diff_ex(
[ map $_->p, @$s ],
[ map @$_, @$internal_solid, @$internal ],
);
push @$neighbor_fill_surfaces, Slic3r::Surface->new
(expolygon => $_, surface_type => $s->[0]->surface_type, bridge_angle => $s->[0]->bridge_angle)
for @$solid_surfaces;
}
}
}
}
}
sub extrude_skirt {
sub make_skirt {
my $self = shift;
return unless $Slic3r::skirts > 0;
# collect points from all layers contained in skirt height
my $skirt_height = $Slic3r::skirt_height;
$skirt_height = $self->layer_count if $skirt_height > $self->layer_count;
my @layers = map $self->layer($_), 0..($skirt_height-1);
my @points = (
my @points = ();
foreach my $obj_idx (0 .. $#{$self->objects}) {
my @layers = map $self->objects->[$obj_idx]->layer($_), 0..($skirt_height-1);
my @layer_points = (
(map @$_, map @{$_->expolygon}, map @{$_->slices}, @layers),
(map @$_, map @{$_->thin_walls}, @layers),
(map @{$_->polyline}, map @{$_->support_fills->paths}, grep $_->support_fills, @layers),
);
push @points, map move_points($_, @layer_points), @{$self->copies->[$obj_idx]};
}
return if @points < 3; # at least three points required for a convex hull
# duplicate points to take copies into account
my @all_points = map move_points($_, @points), @{$self->copies};
# find out convex hull
my $convex_hull = convex_hull(\@all_points);
my $convex_hull = convex_hull(\@points);
# draw outlines from outside to inside
my @skirts = ();
my @skirt = ();
for (my $i = $Slic3r::skirts - 1; $i >= 0; $i--) {
my $distance = scale ($Slic3r::skirt_distance + ($Slic3r::flow_spacing * $i));
my $outline = offset([$convex_hull], $distance, $Slic3r::scaling_factor * 100, JT_ROUND);
push @skirts, Slic3r::ExtrusionLoop->new(
push @skirt, Slic3r::ExtrusionLoop->new(
polygon => Slic3r::Polygon->new(@{$outline->[0]}),
role => 'skirt',
);
}
# apply skirts to all layers
push @{$_->skirts}, @skirts for @layers;
}
# combine fill surfaces across layers
sub infill_every_layers {
my $self = shift;
return unless $Slic3r::infill_every_layers > 1 && $Slic3r::fill_density > 0;
# start from bottom, skip first layer
for (my $i = 1; $i < $self->layer_count; $i++) {
my $layer = $self->layer($i);
# skip layer if no internal fill surfaces
next if !grep $_->surface_type eq 'internal', @{$layer->fill_surfaces};
# for each possible depth, look for intersections with the lower layer
# we do this from the greater depth to the smaller
for (my $d = $Slic3r::infill_every_layers - 1; $d >= 1; $d--) {
next if ($i - $d) < 0;
my $lower_layer = $self->layer($i - 1);
# select surfaces of the lower layer having the depth we're looking for
my @lower_surfaces = grep $_->depth_layers == $d && $_->surface_type eq 'internal',
@{$lower_layer->fill_surfaces};
next if !@lower_surfaces;
# calculate intersection between our surfaces and theirs
my $intersection = intersection_ex(
[ map $_->p, grep $_->depth_layers <= $d, @lower_surfaces ],
[ map $_->p, grep $_->surface_type eq 'internal', @{$layer->fill_surfaces} ],
);
next if !@$intersection;
# new fill surfaces of the current layer are:
# - any non-internal surface
# - intersections found (with a $d + 1 depth)
# - any internal surface not belonging to the intersection (with its original depth)
{
my @new_surfaces = ();
push @new_surfaces, grep $_->surface_type ne 'internal', @{$layer->fill_surfaces};
push @new_surfaces, map Slic3r::Surface->new
(expolygon => $_, surface_type => 'internal', depth_layers => $d + 1), @$intersection;
foreach my $depth (reverse $d..$Slic3r::infill_every_layers) {
push @new_surfaces, map Slic3r::Surface->new
(expolygon => $_, surface_type => 'internal', depth_layers => $depth),
# difference between our internal layers with depth == $depth
# and the intersection found
@{diff_ex(
[
