Disable optimizations and debug check even in debug mode.

This commit is contained in:
bubnikv 2016-04-14 11:17:44 +02:00
parent 23a5edbd11
commit f3bda8a57a
3 changed files with 182 additions and 118 deletions

View File

@ -1,5 +1,7 @@
// Optimize the extrusion simulator to the bones. // Optimize the extrusion simulator to the bones.
#pragma GCC optimize ("O0") #pragma GCC optimize ("O3")
#undef SLIC3R_DEBUG
#define NDEBUG
#include <cmath> #include <cmath>
#include <cassert> #include <cassert>

View File

@ -1,12 +1,14 @@
#include <assert.h>
#include <stdint.h> #include <stdint.h>
#include <algorithm> #include <algorithm>
#include <cmath> #include <cmath>
#include <limits> #include <limits>
#include <boost/static_assert.hpp>
#include "../ClipperUtils.hpp" #include "../ClipperUtils.hpp"
#include "../ExPolygon.hpp" #include "../ExPolygon.hpp"
#include "../PolylineCollection.hpp"
#include "../Surface.hpp" #include "../Surface.hpp"
#include "FillRectilinear2.hpp" #include "FillRectilinear2.hpp"
@ -36,11 +38,13 @@
namespace Slic3r { namespace Slic3r {
#ifndef clamp
template<typename T> template<typename T>
static inline T clamp(T low, T high, T x) static inline T clamp(T low, T high, T x)
{ {
return std::max<T>(low, std::min<T>(high, x)); return std::max<T>(low, std::min<T>(high, x));
} }
#endif /* clamp */
#ifndef sqr #ifndef sqr
template<typename T> template<typename T>
@ -48,21 +52,21 @@ static inline T sqr(T x)
{ {
return x * x; return x * x;
} }
#endif #endif /* sqr */
#ifndef mag2 #ifndef mag2
static inline coordf_t mag2(const Point &p) static inline coordf_t mag2(const Point &p)
{ {
return sqr(coordf_t(p.x)) + sqr(coordf_t(p.y)); return sqr(coordf_t(p.x)) + sqr(coordf_t(p.y));
} }
#endif #endif /* mag2 */
#ifndef mag #ifndef mag
static inline coordf_t mag(const Point &p) static inline coordf_t mag(const Point &p)
{ {
return std::sqrt(mag2(p)); return std::sqrt(mag2(p));
} }
#endif #endif /* mag */
enum Orientation enum Orientation
{ {
@ -72,9 +76,12 @@ enum Orientation
}; };
// Return orientation of the three points (clockwise, counter-clockwise, colinear) // Return orientation of the three points (clockwise, counter-clockwise, colinear)
// The predicate is exact. // The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries.
inline Orientation orient(const Point &a, const Point &b, const Point &c) //FIXME Make sure the temporaries do not overflow,
// which means, the coord_t types must not have some of the topmost bits utilized.
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
{ {
BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
int64_t u = int64_t(b.x) * int64_t(c.y) - int64_t(b.y) * int64_t(c.x); int64_t u = int64_t(b.x) * int64_t(c.y) - int64_t(b.y) * int64_t(c.x);
int64_t v = int64_t(a.x) * int64_t(c.y) - int64_t(a.y) * int64_t(c.x); int64_t v = int64_t(a.x) * int64_t(c.y) - int64_t(a.y) * int64_t(c.x);
int64_t w = int64_t(a.x) * int64_t(b.y) - int64_t(a.y) * int64_t(b.x); int64_t w = int64_t(a.x) * int64_t(b.y) - int64_t(a.y) * int64_t(b.x);
@ -84,12 +91,12 @@ inline Orientation orient(const Point &a, const Point &b, const Point &c)
// Return orientation of the polygon. // Return orientation of the polygon.
