Disable optimizations and debug check even in debug mode.
This commit is contained in:
parent
23a5edbd11
commit
f3bda8a57a
@ -1,5 +1,7 @@
|
||||
// Optimize the extrusion simulator to the bones.
|
||||
#pragma GCC optimize ("O0")
|
||||
#pragma GCC optimize ("O3")
|
||||
#undef SLIC3R_DEBUG
|
||||
#define NDEBUG
|
||||
|
||||
#include <cmath>
|
||||
#include <cassert>
|
||||
|
@ -1,12 +1,14 @@
|
||||
#include <assert.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
|
||||
#include <boost/static_assert.hpp>
|
||||
|
||||
#include "../ClipperUtils.hpp"
|
||||
#include "../ExPolygon.hpp"
|
||||
#include "../PolylineCollection.hpp"
|
||||
#include "../Surface.hpp"
|
||||
|
||||
#include "FillRectilinear2.hpp"
|
||||
@ -36,11 +38,13 @@
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
#ifndef clamp
|
||||
template<typename T>
|
||||
static inline T clamp(T low, T high, T x)
|
||||
{
|
||||
return std::max<T>(low, std::min<T>(high, x));
|
||||
}
|
||||
#endif /* clamp */
|
||||
|
||||
#ifndef sqr
|
||||
template<typename T>
|
||||
@ -48,21 +52,21 @@ static inline T sqr(T x)
|
||||
{
|
||||
return x * x;
|
||||
}
|
||||
#endif
|
||||
#endif /* sqr */
|
||||
|
||||
#ifndef mag2
|
||||
static inline coordf_t mag2(const Point &p)
|
||||
{
|
||||
return sqr(coordf_t(p.x)) + sqr(coordf_t(p.y));
|
||||
}
|
||||
#endif
|
||||
#endif /* mag2 */
|
||||
|
||||
#ifndef mag
|
||||
static inline coordf_t mag(const Point &p)
|
||||
{
|
||||
return std::sqrt(mag2(p));
|
||||
}
|
||||
#endif
|
||||
#endif /* mag */
|
||||
|
||||
enum Orientation
|
||||
{
|
||||
@ -72,9 +76,12 @@ enum Orientation
|
||||
};
|
||||
|
||||
// Return orientation of the three points (clockwise, counter-clockwise, colinear)
|
||||
// The predicate is exact.
|
||||
inline Orientation orient(const Point &a, const Point &b, const Point &c)
|
||||
// The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries.
|
||||
//FIXME Make sure the temporaries do not overflow,
|
||||
// which means, the coord_t types must not have some of the topmost bits utilized.
|
||||
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
|
||||
{
|
||||
BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
|
||||
int64_t u = int64_t(b.x) * int64_t(c.y) - int64_t(b.y) * int64_t(c.x);
|
||||
int64_t v = int64_t(a.x) * int64_t(c.y) - int64_t(a.y) * int64_t(c.x);
|
||||
int64_t w = int64_t(a.x) * int64_t(b.y) - int64_t(a.y) * int64_t(b.x);
|
||||
@ -84,12 +91,12 @@ inline Orientation orient(const Point &a, const Point &b, const Point &c)
|
||||
|
||||
// Return orientation of the polygon.
|
||||
// The input polygon must not contain duplicate points.
|
||||
inline bool is_ccw(const Polygon &poly)
|
||||
static inline bool is_ccw(const Polygon &poly)
|
||||
{
|
||||
// The polygon shall be at least a triangle.
|
||||
assert(poly.points.size() >= 3);
|
||||
if (poly.points.size() < 3)
|
||||
return false;
|
||||
return true;
|
||||
|
||||
// 1) Find the lowest lexicographical point.
|
||||
int imin = 0;
|
||||
@ -100,94 +107,83 @@ inline bool is_ccw(const Polygon &poly)
|
||||
imin = i;
|
||||
}
|
||||
|
||||
// 2) Detect its orientation.
|
||||
// 2) Detect the orientation of the corner imin.
|
||||
size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1;
|
||||
size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1);
|
||||
Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]);
|
||||
// The lowest bottom point must not be collinear if the polygon does not contain duplicate points.
|
||||
// The lowest bottom point must not be collinear if the polygon does not contain duplicate points
|
||||
// or overlapping segments.
|
||||
assert(o != ORIENTATION_COLINEAR);
|
||||
return o == ORIENTATION_CCW;
|
||||
}
|
||||
|
||||
/*
|
||||
// Segment of a polygon, starting with p1, ending with p2.