map $_->p, grep $_->surface_type eq 'internal' && $_->depth_layers == $depth,
@{$layer->fill_surfaces},
],
[ map @$_, @$intersection ],
1,
)};
}
@{$layer->fill_surfaces} = @new_surfaces;
}
# now we remove the intersections from lower layer
{
my @new_surfaces = ();
push @new_surfaces, grep $_->surface_type ne 'internal', @{$lower_layer->fill_surfaces};
foreach my $depth (1..$Slic3r::infill_every_layers) {
push @new_surfaces, map Slic3r::Surface->new
(expolygon => $_, surface_type => 'internal', depth_layers => $depth),
# difference between internal layers with depth == $depth
# and the intersection found
@{diff_ex(
[
map $_->p, grep $_->surface_type eq 'internal' && $_->depth_layers == $depth,
@{$lower_layer->fill_surfaces},
],
[ map @$_, @$intersection ],
1,
)};
}
@{$lower_layer->fill_surfaces} = @new_surfaces;
}
}
}
}
sub generate_support_material {
my $self = shift;
# determine unsupported surfaces
my %layers = ();
my @unsupported_expolygons = ();
{
my (@a, @b) = ();
for my $i (reverse 0 .. $#{$self->layers}) {
my $layer = $self->layers->[$i];
my @c = ();
if (@b) {
@c = @{diff_ex(
[ map @$_, @b ],
[ map @$_, map $_->expolygon->offset_ex(scale $Slic3r::flow_width), @{$layer->slices} ],
)};
$layers{$i} = [@c];
}
@b = @{union_ex([ map @$_, @c, @a ])};
# get unsupported surfaces for current layer as all bottom slices
# minus the bridges offsetted to cover their perimeters.
# actually, we are marking as bridges more than we should be, so
# better build support material for bridges too rather than ignoring
# those parts. a visibility check algorithm is needed.
# @a = @{diff_ex(
# [ map $_->p, grep $_->surface_type eq 'bottom', @{$layer->slices} ],
# [ map @$_, map $_->expolygon->offset_ex(scale $Slic3r::flow_spacing * $Slic3r::perimeters),
# grep $_->surface_type eq 'bottom' && defined $_->bridge_angle,
# @{$layer->fill_surfaces} ],
# )};
@a = map $_->expolygon->clone, grep $_->surface_type eq 'bottom', @{$layer->slices};
$_->simplify(scale $Slic3r::flow_spacing * 3) for @a;
push @unsupported_expolygons, @a;
}
}
return if !@unsupported_expolygons;
# generate paths for the pattern that we're going to use
my $support_patterns = [];
{
my @support_material_areas = map $_->offset_ex(scale 5),
@{union_ex([ map @$_, @unsupported_expolygons ])};
my $fill = Slic3r::Fill->new(print => $self);
foreach my $angle (0, 90) {
my @patterns = ();
foreach my $expolygon (@support_material_areas) {
my @paths = $fill->fillers->{rectilinear}->fill_surface(
Slic3r::Surface->new(
expolygon => $expolygon,
bridge_angle => $Slic3r::fill_angle + 45 + $angle,
),
density => 0.20,
flow_spacing => $Slic3r::flow_spacing,
);
my $params = shift @paths;
push @patterns,
map Slic3r::ExtrusionPath->new(
polyline => Slic3r::Polyline->new(@$_),
role => 'support-material',
depth_layers => 1,
flow_spacing => $params->{flow_spacing},
), @paths;
}
push @$support_patterns, [@patterns];
}
}
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(undef, "support.svg",
polylines => [ map $_->polyline, map @$_, @$support_patterns ],
);
}
# apply the pattern to layers
{
my $clip_pattern = sub {
my ($layer_id, $expolygons) = @_;
my @paths = ();
foreach my $expolygon (@$expolygons) {
push @paths, map $_->clip_with_expolygon($expolygon),
map $_->clip_with_polygon($expolygon->bounding_box_polygon),
@{$support_patterns->[ $layer_id % 2 ]};
};
return @paths;
};
my %layer_paths = ();
Slic3r::parallelize(
items => [ keys %layers ],
thread_cb => sub {
my $q = shift;
my $paths = {};
while (defined (my $layer_id = $q->dequeue)) {
$paths->{$layer_id} = [ $clip_pattern->($layer_id, $layers{$layer_id}) ];
}
return $paths;
},
collect_cb => sub {
my $paths = shift;
$layer_paths{$_} = $paths->{$_} for keys %$paths;
},