// The input polygon must not contain duplicate points. // The input polygon must not contain duplicate points.
inline bool is_ccw(const Polygon &poly) static inline bool is_ccw(const Polygon &poly)
{ {
// The polygon shall be at least a triangle. // The polygon shall be at least a triangle.
assert(poly.points.size() >= 3); assert(poly.points.size() >= 3);
if (poly.points.size() < 3) if (poly.points.size() < 3)
return false; return true;
// 1) Find the lowest lexicographical point. // 1) Find the lowest lexicographical point.
int imin = 0; int imin = 0;
@ -100,94 +107,83 @@ inline bool is_ccw(const Polygon &poly)
imin = i; imin = i;
} }
// 2) Detect its orientation. // 2) Detect the orientation of the corner imin.
size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1; size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1;
size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1); size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1);
Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]); Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]);
// The lowest bottom point must not be collinear if the polygon does not contain duplicate points. // The lowest bottom point must not be collinear if the polygon does not contain duplicate points
// or overlapping segments.
assert(o != ORIENTATION_COLINEAR); assert(o != ORIENTATION_COLINEAR);
return o == ORIENTATION_CCW; return o == ORIENTATION_CCW;
} }
/* // Having a segment of a closed polygon, calculate its Euclidian length.
// Segment of a polygon, starting with p1, ending with p2. // The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
// The indices seg1, seg2 address an end point of a starting resp. ending segment of a polygon. // therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc.
struct PolygonSegment static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
{ {
Point p1; #ifdef SLIC3R_DEBUG
size_t seg1; // Verify that p1 lies on seg1. This is difficult to verify precisely,
Point p2; // but at least verify, that p1 lies in the bounding box of seg1.
size_t seg2; for (size_t i = 0; i < 2; ++ i) {
}; size_t seg = (i == 0) ? seg1 : seg2;
Point px = (i == 0) ? p1 : p2;
PolygonSegment reverse_segment(const Polygon &poly, const PolygonSegment &seg) Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
{ Point pb = poly.points[seg];
PolygonSegment out; if (pa.x > pb.x)
out.p1 = seg.p2; std::swap(pa.x, pb.x);
out.p2 = seg.p1; if (pa.y > pb.y)
out.seg1 = seg.seg2; std::swap(pa.y, pb.y);
out.seg2 = seg.seg1; assert(px.x >= pa.x && px.x <= pb.x);
assert(px.y >= pa.y && px.y <= pb.y);
} }
*/ #endif /* SLIC3R_DEBUG */
coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
{
if (seg1 == seg2)
// The points p1 and p2 reside on the same segment.
// Measure a linear segment.
return p1.distance_to(p2);
const Point *pPrev = &p1; const Point *pPrev = &p1;
const Point *pThis = NULL;
coordf_t len = 0; coordf_t len = 0;
if (seg1 < seg2) { if (seg1 <= seg2) {
for (size_t i = seg1; i < seg2; ++ i) { for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis)
const Point &pThis = poly.points[i]; len += pPrev->distance_to(*(pThis = &poly.points[i]));
len += pPrev->distance_to(pThis);
pPrev = &pThis;
}
} else { } else {
for (size_t i = seg1; i < poly.points.size(); ++ i) { for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis)
const Point &pThis = poly.points[i]; len += pPrev->distance_to(*(pThis = &poly.points[i]));
len += pPrev->distance_to(pThis); for (size_t i = 0; i < seg2; ++ i, pPrev = pThis)
pPrev = &pThis; len += pPrev->distance_to(*(pThis = &poly.points[i]));
}
for (size_t i = 0; i < seg2; ++ i) {
const Point &pThis = poly.points[i];
len += pPrev->distance_to(pThis);
pPrev = &pThis;
}
} }
len += pPrev->distance_to(p2); len += pPrev->distance_to(p2);
return len; return len;
} }
void segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2) // Append a segment of a closed polygon to a polyline.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop.
// Only insert intermediate points between seg1 and seg2.
static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{ {
if (seg1 == seg2) if (seg1 == seg2) {
// Nothing to append from this segment. // Nothing to append from this segment.
return; } else if (seg1 < seg2) {
// Do not append a point pointed to by seg2.
if (seg1 < seg2) {
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2); out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2);
} else { } else {
out.reserve(out.size() + seg2 + polygon.points.size() - seg1); out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end()); out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end());
// Do not append a point pointed to by seg2.
out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2); out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2);
} }
} }
void segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2) // Append a segment of a closed polygon to a polyline.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
// but this time the segment is traversed backward.