|
||||
// The indices seg1, seg2 address an end point of a starting resp. ending segment of a polygon.
|
||||
struct PolygonSegment
|
||||
// Having a segment of a closed polygon, calculate its Euclidian length.
|
||||
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
|
||||
// therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc.
|
||||
static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
|
||||
{
|
||||
Point p1;
|
||||
size_t seg1;
|
||||
Point p2;
|
||||
size_t seg2;
|
||||
};
|
||||
|
||||
PolygonSegment reverse_segment(const Polygon &poly, const PolygonSegment &seg)
|
||||
{
|
||||
PolygonSegment out;
|
||||
out.p1 = seg.p2;
|
||||
out.p2 = seg.p1;
|
||||
out.seg1 = seg.seg2;
|
||||
out.seg2 = seg.seg1;
|
||||
|
||||
}
|
||||
*/
|
||||
|
||||
coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
|
||||
{
|
||||
if (seg1 == seg2)
|
||||
// The points p1 and p2 reside on the same segment.
|
||||
// Measure a linear segment.
|
||||
return p1.distance_to(p2);
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
// Verify that p1 lies on seg1. This is difficult to verify precisely,
|
||||
// but at least verify, that p1 lies in the bounding box of seg1.
|
||||
for (size_t i = 0; i < 2; ++ i) {
|
||||
size_t seg = (i == 0) ? seg1 : seg2;
|
||||
Point px = (i == 0) ? p1 : p2;
|
||||
Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
|
||||
Point pb = poly.points[seg];
|
||||
if (pa.x > pb.x)
|
||||
std::swap(pa.x, pb.x);
|
||||
if (pa.y > pb.y)
|
||||
std::swap(pa.y, pb.y);
|
||||
assert(px.x >= pa.x && px.x <= pb.x);
|
||||
assert(px.y >= pa.y && px.y <= pb.y);
|
||||
}
|
||||
#endif /* SLIC3R_DEBUG */
|
||||
const Point *pPrev = &p1;
|
||||
const Point *pThis = NULL;
|
||||
coordf_t len = 0;
|
||||
if (seg1 < seg2) {
|
||||
for (size_t i = seg1; i < seg2; ++ i) {
|
||||
const Point &pThis = poly.points[i];
|
||||
len += pPrev->distance_to(pThis);
|
||||
pPrev = &pThis;
|
||||
}
|
||||
if (seg1 <= seg2) {
|
||||
for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis)
|
||||
len += pPrev->distance_to(*(pThis = &poly.points[i]));
|
||||
} else {
|
||||
for (size_t i = seg1; i < poly.points.size(); ++ i) {
|
||||
const Point &pThis = poly.points[i];
|
||||
len += pPrev->distance_to(pThis);
|
||||
pPrev = &pThis;
|
||||
}
|
||||
for (size_t i = 0; i < seg2; ++ i) {
|
||||
const Point &pThis = poly.points[i];
|
||||
len += pPrev->distance_to(pThis);
|
||||
pPrev = &pThis;
|
||||
}
|
||||
for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis)
|
||||
len += pPrev->distance_to(*(pThis = &poly.points[i]));
|
||||
for (size_t i = 0; i < seg2; ++ i, pPrev = pThis)
|
||||
len += pPrev->distance_to(*(pThis = &poly.points[i]));
|
||||
}
|
||||
len += pPrev->distance_to(p2);
|
||||
return len;
|
||||
}
|
||||
|
||||
void segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
|
||||
// Append a segment of a closed polygon to a polyline.
|
||||
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop.
|
||||
// Only insert intermediate points between seg1 and seg2.
|
||||
static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
|
||||
{
|
||||
if (seg1 == seg2)
|
||||
if (seg1 == seg2) {
|
||||
// Nothing to append from this segment.
|
||||
return;
|
||||
|
||||
if (seg1 < seg2) {
|
||||
} else if (seg1 < seg2) {
|
||||
// Do not append a point pointed to by seg2.
|
||||
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2);
|
||||
} else {
|
||||
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
|
||||
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end());
|
||||
// Do not append a point pointed to by seg2.
|
||||
out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2);
|
||||
}
|
||||
}
|
||||
|
||||
void segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
|
||||
// Append a segment of a closed polygon to a polyline.
|
||||
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
|
||||
// but this time the segment is traversed backward.
|
||||
// Only insert intermediate points between seg1 and seg2.