no_threads_cb => sub {
$layer_paths{$_} = [ $clip_pattern->($_, $layers{$_}) ] for keys %layers;
},
);
foreach my $layer_id (keys %layer_paths) {
my $layer = $self->layers->[$layer_id];
$layer->support_fills(Slic3r::ExtrusionPath::Collection->new);
push @{$layer->support_fills->paths}, @{$layer_paths{$layer_id}};
}
}
push @{$self->skirt}, @skirt;
}
sub export_gcode {
@ -772,7 +409,12 @@ sub export_gcode {
print $fh $extruder->set_fan(0, 1) if $Slic3r::cooling && $Slic3r::disable_fan_first_layers;
# write gcode commands layer by layer
foreach my $layer (@{ $self->layers }) {
my @layers = (); # [ $obj_idx, $layer ]
for my $layer_id (0..$self->layer_count) {
push @layers, map [ $_, $self->objects->[$_]->layers->[$layer_id] ], 0..$#{$self->objects};
}
foreach my $obj_layer (grep $_->[1], @layers) {
my ($obj_idx, $layer) = @$obj_layer;
if ($layer->id == 1) {
printf $fh "M104 %s%d ; set temperature\n",
($Slic3r::gcode_flavor eq 'mach3' ? 'P' : 'S'), $Slic3r::temperature
@ -786,15 +428,15 @@ sub export_gcode {
my $layer_gcode = $extruder->change_layer($layer);
$extruder->elapsed_time(0);
# extrude skirts
# extrude skirt
$extruder->shift_x($shift[X]);
$extruder->shift_y($shift[Y]);
$layer_gcode .= $extruder->set_acceleration($Slic3r::perimeter_acceleration);
$layer_gcode .= $extruder->extrude_loop($_, 'skirt') for @{ $layer->skirts };
for (my $i = 0; $i <= $#{$self->copies}; $i++) {
my $copy = $self->copies->[$i];
if ($layer->id < $Slic3r::skirt_height) {
$layer_gcode .= $extruder->extrude_loop($_, 'skirt') for @{$self->skirt};
}
for my $copy (@{ $self->copies->[$obj_idx] }) {
# retract explicitely because changing the shift_[xy] properties below
# won't always trigger the automatic retraction
$layer_gcode .= $extruder->retract;

399
lib/Slic3r/Print/Object.pm Normal file
View File

@ -0,0 +1,399 @@
package Slic3r::Print::Object;
use Moo;
use Slic3r::Geometry qw(scale);
use Slic3r::Geometry::Clipper qw(diff_ex intersection_ex union_ex);
has 'x_length' => (is => 'ro', required => 1);
has 'y_length' => (is => 'ro', required => 1);
has 'layers' => (
traits => ['Array'],
is => 'rw',
#isa => 'ArrayRef[Slic3r::Layer]',
default => sub { [] },
);
sub layer_count {
my $self = shift;
return scalar @{ $self->layers };
}
sub layer {
my $self = shift;
my ($layer_id) = @_;
# extend our print by creating all necessary layers
if ($self->layer_count < $layer_id + 1) {
for (my $i = $self->layer_count; $i <= $layer_id; $i++) {
push @{ $self->layers }, Slic3r::Layer->new(id => $i);
}
}
return $self->layers->[$layer_id];
}
sub detect_surfaces_type {
my $self = shift;
Slic3r::debugf "Detecting solid surfaces...\n";
# prepare a reusable subroutine to make surface differences
my $surface_difference = sub {
my ($subject_surfaces, $clip_surfaces, $result_type) = @_;
my $expolygons = diff_ex(
[ map { ref $_ eq 'ARRAY' ? $_ : ref $_ eq 'Slic3r::ExPolygon' ? @$_ : $_->p } @$subject_surfaces ],
[ map { ref $_ eq 'ARRAY' ? $_ : ref $_ eq 'Slic3r::ExPolygon' ? @$_ : $_->p } @$clip_surfaces ],
1,
);
return grep $_->contour->is_printable,
map Slic3r::Surface->new(expolygon => $_, surface_type => $result_type),
@$expolygons;
};
for (my $i = 0; $i < $self->layer_count; $i++) {
my $layer = $self->layers->[$i];
my $upper_layer = $self->layers->[$i+1];
my $lower_layer = $i > 0 ? $self->layers->[$i-1] : undef;
my (@bottom, @top, @internal) = ();
# find top surfaces (difference between current surfaces
# of current layer and upper one)
if ($upper_layer) {
@top = $surface_difference->($layer->slices, $upper_layer->slices, 'top');
} else {
# if no upper layer, all surfaces of this one are solid
@top = @{$layer->slices};
$_->surface_type('top') for @top;
}