// Only insert intermediate points between seg1 and seg2.
static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{ {
if (seg1 == seg2) if (seg1 >= seg2) {
// Nothing to append from this segment. out.reserve(seg1 - seg2);
return;
if (seg1 > seg2) {
out.reserve(out.size() + seg2 - seg1);
for (size_t i = seg1; i > seg2; -- i) for (size_t i = seg1; i > seg2; -- i)
out.push_back(polygon.points[i - 1]); out.push_back(polygon.points[i - 1]);
} else { } else {
// it could be, that seg1 == seg2. In that case, append the complete loop.
out.reserve(out.size() + seg2 + polygon.points.size() - seg1); out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
for (size_t i = seg1; i > 0; -- i) for (size_t i = seg1; i > 0; -- i)
out.push_back(polygon.points[i - 1]); out.push_back(polygon.points[i - 1]);
@ -196,6 +192,7 @@ void segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, s
} }
} }
// Intersection point of a vertical line with a polygon segment.
class SegmentIntersection class SegmentIntersection
{ {
public: public:
@ -208,10 +205,17 @@ public:
consumed_perimeter_right(false) consumed_perimeter_right(false)
{} {}
// Index of a contour in ExPolygonWithOffset, with which this vertical line intersects.
size_t iContour; size_t iContour;
// Index of a segment in iContour, with which this vertical line intersects.
size_t iSegment; size_t iSegment;
// y position of the intersection.
coord_t pos; coord_t pos;
// Kind of intersection. With the original contour, or with the inner offestted contour?
// A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH,
// but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH,
// and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH.
enum SegmentIntersectionType { enum SegmentIntersectionType {
OUTER_LOW = 0, OUTER_LOW = 0,
OUTER_HIGH = 1, OUTER_HIGH = 1,
@ -228,12 +232,10 @@ public:
// Right means right from the vertical segment. // Right means right from the vertical segment.
bool consumed_perimeter_right; bool consumed_perimeter_right;
// For the INNER_LOW type, this point may be connected to another INNER_LOW point. // For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour.
// For the INNER_HIGH type, this point may be connected to another INNER_HIGH point. // For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour.
// If INNER_LOW is connected to INNER_HIGH or vice versa, // If INNER_LOW is connected to INNER_HIGH or vice versa,
// one has to make sure the vertical infill line does not overlap with the connecting perimeter line. // one has to make sure the vertical infill line does not overlap with the connecting perimeter line.
bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; } bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; }
bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; } bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; }
bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; } bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; }
@ -243,21 +245,31 @@ public:
{ return pos < other.pos; } { return pos < other.pos; }
}; };
// A vertical line with intersection points with polygons.
class SegmentedIntersectionLine class SegmentedIntersectionLine
{ {
public: public:
size_t idx; // Index of this vertical intersection line.
coord_t pos; size_t idx;
// x position of this vertical intersection line.
coord_t pos;
// List of intersection points with polygons, sorted increasingly by the y axis.
std::vector<SegmentIntersection> intersections; std::vector<SegmentIntersection> intersections;
}; };
// A container maintaining an expolygon with its inner offsetted polygon.
// The purpose of the inner offsetted polygon is to provide segments to connect the infill lines.
struct ExPolygonWithOffset struct ExPolygonWithOffset
{ {
public: public:
ExPolygonWithOffset(const ExPolygon &aexpolygon, coord_t aoffset) : expolygon(aexpolygon) ExPolygonWithOffset(const ExPolygon &aexpolygon, coord_t aoffset) : expolygon(aexpolygon)
{ {
polygons_inner = offset((Polygons)expolygon, aoffset); polygons_inner = offset((Polygons)expolygon, aoffset,
CLIPPER_OFFSET_SCALE,
ClipperLib::jtMiter,
// for the infill pattern, don't cut the corners.