|
||||
static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
|
||||
{
|
||||
if (seg1 == seg2)
|
||||
// Nothing to append from this segment.
|
||||
return;
|
||||
|
||||
if (seg1 > seg2) {
|
||||
out.reserve(out.size() + seg2 - seg1);
|
||||
if (seg1 >= seg2) {
|
||||
out.reserve(seg1 - seg2);
|
||||
for (size_t i = seg1; i > seg2; -- i)
|
||||
out.push_back(polygon.points[i - 1]);
|
||||
} else {
|
||||
// it could be, that seg1 == seg2. In that case, append the complete loop.
|
||||
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
|
||||
for (size_t i = seg1; i > 0; -- i)
|
||||
out.push_back(polygon.points[i - 1]);
|
||||
@ -196,6 +192,7 @@ void segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, s
|
||||
}
|
||||
}
|
||||
|
||||
// Intersection point of a vertical line with a polygon segment.
|
||||
class SegmentIntersection
|
||||
{
|
||||
public:
|
||||
@ -208,10 +205,17 @@ public:
|
||||
consumed_perimeter_right(false)
|
||||
{}
|
||||
|
||||
// Index of a contour in ExPolygonWithOffset, with which this vertical line intersects.
|
||||
size_t iContour;
|
||||
// Index of a segment in iContour, with which this vertical line intersects.
|
||||
size_t iSegment;
|
||||
// y position of the intersection.
|
||||
coord_t pos;
|
||||
|
||||
// Kind of intersection. With the original contour, or with the inner offestted contour?
|
||||
// A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH,
|
||||
// but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH,
|
||||
// and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH.
|
||||
enum SegmentIntersectionType {
|
||||
OUTER_LOW = 0,
|
||||
OUTER_HIGH = 1,
|
||||
@ -228,12 +232,10 @@ public:
|
||||
// Right means right from the vertical segment.
|
||||
bool consumed_perimeter_right;
|
||||
|
||||
// For the INNER_LOW type, this point may be connected to another INNER_LOW point.
|
||||
// For the INNER_HIGH type, this point may be connected to another INNER_HIGH point.
|
||||
// For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour.
|
||||
// For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour.
|
||||
// If INNER_LOW is connected to INNER_HIGH or vice versa,
|
||||
// one has to make sure the vertical infill line does not overlap with the connecting perimeter line.
|
||||
|
||||
|
||||
bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; }
|
||||
bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; }
|
||||
bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; }
|
||||
@ -243,21 +245,31 @@ public:
|
||||
{ return pos < other.pos; }
|
||||
};
|
||||
|
||||
// A vertical line with intersection points with polygons.
|
||||
class SegmentedIntersectionLine
|
||||
{
|
||||
public:
|
||||
size_t idx;
|
||||
coord_t pos;
|
||||
|
||||
// Index of this vertical intersection line.
|
||||
size_t idx;
|
||||
// x position of this vertical intersection line.
|
||||
coord_t pos;
|
||||
// List of intersection points with polygons, sorted increasingly by the y axis.
|
||||
std::vector<SegmentIntersection> intersections;
|
||||
};
|
||||
|
||||
// A container maintaining an expolygon with its inner offsetted polygon.
|
||||
// The purpose of the inner offsetted polygon is to provide segments to connect the infill lines.
|
||||
struct ExPolygonWithOffset
|
||||
{
|
||||
public:
|
||||
ExPolygonWithOffset(const ExPolygon &aexpolygon, coord_t aoffset) : expolygon(aexpolygon)
|
||||
{
|
||||
polygons_inner = offset((Polygons)expolygon, aoffset);
|
||||
polygons_inner = offset((Polygons)expolygon, aoffset,
|
||||
CLIPPER_OFFSET_SCALE,
|
||||
ClipperLib::jtMiter,
|
||||
// for the infill pattern, don't cut the corners.
|
||||
// default miterLimt = 3
|
||||
10.);
|
||||
n_contours_outer = 1 + expolygon.holes.size();
|
||||
n_contours_inner = polygons_inner.size();
|
||||
n_contours = n_contours_outer + n_contours_inner;
|
||||
@ -302,11 +314,11 @@ protected:
|
||||
};
|
||||
|
||||
// For a vertical line, an inner contour and an intersection point,
|
||||
// find an intersection point on the previous / next vertical line.
|
||||
// The intersection point is connected with the prev / next intersection point with iInnerContour.
|
||||
// Return -1 if there is no such point.