# find bottom surfaces (difference between current surfaces
# of current layer and lower one)
if ($lower_layer) {
@bottom = $surface_difference->($layer->slices, $lower_layer->slices, 'bottom');
} else {
# if no lower layer, all surfaces of this one are solid
@bottom = @{$layer->slices};
$_->surface_type('bottom') for @bottom;
}
# now, if the object contained a thin membrane, we could have overlapping bottom
# and top surfaces; let's do an intersection to discover them and consider them
# as bottom surfaces (to allow for bridge detection)
if (@top && @bottom) {
my $overlapping = intersection_ex([ map $_->p, @top ], [ map $_->p, @bottom ]);
Slic3r::debugf " layer %d contains %d membrane(s)\n", $layer->id, scalar(@$overlapping);
@top = $surface_difference->([@top], $overlapping, 'top');
}
# find internal surfaces (difference between top/bottom surfaces and others)
@internal = $surface_difference->($layer->slices, [@top, @bottom], 'internal');
# save surfaces to layer
@{$layer->slices} = (@bottom, @top, @internal);
Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
$layer->id, scalar(@bottom), scalar(@top), scalar(@internal);
}
# clip surfaces to the fill boundaries
foreach my $layer (@{$self->layers}) {
@{$layer->surfaces} = ();
foreach my $surface (@{$layer->slices}) {
my $intersection = intersection_ex(
[ $surface->p ],
[ map @$_, @{$layer->fill_boundaries} ],
);
push @{$layer->surfaces}, map Slic3r::Surface->new
(expolygon => $_, surface_type => $surface->surface_type),
@$intersection;
}
# free memory
@{$layer->fill_boundaries} = ();
}
}
sub discover_horizontal_shells {
my $self = shift;
Slic3r::debugf "==> DISCOVERING HORIZONTAL SHELLS\n";
for (my $i = 0; $i < $self->layer_count; $i++) {
my $layer = $self->layers->[$i];
foreach my $type (qw(top bottom)) {
# find surfaces of current type for current layer
# and offset them to take perimeters into account
my @surfaces = map $_->offset($Slic3r::perimeters * scale $Slic3r::flow_width),
grep $_->surface_type eq $type, @{$layer->fill_surfaces} or next;
my $surfaces_p = [ map $_->p, @surfaces ];
Slic3r::debugf "Layer %d has %d surfaces of type '%s'\n",
$i, scalar(@surfaces), $type;
for (my $n = $type eq 'top' ? $i-1 : $i+1;
abs($n - $i) <= $Slic3r::solid_layers-1;
$type eq 'top' ? $n-- : $n++) {
next if $n < 0 || $n >= $self->layer_count;
Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
my @neighbor_surfaces = @{$self->layers->[$n]->surfaces};
my @neighbor_fill_surfaces = @{$self->layers->[$n]->fill_surfaces};
# find intersection between neighbor and current layer's surfaces
# intersections have contours and holes
my $new_internal_solid = intersection_ex(
$surfaces_p,
[ map $_->p, grep $_->surface_type =~ /internal/, @neighbor_surfaces ],
undef, 1,
);
next if !@$new_internal_solid;
# internal-solid are the union of the existing internal-solid surfaces
# and new ones
my $internal_solid = union_ex([
( map $_->p, grep $_->surface_type eq 'internal-solid', @neighbor_fill_surfaces ),
( map @$_, @$new_internal_solid ),
]);
# subtract intersections from layer surfaces to get resulting inner surfaces
my $internal = diff_ex(
[ map $_->p, grep $_->surface_type eq 'internal', @neighbor_fill_surfaces ],
[ map @$_, @$internal_solid ],
);
Slic3r::debugf " %d internal-solid and %d internal surfaces found\n",
scalar(@$internal_solid), scalar(@$internal);
# Note: due to floating point math we're going to get some very small
# polygons as $internal; they will be removed by removed_small_features()
# assign resulting inner surfaces to layer
my $neighbor_fill_surfaces = $self->layers->[$n]->fill_surfaces;
@$neighbor_fill_surfaces = ();
push @$neighbor_fill_surfaces, Slic3r::Surface->new
(expolygon => $_, surface_type => 'internal')
for @$internal;