// default miterLimt = 3
10.);
n_contours_outer = 1 + expolygon.holes.size(); n_contours_outer = 1 + expolygon.holes.size();
n_contours_inner = polygons_inner.size(); n_contours_inner = polygons_inner.size();
n_contours = n_contours_outer + n_contours_inner; n_contours = n_contours_outer + n_contours_inner;
@ -302,11 +314,11 @@ protected:
}; };
// For a vertical line, an inner contour and an intersection point, // For a vertical line, an inner contour and an intersection point,
// find an intersection point on the previous / next vertical line. // find an intersection point on the previous resp. next vertical line.
// The intersection point is connected with the prev / next intersection point with iInnerContour. // The intersection point is connected with the prev resp. next intersection point with iInnerContour.
// Return -1 if there is no such point. // Return -1 if there is no such point on the previous resp. next vertical line.
inline int intersection_on_prev_next_vertical_line( static inline int intersection_on_prev_next_vertical_line(
const ExPolygonWithOffset &poly_with_offset, const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs, const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine, size_t iVerticalLine,
size_t iInnerContour, size_t iInnerContour,
@ -330,13 +342,16 @@ inline int intersection_on_prev_next_vertical_line(
const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour); const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
// Resulting index of an intersection point on il2. // Resulting index of an intersection point on il2.
int out = -1; int out = -1;
// Find an intersection point on iVerticalLineOther, intersecting iInnerContour
// at the same orientation as iIntersection, and being closest to iIntersection
// in the number of contour segments, when following the direction of the contour.
int dmin = std::numeric_limits<int>::max(); int dmin = std::numeric_limits<int>::max();
for (size_t i = 0; i < il2.intersections.size(); ++ i) { for (size_t i = 0; i < il2.intersections.size(); ++ i) {
const SegmentIntersection &itsct2 = il2.intersections[i]; const SegmentIntersection &itsct2 = il2.intersections[i];
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) { if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
// The intersection points lie on the same contour and have the same orientation. // The intersection points lie on the same contour and have the same orientation.
// Find the intersection point with a shortest paht. // Find the intersection point with a shortest path in the direction of the contour.
int d = int(itsct.iSegment) - int(itsct2.iSegment); int d = int(itsct2.iSegment) - int(itsct.iSegment);
if (ccw != dir_is_next) if (ccw != dir_is_next)
d = - d; d = - d;
if (d < 0) if (d < 0)
@ -347,10 +362,11 @@ inline int intersection_on_prev_next_vertical_line(
} }
} }
} }
//FIXME this routine is not asymptotic optimal, it will be slow if there are many intersection points along the line.
return out; return out;
} }
inline int intersection_on_prev_vertical_line( static inline int intersection_on_prev_vertical_line(
const ExPolygonWithOffset &poly_with_offset, const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs, const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine, size_t iVerticalLine,
@ -360,7 +376,7 @@ inline int intersection_on_prev_vertical_line(
return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false); return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false);
} }
int intersection_on_next_vertical_line( static inline intersection_on_next_vertical_line(
const ExPolygonWithOffset &poly_with_offset, const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs, const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine, size_t iVerticalLine,
@ -371,40 +387,56 @@ int intersection_on_next_vertical_line(
} }
// Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded. // Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded.
inline int intersection_unused_on_prev_vertical_line( static inline int intersection_unused_on_prev_next_vertical_line(
const ExPolygonWithOffset &poly_with_offset, const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs, const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine, size_t iVerticalLine,
size_t iInnerContour, size_t iInnerContour,
size_t iIntersection) size_t iIntersection,
bool dir_is_next)
{ {
int iIntersectionPrev = intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false); int iIntersectionOther = intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, dir_is_next);
if (iIntersectionPrev == -1) if (iIntersectionOther == -1)
return -1; return -1;
assert(iVerticalLine > 0); //FIXME this routine will propose a connecting line even if the connecting perimeter segment intersects iVertical line multiple times before reaching iIntersectionOther.