|
||||
inline int intersection_on_prev_next_vertical_line(
|
||||
const ExPolygonWithOffset &poly_with_offset,
|
||||
// find an intersection point on the previous resp. next vertical line.
|
||||
// The intersection point is connected with the prev resp. next intersection point with iInnerContour.
|
||||
// Return -1 if there is no such point on the previous resp. next vertical line.
|
||||
static inline int intersection_on_prev_next_vertical_line(
|
||||
const ExPolygonWithOffset &poly_with_offset,
|
||||
const std::vector<SegmentedIntersectionLine> &segs,
|
||||
size_t iVerticalLine,
|
||||
size_t iInnerContour,
|
||||
@ -330,13 +342,16 @@ inline int intersection_on_prev_next_vertical_line(
|
||||
const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
|
||||
// Resulting index of an intersection point on il2.
|
||||
int out = -1;
|
||||
// Find an intersection point on iVerticalLineOther, intersecting iInnerContour
|
||||
// at the same orientation as iIntersection, and being closest to iIntersection
|
||||
// in the number of contour segments, when following the direction of the contour.
|
||||
int dmin = std::numeric_limits<int>::max();
|
||||
for (size_t i = 0; i < il2.intersections.size(); ++ i) {
|
||||
const SegmentIntersection &itsct2 = il2.intersections[i];
|
||||
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
|
||||
// The intersection points lie on the same contour and have the same orientation.
|
||||
// Find the intersection point with a shortest paht.
|
||||
int d = int(itsct.iSegment) - int(itsct2.iSegment);
|
||||
// Find the intersection point with a shortest path in the direction of the contour.
|
||||
int d = int(itsct2.iSegment) - int(itsct.iSegment);
|
||||
if (ccw != dir_is_next)
|
||||
d = - d;
|
||||
if (d < 0)
|
||||
@ -347,10 +362,11 @@ inline int intersection_on_prev_next_vertical_line(
|
||||
}
|
||||
}
|
||||
}
|
||||
//FIXME this routine is not asymptotic optimal, it will be slow if there are many intersection points along the line.
|
||||
return out;
|
||||
}
|
||||
|
||||
inline int intersection_on_prev_vertical_line(
|
||||
static inline int intersection_on_prev_vertical_line(
|
||||
const ExPolygonWithOffset &poly_with_offset,
|
||||
const std::vector<SegmentedIntersectionLine> &segs,
|
||||
size_t iVerticalLine,
|
||||
@ -360,7 +376,7 @@ inline int intersection_on_prev_vertical_line(
|
||||
return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false);
|
||||
}
|
||||
|
||||
int intersection_on_next_vertical_line(
|
||||
static inline intersection_on_next_vertical_line(
|
||||
const ExPolygonWithOffset &poly_with_offset,
|
||||
const std::vector<SegmentedIntersectionLine> &segs,
|
||||
size_t iVerticalLine,
|
||||
@ -371,40 +387,56 @@ int intersection_on_next_vertical_line(
|
||||
}
|
||||
|
||||
// Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded.
|
||||
inline int intersection_unused_on_prev_vertical_line(
|
||||
const ExPolygonWithOffset &poly_with_offset,
|
||||
static inline int intersection_unused_on_prev_next_vertical_line(
|
||||
const ExPolygonWithOffset &poly_with_offset,
|
||||
const std::vector<SegmentedIntersectionLine> &segs,
|
||||
size_t iVerticalLine,
|
||||
size_t iInnerContour,
|
||||
size_t iIntersection)
|
||||
size_t iIntersection,
|
||||
bool dir_is_next)
|
||||
{
|
||||
int iIntersectionPrev = intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false);
|
||||
if (iIntersectionPrev == -1)
|
||||
int iIntersectionOther = intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, dir_is_next);
|
||||
if (iIntersectionOther == -1)
|
||||
return -1;
|
||||
assert(iVerticalLine > 0);
|
||||
const SegmentedIntersectionLine &il_prev = segs[iVerticalLine - 1];
|
||||
const SegmentIntersection &itsct_prev = il_prev.intersections[iIntersectionPrev];
|
||||
return itsct_prev.consumed_perimeter_right ? -1 : iIntersectionPrev;
|
||||
//FIXME this routine will propose a connecting line even if the connecting perimeter segment intersects iVertical line multiple times before reaching iIntersectionOther.