# assign new internal-solid surfaces to layer
push @$neighbor_fill_surfaces, Slic3r::Surface->new
(expolygon => $_, surface_type => 'internal-solid')
for @$internal_solid;
# assign top and bottom surfaces to layer
foreach my $s (Slic3r::Surface->group(grep $_->surface_type =~ /top|bottom/, @neighbor_fill_surfaces)) {
my $solid_surfaces = diff_ex(
[ map $_->p, @$s ],
[ map @$_, @$internal_solid, @$internal ],
);
push @$neighbor_fill_surfaces, Slic3r::Surface->new
(expolygon => $_, surface_type => $s->[0]->surface_type, bridge_angle => $s->[0]->bridge_angle)
for @$solid_surfaces;
}
}
}
}
}
# combine fill surfaces across layers
sub infill_every_layers {
my $self = shift;
return unless $Slic3r::infill_every_layers > 1 && $Slic3r::fill_density > 0;
# start from bottom, skip first layer
for (my $i = 1; $i < $self->layer_count; $i++) {
my $layer = $self->layer($i);
# skip layer if no internal fill surfaces
next if !grep $_->surface_type eq 'internal', @{$layer->fill_surfaces};
# for each possible depth, look for intersections with the lower layer
# we do this from the greater depth to the smaller
for (my $d = $Slic3r::infill_every_layers - 1; $d >= 1; $d--) {
next if ($i - $d) < 0;
my $lower_layer = $self->layer($i - 1);
# select surfaces of the lower layer having the depth we're looking for
my @lower_surfaces = grep $_->depth_layers == $d && $_->surface_type eq 'internal',
@{$lower_layer->fill_surfaces};
next if !@lower_surfaces;
# calculate intersection between our surfaces and theirs
my $intersection = intersection_ex(
[ map $_->p, grep $_->depth_layers <= $d, @lower_surfaces ],
[ map $_->p, grep $_->surface_type eq 'internal', @{$layer->fill_surfaces} ],
);
next if !@$intersection;
# new fill surfaces of the current layer are:
# - any non-internal surface
# - intersections found (with a $d + 1 depth)
# - any internal surface not belonging to the intersection (with its original depth)
{
my @new_surfaces = ();
push @new_surfaces, grep $_->surface_type ne 'internal', @{$layer->fill_surfaces};
push @new_surfaces, map Slic3r::Surface->new
(expolygon => $_, surface_type => 'internal', depth_layers => $d + 1), @$intersection;
foreach my $depth (reverse $d..$Slic3r::infill_every_layers) {
push @new_surfaces, map Slic3r::Surface->new
(expolygon => $_, surface_type => 'internal', depth_layers => $depth),
# difference between our internal layers with depth == $depth
# and the intersection found
@{diff_ex(
[
map $_->p, grep $_->surface_type eq 'internal' && $_->depth_layers == $depth,
@{$layer->fill_surfaces},
],
[ map @$_, @$intersection ],
1,
)};
}
@{$layer->fill_surfaces} = @new_surfaces;
}
# now we remove the intersections from lower layer
{
my @new_surfaces = ();
push @new_surfaces, grep $_->surface_type ne 'internal', @{$lower_layer->fill_surfaces};
foreach my $depth (1..$Slic3r::infill_every_layers) {
push @new_surfaces, map Slic3r::Surface->new
(expolygon => $_, surface_type => 'internal', depth_layers => $depth),
# difference between internal layers with depth == $depth
# and the intersection found
@{diff_ex(
[
map $_->p, grep $_->surface_type eq 'internal' && $_->depth_layers == $depth,
@{$lower_layer->fill_surfaces},
],
[ map @$_, @$intersection ],
1,
)};
}
@{$lower_layer->fill_surfaces} = @new_surfaces;
}
}
}
}
sub generate_support_material {
my $self = shift;
# determine unsupported surfaces
my %layers = ();
my @unsupported_expolygons = ();
{
my (@a, @b) = ();
for my $i (reverse 0 .. $#{$self->layers}) {
my $layer = $self->layers->[$i];
my @c = ();
if (@b) {
@c = @{diff_ex(
[ map @$_, @b ],
[ map @$_, map $_->expolygon->offset_ex(scale $Slic3r::flow_width), @{$layer->slices} ],
)};
$layers{$i} = [@c];
}
@b = @{union_ex([ map @$_, @c, @a ])};
