Cherry-picking 118f4859c472ccbc30b43101c6674dadc81d7b12

And resolve conflicts
This commit is contained in:
tamasmeszaros 2022-11-04 12:42:02 +01:00
parent ce5d242f76
commit f100a59688
19 changed files with 674 additions and 735 deletions

View file

@ -0,0 +1,17 @@
#version 110
uniform vec4 uniform_color;
uniform float emission_factor;
// x = tainted, y = specular;
varying vec2 intensity;
varying float clipping_planes_dot;
void main()
{
if (clipping_planes_dot < 0.0)
discard;
gl_FragColor = vec4(vec3(intensity.y) + uniform_color.rgb * (intensity.x + emission_factor), uniform_color.a);
}

View file

@ -0,0 +1,54 @@
#version 110
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3
uniform mat4 view_model_matrix;
uniform mat4 projection_matrix;
uniform mat3 view_normal_matrix;
uniform mat4 volume_world_matrix;
// Clipping plane - general orientation. Used by the SLA gizmo.
uniform vec4 clipping_plane;
attribute vec3 v_position;
attribute vec3 v_normal;
// x = tainted, y = specular;
varying vec2 intensity;
varying float clipping_planes_dot;
void main()
{
// First transform the normal into camera space and normalize the result.
vec3 eye_normal = normalize(view_normal_matrix * v_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec4 eye_position = view_model_matrix * vec4(v_position, 1.0);
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
gl_Position = projection_matrix * eye_position;
// Fill in the scalar for fragment shader clipping. Fragments with this value lower than zero are discarded.
clipping_planes_dot = dot(volume_world_matrix * vec4(v_position, 1.0), clipping_plane);
}

View file

@ -0,0 +1,19 @@
#version 140
uniform vec4 uniform_color;
uniform float emission_factor;
// x = tainted, y = specular;
in vec2 intensity;
in float clipping_planes_dot;
out vec4 out_color;
void main()
{
if (clipping_planes_dot < 0.0)
discard;
out_color = vec4(vec3(intensity.y) + uniform_color.rgb * (intensity.x + emission_factor), uniform_color.a);
}

View file

@ -0,0 +1,54 @@
#version 140
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3
uniform mat4 view_model_matrix;
uniform mat4 projection_matrix;
uniform mat3 view_normal_matrix;
uniform mat4 volume_world_matrix;
// Clipping plane - general orientation. Used by the SLA gizmo.
uniform vec4 clipping_plane;
in vec3 v_position;
in vec3 v_normal;
// x = tainted, y = specular;
out vec2 intensity;
out float clipping_planes_dot;
void main()
{
// First transform the normal into camera space and normalize the result.
vec3 eye_normal = normalize(view_normal_matrix * v_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec4 eye_position = view_model_matrix * vec4(v_position, 1.0);
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
gl_Position = projection_matrix * eye_position;
// Fill in the scalar for fragment shader clipping. Fragments with this value lower than zero are discarded.
clipping_planes_dot = dot(volume_world_matrix * vec4(v_position, 1.0), clipping_plane);
}

View file

@ -0,0 +1,19 @@
#version 100
precision highp float;
uniform vec4 uniform_color;
uniform float emission_factor;
// x = tainted, y = specular;
varying vec2 intensity;
varying float clipping_planes_dot;
void main()
{
if (clipping_planes_dot < 0.0)
discard;
gl_FragColor = vec4(vec3(intensity.y) + uniform_color.rgb * (intensity.x + emission_factor), uniform_color.a);
}

View file

@ -0,0 +1,54 @@
#version 100
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3
uniform mat4 view_model_matrix;
uniform mat4 projection_matrix;
uniform mat3 view_normal_matrix;
uniform mat4 volume_world_matrix;
// Clipping plane - general orientation. Used by the SLA gizmo.
uniform vec4 clipping_plane;
attribute vec3 v_position;
attribute vec3 v_normal;
// x = tainted, y = specular;
varying vec2 intensity;
varying float clipping_planes_dot;
void main()
{
// First transform the normal into camera space and normalize the result.
vec3 eye_normal = normalize(view_normal_matrix * v_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec4 eye_position = view_model_matrix * vec4(v_position, 1.0);
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
gl_Position = projection_matrix * eye_position;
// Fill in the scalar for fragment shader clipping. Fragments with this value lower than zero are discarded.
clipping_planes_dot = dot(volume_world_matrix * vec4(v_position, 1.0), clipping_plane);
}