|
||||
assert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
|
||||
const SegmentedIntersectionLine &il_this = segs[iVerticalLine];
|
||||
const SegmentIntersection &itsct_this = il_this.intersections[iIntersection];
|
||||
const SegmentedIntersectionLine &il_other = segs[dir_is_next ? (iVerticalLine+1) : (iVerticalLine-1)];
|
||||
const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther];
|
||||
assert(itsct_other.is_inner());
|
||||
assert(itsct_other.is_low() || iIntersectionOther > 1);
|
||||
if (dir_is_next ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right)
|
||||
// This perimeter segment was already consumed.
|
||||
return -1;
|
||||
if (itsct_other.is_low() ? itsct_other.consumed_vertical_up : il_other.intersections[iIntersectionOther-1].consumed_vertical_up)
|
||||
// This vertical segment was already consumed.
|
||||
return -1;
|
||||
return iIntersectionOther;
|
||||
}
|
||||
|
||||
// Find an intersection on a next line, but return -1, if the connecting segment of a perimeter was already extruded.
|
||||
int intersection_unused_on_next_vertical_line(
|
||||
static inline intersection_unused_on_prev_vertical_line(
|
||||
const ExPolygonWithOffset &poly_with_offset,
|
||||
const std::vector<SegmentedIntersectionLine> &segs,
|
||||
size_t iVerticalLine,
|
||||
size_t iInnerContour,
|
||||
size_t iIntersection)
|
||||
{
|
||||
int iIntersectionNext = intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true);
|
||||
if (iIntersectionNext == -1)
|
||||
return -1;
|
||||
assert(iVerticalLine + 1 < segs.size());
|
||||
const SegmentedIntersectionLine &il = segs[iVerticalLine];
|
||||
const SegmentIntersection &itsct = il.intersections[iIntersection];
|
||||
return itsct.consumed_perimeter_right ? -1 : iIntersectionNext;
|
||||
return intersection_unused_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false);
|
||||
}
|
||||
|
||||
inline coordf_t measure_perimeter_prev_next_segment_length(
|
||||
static inline intersection_unused_on_next_vertical_line(
|
||||
const ExPolygonWithOffset &poly_with_offset,
|
||||
const std::vector<SegmentedIntersectionLine> &segs,
|
||||
size_t iVerticalLine,
|
||||
size_t iInnerContour,
|
||||
size_t iIntersection)
|
||||
{
|
||||
return intersection_unused_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true);
|
||||
}
|
||||
|
||||
// Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2.
|
||||
static inline coordf_t measure_perimeter_prev_next_segment_length(
|
||||
const ExPolygonWithOffset &poly_with_offset,
|
||||
const std::vector<SegmentedIntersectionLine> &segs,
|
||||
size_t iVerticalLine,
|
||||
@ -441,7 +473,7 @@ inline coordf_t measure_perimeter_prev_next_segment_length(
|
||||
segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
|
||||
}
|
||||
|
||||
inline coordf_t measure_perimeter_prev_segment_length(
|
||||
static inline coordf_t measure_perimeter_prev_segment_length(
|
||||
const ExPolygonWithOffset &poly_with_offset,
|
||||
const std::vector<SegmentedIntersectionLine> &segs,
|
||||
size_t iVerticalLine,
|
||||
@ -452,7 +484,7 @@ inline coordf_t measure_perimeter_prev_segment_length(
|
||||
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, false);
|
||||
}
|
||||
|
||||
inline coordf_t measure_perimeter_next_segment_length(
|
||||
static inline coordf_t measure_perimeter_next_segment_length(
|
||||
const ExPolygonWithOffset &poly_with_offset,
|
||||
const std::vector<SegmentedIntersectionLine> &segs,
|
||||
size_t iVerticalLine,
|
||||
@ -463,8 +495,11 @@ inline coordf_t measure_perimeter_next_segment_length(
|
||||
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, true);
|
||||
}
|
||||
|
||||
inline void emit_perimeter_prev_next_segment(
|
||||
const ExPolygonWithOffset &poly_with_offset,
|
||||
// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
|
||||
// The first point (the point of iIntersection) will not be inserted,
|
||||
// the last point will be inserted.
|
||||
static inline void emit_perimeter_prev_next_segment(
|
||||
const ExPolygonWithOffset &poly_with_offset,
|
||||
const std::vector<SegmentedIntersectionLine> &segs,
|
||||
size_t iVerticalLine,
|
||||
size_t iInnerContour,
|
||||
@ -492,11 +527,13 @@ inline void emit_perimeter_prev_next_segment(
|
||||
assert(itsct.iContour == itsct2.iContour);
|
||||
assert(itsct.is_inner());
|
||||
const bool forward = (itsct.is_low() == ccw) == dir_is_next;
|
||||
out.points.push_back(Point(il.pos, itsct.pos));
|
||||
// Do not append the first point.