# get unsupported surfaces for current layer as all bottom slices
# minus the bridges offsetted to cover their perimeters.
# actually, we are marking as bridges more than we should be, so
# better build support material for bridges too rather than ignoring
# those parts. a visibility check algorithm is needed.
# @a = @{diff_ex(
# [ map $_->p, grep $_->surface_type eq 'bottom', @{$layer->slices} ],
# [ map @$_, map $_->expolygon->offset_ex(scale $Slic3r::flow_spacing * $Slic3r::perimeters),
# grep $_->surface_type eq 'bottom' && defined $_->bridge_angle,
# @{$layer->fill_surfaces} ],
# )};
@a = map $_->expolygon->clone, grep $_->surface_type eq 'bottom', @{$layer->slices};
$_->simplify(scale $Slic3r::flow_spacing * 3) for @a;
push @unsupported_expolygons, @a;
}
}
return if !@unsupported_expolygons;
# generate paths for the pattern that we're going to use
my $support_patterns = [];
{
my @support_material_areas = map $_->offset_ex(scale 5),
@{union_ex([ map @$_, @unsupported_expolygons ])};
my $fill = Slic3r::Fill->new(print => $self);
foreach my $angle (0, 90) {
my @patterns = ();
foreach my $expolygon (@support_material_areas) {
my @paths = $fill->fillers->{rectilinear}->fill_surface(
Slic3r::Surface->new(
expolygon => $expolygon,
bridge_angle => $Slic3r::fill_angle + 45 + $angle,
),
density => 0.20,
flow_spacing => $Slic3r::flow_spacing,
);
my $params = shift @paths;
push @patterns,
map Slic3r::ExtrusionPath->new(
polyline => Slic3r::Polyline->new(@$_),
role => 'support-material',
depth_layers => 1,
flow_spacing => $params->{flow_spacing},
), @paths;
}
push @$support_patterns, [@patterns];
}
}
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(undef, "support.svg",
polylines => [ map $_->polyline, map @$_, @$support_patterns ],
);
}
# apply the pattern to layers
{
my $clip_pattern = sub {
my ($layer_id, $expolygons) = @_;
my @paths = ();
foreach my $expolygon (@$expolygons) {
push @paths, map $_->clip_with_expolygon($expolygon),
map $_->clip_with_polygon($expolygon->bounding_box_polygon),
@{$support_patterns->[ $layer_id % 2 ]};
};
return @paths;
};
my %layer_paths = ();
Slic3r::parallelize(
items => [ keys %layers ],
thread_cb => sub {
my $q = shift;
my $paths = {};
while (defined (my $layer_id = $q->dequeue)) {
$paths->{$layer_id} = [ $clip_pattern->($layer_id, $layers{$layer_id}) ];
}
return $paths;
},
collect_cb => sub {
my $paths = shift;
$layer_paths{$_} = $paths->{$_} for keys %$paths;
},
no_threads_cb => sub {
$layer_paths{$_} = [ $clip_pattern->($_, $layers{$_}) ] for keys %layers;
},
);
foreach my $layer_id (keys %layer_paths) {
my $layer = $self->layers->[$layer_id];
$layer->support_fills(Slic3r::ExtrusionPath::Collection->new);
push @{$layer->support_fills->paths}, @{$layer_paths{$layer_id}};
}
}
}
1;

View File

@ -8,6 +8,7 @@ use Time::HiRes qw(gettimeofday tv_interval);
# full path (relative or absolute) to the input file
has 'input_file' => (is => 'ro', required => 1);
has 'additional_input_files' => (is => 'ro', required => 0, default => sub {[]});