const SegmentedIntersectionLine &il_prev = segs[iVerticalLine - 1]; assert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
const SegmentIntersection &itsct_prev = il_prev.intersections[iIntersectionPrev]; const SegmentedIntersectionLine &il_this = segs[iVerticalLine];
return itsct_prev.consumed_perimeter_right ? -1 : iIntersectionPrev; const SegmentIntersection &itsct_this = il_this.intersections[iIntersection];
const SegmentedIntersectionLine &il_other = segs[dir_is_next ? (iVerticalLine+1) : (iVerticalLine-1)];
const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther];
assert(itsct_other.is_inner());
assert(itsct_other.is_low() || iIntersectionOther > 1);
if (dir_is_next ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right)
// This perimeter segment was already consumed.
return -1;
if (itsct_other.is_low() ? itsct_other.consumed_vertical_up : il_other.intersections[iIntersectionOther-1].consumed_vertical_up)
// This vertical segment was already consumed.
return -1;
return iIntersectionOther;
} }
// Find an intersection on a next line, but return -1, if the connecting segment of a perimeter was already extruded. static inline intersection_unused_on_prev_vertical_line(
int intersection_unused_on_next_vertical_line(
const ExPolygonWithOffset &poly_with_offset, const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs, const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine, size_t iVerticalLine,
size_t iInnerContour, size_t iInnerContour,
size_t iIntersection) size_t iIntersection)
{ {
int iIntersectionNext = intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true); return intersection_unused_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false);
if (iIntersectionNext == -1)
return -1;
assert(iVerticalLine + 1 < segs.size());
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
return itsct.consumed_perimeter_right ? -1 : iIntersectionNext;
} }
inline coordf_t measure_perimeter_prev_next_segment_length( static inline intersection_unused_on_next_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection)
{
return intersection_unused_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true);
}
// Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2.
static inline coordf_t measure_perimeter_prev_next_segment_length(
const ExPolygonWithOffset &poly_with_offset, const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs, const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine, size_t iVerticalLine,
@ -441,7 +473,7 @@ inline coordf_t measure_perimeter_prev_next_segment_length(
segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1); segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
} }
inline coordf_t measure_perimeter_prev_segment_length( static inline coordf_t measure_perimeter_prev_segment_length(
const ExPolygonWithOffset &poly_with_offset, const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs, const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine, size_t iVerticalLine,
@ -452,7 +484,7 @@ inline coordf_t measure_perimeter_prev_segment_length(
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, false); return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, false);
} }
inline coordf_t measure_perimeter_next_segment_length( static inline coordf_t measure_perimeter_next_segment_length(
const ExPolygonWithOffset &poly_with_offset, const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs, const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine, size_t iVerticalLine,
@ -463,8 +495,11 @@ inline coordf_t measure_perimeter_next_segment_length(
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, true); return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, true);
} }
inline void emit_perimeter_prev_next_segment( // Append the points of a perimeter segment when going from iIntersection to iIntersection2.
const ExPolygonWithOffset &poly_with_offset, // The first point (the point of iIntersection) will not be inserted,
// the last point will be inserted.
static inline void emit_perimeter_prev_next_segment(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs, const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine, size_t iVerticalLine,
size_t iInnerContour, size_t iInnerContour,
@ -492,11 +527,13 @@ inline void emit_perimeter_prev_next_segment(
assert(itsct.iContour == itsct2.iContour); assert(itsct.iContour == itsct2.iContour);
assert(itsct.is_inner()); assert(itsct.is_inner());
const bool forward = (itsct.is_low() == ccw) == dir_is_next; const bool forward = (itsct.is_low() == ccw) == dir_is_next;
out.points.push_back(Point(il.pos, itsct.pos)); // Do not append the first point.
// out.points.push_back(Point(il.pos, itsct.pos));
if (forward) if (forward)
segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment); polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
else else
segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment); polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
// Append the last point.
out.points.push_back(Point(il2.pos, itsct2.pos)); out.points.push_back(Point(il2.pos, itsct2.pos));
} }
@ -804,20 +841,25 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
// Start a new path. // Start a new path.
polylines_out.push_back(Polyline()); polylines_out.push_back(Polyline());
polyline_current = &polylines_out.back(); polyline_current = &polylines_out.back();
// Emit the first point of a path.
pointLast = Point(segs[i_vline].pos, segs[i_vline].intersections[i_intersection].pos);
polyline_current->points.push_back(pointLast);
} }
// From the initial point (i_vline, i_intersection), follow a path. // From the initial point (i_vline, i_intersection), follow a path.