|
||||
// out.points.push_back(Point(il.pos, itsct.pos));
|
||||
if (forward)
|
||||
segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
|
||||
polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
|
||||
else
|
||||
segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
|
||||
polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
|
||||
// Append the last point.
|
||||
out.points.push_back(Point(il2.pos, itsct2.pos));
|
||||
}
|
||||
|
||||
@ -804,20 +841,25 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
// Start a new path.
|
||||
polylines_out.push_back(Polyline());
|
||||
polyline_current = &polylines_out.back();
|
||||
// Emit the first point of a path.
|
||||
pointLast = Point(segs[i_vline].pos, segs[i_vline].intersections[i_intersection].pos);
|
||||
polyline_current->points.push_back(pointLast);
|
||||
}
|
||||
|
||||
// From the initial point (i_vline, i_intersection), follow a path.
|
||||
SegmentedIntersectionLine &seg = segs[i_vline];
|
||||
SegmentedIntersectionLine &seg = segs[i_vline];
|
||||
SegmentIntersection *intrsctn = &seg.intersections[i_intersection];
|
||||
// consumed_vertical_up(false),
|
||||
// consumed_perimeter_right(false)
|
||||
bool going_up = intrsctn->is_low();
|
||||
bool try_connect = false;
|
||||
if (going_up) {
|
||||
assert(! intrsctn->consumed_vertical_up);
|
||||
assert(i_intersection + 1 < seg.intersections.size());
|
||||
// Emit a point
|
||||
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos));
|
||||
// Step back to the beginning of the vertical segment to mark it as consumed.
|
||||
if (intrsctn->is_inner()) {
|
||||
assert(i_intersection > 0);
|
||||
-- intrsctn;
|
||||
-- i_intersection;
|
||||
}
|
||||
// Consume the complete vertical segment up to the outer contour.
|
||||
do {
|
||||
intrsctn->consumed_vertical_up = true;
|
||||
@ -837,9 +879,9 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
assert(intrsctn->is_high());
|
||||
assert(i_intersection > 0);
|
||||
assert(! (intrsctn - 1)->consumed_vertical_up);
|
||||
// Emit a point
|
||||
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos));
|
||||
// Consume the complete vertical segment up to the outer contour.
|
||||
if (intrsctn->is_inner())
|
||||
intrsctn->consumed_vertical_up = true;
|
||||
do {
|
||||
assert(i_intersection > 0);
|
||||
-- intrsctn;
|
||||
@ -866,8 +908,15 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext);
|
||||
// Take the shorter path.
|
||||
bool take_next = (iPrev != -1 && iNext != -1) ? (distNext < distPrev) : distNext != -1;
|
||||
assert(intrsctn->is_inner());
|
||||
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos));
|
||||
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
|
||||
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
|
||||
if (iPrev != -1)
|
||||
segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true;
|
||||
if (iNext != -1)
|
||||
intrsctn->consumed_perimeter_right = true;
|
||||
//FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
|
||||
// Advance to the neighbor line.
|
||||
if (take_next) {
|
||||
++ i_vline;
|
||||
@ -884,7 +933,10 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
|
||||
else
|
||||
-- intrsctn;
|
||||
}
|
||||
// Finish the vertical line, pick a new starting point.
|
||||
// Finish the current vertical line,
|
||||
// reset the current vertical line to pick a new starting point in the next round.
|
||||
assert(intrsctn->is_outer());
|
||||
assert(intrsctn->is_high() == going_up);
|
||||
pointLast = Point(seg.pos, intrsctn->pos);
|
||||
polyline_current->points.push_back(pointLast);
|
||||
intrsctn = NULL;
|
||||
|
@ -22,6 +22,16 @@ protected:
|
||||
coord_t _diagonal_distance;
|
||||
};
|
||||
|
||||
class FillGrid2 : public FillRectilinear2
|
||||
{
|
||||
public:
|
||||
virtual ~FillGrid2() {}
|
||||
|
||||
protected:
|
||||
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill::Base.
|
||||
virtual float _layer_angle(size_t idx) const { return 0.f; }
|
||||
};
|
||||
|
||||
}; // namespace Slic3r
|
||||
|
||||
#endif // slic3r_FillRectilinear2_hpp_
|
||||
|
Loading…
Reference in New Issue
Block a user