# full path (relative or absolute) to the output file; it may contain
# formatting variables like [layer_height] etc.
@ -19,18 +20,21 @@ has 'processing_time' => (is => 'rw', required => 0);
sub slice_input {
my $self = shift;
my $print;
if ($self->input_file =~ /\.stl$/i) {
my $mesh = Slic3r::Format::STL->read_file($self->input_file);
my $print = Slic3r::Print->new;
foreach my $input_file ($self->input_file, @{$self->additional_input_files}) {
if ($input_file =~ /\.stl$/i) {
my $mesh = Slic3r::Format::STL->read_file($input_file);
$mesh->check_manifoldness;
$print = Slic3r::Print->new_from_mesh($mesh);
} elsif ( $self->input_file =~ /\.amf(\.xml)?$/i) {
my ($materials, $meshes_by_material) = Slic3r::Format::AMF->read_file($self->input_file);
$print->add_object_from_mesh($mesh);
} elsif ( $input_file =~ /\.amf(\.xml)?$/i) {
my ($materials, $meshes_by_material) = Slic3r::Format::AMF->read_file($input_file);
$_->check_manifoldness for values %$meshes_by_material;
$print = Slic3r::Print->new_from_mesh($meshes_by_material->{_} || +(values %$meshes_by_material)[0]);
$print->add_object_from_mesh($meshes_by_material->{_} || +(values %$meshes_by_material)[0]);
} else {
die "Input file must have .stl or .amf(.xml) extension\n";
}
}
return $print;
}
sub go {
@ -42,76 +46,82 @@ sub go {
$self->status_cb->(5, "Processing input file " . $self->input_file);
$self->status_cb->(10, "Processing triangulated mesh");
my $print = $self->slice_input;
$print->arrange_objects;
# make perimeters
# this will add a set of extrusion loops to each layer
# as well as generate infill boundaries
$self->status_cb->(20, "Generating perimeters");
{
my $perimeter_maker = Slic3r::Perimeter->new;
$perimeter_maker->make_perimeter($_) for @{$print->layers};
}
$_->make_perimeters for map @{$_->layers}, @{$print->objects};
# this will clip $layer->surfaces to the infill boundaries
# and split them in top/bottom/internal surfaces;
$self->status_cb->(30, "Detecting solid surfaces");
$print->detect_surfaces_type;
$_->detect_surfaces_type for @{$print->objects};
# decide what surfaces are to be filled
$self->status_cb->(35, "Preparing infill surfaces");
$_->prepare_fill_surfaces for @{$print->layers};
$_->prepare_fill_surfaces for map @{$_->layers}, @{$print->objects};
# this will remove unprintable surfaces
# (those that are too tight for extrusion)
$self->status_cb->(40, "Cleaning up");
$_->remove_small_surfaces for @{$print->layers};
$_->remove_small_surfaces for map @{$_->layers}, @{$print->objects};
# this will detect bridges and reverse bridges
# and rearrange top/bottom/internal surfaces
$self->status_cb->(45, "Detect bridges");
$_->process_bridges for @{$print->layers};
$_->process_bridges for map @{$_->layers}, @{$print->objects};
# this will remove unprintable perimeter loops
# (those that are too tight for extrusion)
$self->status_cb->(50, "Cleaning up the perimeters");
$_->remove_small_perimeters for @{$print->layers};
$_->remove_small_perimeters for map @{$_->layers}, @{$print->objects};
# detect which fill surfaces are near external layers
# they will be split in internal and internal-solid surfaces
$self->status_cb->(60, "Generating horizontal shells");
$print->discover_horizontal_shells;
$_->discover_horizontal_shells for @{$print->objects};
# free memory
@{$_->surfaces} = () for @{$print->layers};
@{$_->surfaces} = () for map @{$_->layers}, @{$print->objects};
# combine fill surfaces to honor the "infill every N layers" option
$self->status_cb->(70, "Combining infill");
$print->infill_every_layers;
$_->infill_every_layers for @{$print->objects};
# this will generate extrusion paths for each layer
$self->status_cb->(80, "Infilling layers");
{