SegmentedIntersectionLine &seg = segs[i_vline]; SegmentedIntersectionLine &seg = segs[i_vline];
SegmentIntersection *intrsctn = &seg.intersections[i_intersection]; SegmentIntersection *intrsctn = &seg.intersections[i_intersection];
// consumed_vertical_up(false),
// consumed_perimeter_right(false)
bool going_up = intrsctn->is_low(); bool going_up = intrsctn->is_low();
bool try_connect = false; bool try_connect = false;
if (going_up) { if (going_up) {
assert(! intrsctn->consumed_vertical_up); assert(! intrsctn->consumed_vertical_up);
assert(i_intersection + 1 < seg.intersections.size()); assert(i_intersection + 1 < seg.intersections.size());
// Emit a point // Step back to the beginning of the vertical segment to mark it as consumed.
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos)); if (intrsctn->is_inner()) {
assert(i_intersection > 0);
-- intrsctn;
-- i_intersection;
}
// Consume the complete vertical segment up to the outer contour. // Consume the complete vertical segment up to the outer contour.
do { do {
intrsctn->consumed_vertical_up = true; intrsctn->consumed_vertical_up = true;
@ -837,9 +879,9 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
assert(intrsctn->is_high()); assert(intrsctn->is_high());
assert(i_intersection > 0); assert(i_intersection > 0);
assert(! (intrsctn - 1)->consumed_vertical_up); assert(! (intrsctn - 1)->consumed_vertical_up);
// Emit a point
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos));
// Consume the complete vertical segment up to the outer contour. // Consume the complete vertical segment up to the outer contour.
if (intrsctn->is_inner())
intrsctn->consumed_vertical_up = true;
do { do {
assert(i_intersection > 0); assert(i_intersection > 0);
-- intrsctn; -- intrsctn;
@ -866,8 +908,15 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext); measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext);
// Take the shorter path. // Take the shorter path.
bool take_next = (iPrev != -1 && iNext != -1) ? (distNext < distPrev) : distNext != -1; bool take_next = (iPrev != -1 && iNext != -1) ? (distNext < distPrev) : distNext != -1;
assert(intrsctn->is_inner());
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos)); polyline_current->points.push_back(Point(seg.pos, intrsctn->pos));
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next); emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
if (iPrev != -1)
segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true;
if (iNext != -1)
intrsctn->consumed_perimeter_right = true;
//FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
// Advance to the neighbor line. // Advance to the neighbor line.
if (take_next) { if (take_next) {
++ i_vline; ++ i_vline;
@ -884,7 +933,10 @@ Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParam
else else
-- intrsctn; -- intrsctn;
} }
// Finish the vertical line, pick a new starting point. // Finish the current vertical line,
// reset the current vertical line to pick a new starting point in the next round.
assert(intrsctn->is_outer());
assert(intrsctn->is_high() == going_up);
pointLast = Point(seg.pos, intrsctn->pos); pointLast = Point(seg.pos, intrsctn->pos);
polyline_current->points.push_back(pointLast); polyline_current->points.push_back(pointLast);
intrsctn = NULL; intrsctn = NULL;

View File

@ -22,6 +22,16 @@ protected:
coord_t _diagonal_distance; coord_t _diagonal_distance;
}; };
class FillGrid2 : public FillRectilinear2
{
public:
virtual ~FillGrid2() {}
protected:
// The grid fill will keep the angle constant between the layers, see the implementation of Slic3r::Fill::Base.
virtual float _layer_angle(size_t idx) const { return 0.f; }
};
}; // namespace Slic3r }; // namespace Slic3r
#endif // slic3r_FillRectilinear2_hpp_ #endif // slic3r_FillRectilinear2_hpp_