my $fill_maker = Slic3r::Fill->new('print' => $print);
my @items = (); # [obj_idx, layer_id]
foreach my $obj_idx (0 .. $#{$print->objects}) {
push @items, map [$obj_idx, $_], 0..$#{$print->objects->[$obj_idx]->layers};
}
Slic3r::parallelize(
items => [ 0..($print->layer_count-1) ],
items => [@items],
thread_cb => sub {
my $q = shift;
$Slic3r::Geometry::Clipper::clipper = Math::Clipper->new;
my $fills = {};
while (defined (my $layer_id = $q->dequeue)) {
$fills->{$layer_id} = [ $fill_maker->make_fill($print->layers->[$layer_id]) ];
while (defined (my $obj_layer = $q->dequeue)) {
my ($obj_idx, $layer_id) = @$obj_layer;
$fills->{$obj_idx} ||= {};
$fills->{$obj_idx}{$layer_id} = [ $fill_maker->make_fill($print->objects->[$obj_idx]->layers->[$layer_id]) ];
}
return $fills;
},
collect_cb => sub {
my $fills = shift;
foreach my $layer_id (keys %$fills) {
@{$print->layers->[$layer_id]->fills} = @{$fills->{$layer_id}};
foreach my $obj_idx (keys %$fills) {
foreach my $layer_id (keys %{$fills->{$obj_idx}}) {
@{$print->objects->[$obj_idx]->layers->[$layer_id]->fills} = @{$fills->{$obj_idx}{$layer_id}};
}
}
},
no_threads_cb => sub {
foreach my $layer (@{$print->layers}) {
foreach my $layer (map @{$_->layers}, @{$print->objects}) {
@{$layer->fills} = $fill_maker->make_fill($layer);
}
},
@ -121,15 +131,15 @@ sub go {
# generate support material
if ($Slic3r::support_material) {
$self->status_cb->(85, "Generating support material");
$print->generate_support_material;
$_->generate_support_material for @{$print->objects};
}
# free memory (note that support material needs fill_surfaces)
@{$_->fill_surfaces} = () for @{$print->layers};
@{$_->fill_surfaces} = () for map @{$_->layers}, @{$print->objects};
# make skirt
$self->status_cb->(88, "Generating skirt");
$print->extrude_skirt;
$print->make_skirt;
# output everything to a G-code file
my $output_file = $self->expanded_output_filepath;

View File

@ -338,7 +338,7 @@ sub size {
sub slice_facet {
my $self = shift;
my ($print, $facet_id) = @_;
my ($print_object, $facet_id) = @_;
my ($normal, @vertices) = @{$self->facets->[$facet_id]};
Slic3r::debugf "\n==> FACET %d (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n",
$facet_id, map @{$self->vertices->[$_]}, @vertices
@ -367,7 +367,7 @@ sub slice_facet {
my $lines = {}; # layer_id => [ lines ]
for (my $layer_id = $min_layer; $layer_id <= $max_layer; $layer_id++) {
my $layer = $print->layer($layer_id);
my $layer = $print_object->layer($layer_id);
$lines->{$layer_id} ||= [];
push @{ $lines->{$layer_id} }, $self->intersect_facet($facet_id, $layer->slice_z);
}

View File

@ -26,6 +26,7 @@ my %cli_options = ();
'ignore-nonexistent-config' => \$opt{ignore_nonexistent_config},
'threads|j=i' => \$Slic3r::threads,
'export-svg' => \$opt{export_svg},
'merge' => \$opt{merge},
);
foreach my $opt_key (keys %$Slic3r::Config::Options) {
my $opt = $Slic3r::Config::Options->{$opt_key};
@ -72,9 +73,10 @@ if (!@ARGV && !$opt{save} && eval "require Slic3r::GUI; 1") {
}
if (@ARGV) {
foreach my $input_file ( @ARGV ) {
while (my $input_file = shift @ARGV) {
my $skein = Slic3r::Skein->new(
input_file => $input_file,
additional_input_files => $opt{merge} ? [ splice @ARGV, 0 ] : [],
output_file => $opt{output},
status_cb => sub {
my ($percent, $message) = @_;
@ -123,6 +125,8 @@ $j
--post-process Generated G-code will be processed with the supplied script;
call this more than once to process through multiple scripts.
--export-svg Export a SVG file containing slices instead of G-code.
--merge If multiple files are supplied, they will be composed into a single
print rather than processed individually.
Printer options:
--nozzle-diameter Diameter of nozzle in mm (default: $Slic3r::nozzle_diameter)