finish optimizer interface and remove commented code

This commit is contained in:
tamasmeszaros 2020-07-17 14:09:28 +02:00
parent 927b81ea97
commit f3c0bf46d4
2 changed files with 54 additions and 42 deletions

View File

@ -103,6 +103,16 @@ public:
bool stop_condition() { return m_stop_condition(); }
};
// Helper class to use optimization methods involving gradient.
template<size_t N> struct ScoreGradient {
double score;
std::optional<std::array<double, N>> gradient;
ScoreGradient(double s, const std::array<double, N> &grad)
: score{s}, gradient{grad}
{}
};
// Helper to be used in static_assert.
template<class T> struct always_false { enum { value = false }; };
@ -112,13 +122,13 @@ public:
Optimizer(const StopCriteria &)
{
static_assert(always_false<Method>::value,
"Optimizer unimplemented for given method!");
static_assert (always_false<Method>::value,
"Optimizer unimplemented for given method!");
}
Optimizer<Method, Enable> &to_min() { return *this; }
Optimizer<Method, Enable> &to_max() { return *this; }
Optimizer<Method, Enable> &set_criteria(const StopCriteria &) { return *this; }
Optimizer<Method> &to_min() { return *this; }
Optimizer<Method> &to_max() { return *this; }
Optimizer<Method> &set_criteria(const StopCriteria &) { return *this; }
StopCriteria get_criteria() const { return {}; };
template<class Func, size_t N>
@ -156,35 +166,20 @@ struct IsNLoptAlg<NLoptAlgComb<a1, a2>> {
template<class M, class T = void>
using NLoptOnly = std::enable_if_t<IsNLoptAlg<M>::value, T>;
// Convert any collection to tuple. This is useful for object functions taking
// an argument list of doubles. Make things cleaner on the call site of
// optimize().
template<size_t I, std::size_t N, class T, class C> struct to_tuple_ {
static auto call(const C &c)
{
return std::tuple_cat(std::tuple<T>(c[N-I]),
to_tuple_<I-1, N, T, C>::call(c));
}
};
template<size_t N, class T, class C> struct to_tuple_<0, N, T, C> {
static auto call(const C &c) { return std::tuple<>(); }
};
// C array to tuple
template<std::size_t N, class T> auto carray_tuple(const T *v)
{
return to_tuple_<N, N, T, const T*>::call(v);
}
// Helper to convert C style array to std::array
template<size_t N, class T> auto to_arr(const T (&a) [N])
// Helper to convert C style array to std::array. The copy should be optimized
// away with modern compilers.
template<size_t N, class T> auto to_arr(const T *a)
{
std::array<T, N> r;
std::copy(std::begin(a), std::end(a), std::begin(r));
std::copy(a, a + N, std::begin(r));
return r;
}
template<size_t N, class T> auto to_arr(const T (&a) [N])
{
return to_arr<N>(static_cast<const T *>(a));
}
enum class OptDir { MIN, MAX }; // Where to optimize
struct NLopt { // Helper RAII class for nlopt_opt
@ -227,9 +222,19 @@ protected:
nlopt_force_stop(std::get<2>(*tdata));
auto fnptr = std::get<0>(*tdata);
auto funval = carray_tuple<N>(params);
auto funval = to_arr<N>(params);
return std::apply(*fnptr, funval);
double scoreval = 0.;
using RetT = decltype((*fnptr)(funval));
if constexpr (std::is_convertible_v<RetT, ScoreGradient<N>>) {
ScoreGradient<N> score = (*fnptr)(funval);
for (size_t i = 0; i < n; ++i) gradient[i] = (*score.gradient)[i];
scoreval = score.score;
} else {
scoreval = (*fnptr)(funval);
}
return scoreval;
}
template<size_t N>
@ -354,12 +359,18 @@ public:
template<size_t N> Bounds<N> bounds(const Bound (&b) [N]) { return detail::to_arr(b); }
template<size_t N> Input<N> initvals(const double (&a) [N]) { return detail::to_arr(a); }
template<size_t N> auto score_gradient(double s, const double (&grad)[N])
{
return ScoreGradient<N>(s, detail::to_arr(grad));
}
// Predefinded NLopt algorithms that are used in the codebase
using AlgNLoptGenetic = detail::NLoptAlgComb<NLOPT_GN_ESCH>;
using AlgNLoptSubplex = detail::NLoptAlg<NLOPT_LN_SBPLX>;
using AlgNLoptSimplex = detail::NLoptAlg<NLOPT_LN_NELDERMEAD>;
// TODO: define others if needed...
// Helper defs for pre-crafted global and local optimizers that work well.
using DefaultGlobalOptimizer = Optimizer<AlgNLoptGenetic>;
using DefaultLocalOptimizer = Optimizer<AlgNLoptSubplex>;

View File

@ -496,7 +496,7 @@ bool SupportTreeBuildsteps::create_ground_pillar(const Vec3d &hjp,
search_widening_path(jp, dir, radius, m_cfg.head_back_radius_mm);
if (diffbr && diffbr->endp.z() > jp_gnd) {
auto &br = m_builder.add_diffbridge(diffbr.value());
auto &br = m_builder.add_diffbridge(*diffbr);
if (head_id >= 0) m_builder.head(head_id).bridge_id = br.id;
endp = diffbr->endp;
radius = diffbr->end_r;
@ -589,7 +589,9 @@ std::optional<DiffBridge> SupportTreeBuildsteps::search_widening_path(
double fallback_ratio = radius / m_cfg.head_back_radius_mm;
auto oresult = solver.to_max().optimize(
[this, jp, radius, new_radius](double plr, double azm, double t) {
[this, jp, radius, new_radius](const opt::Input<3> &input) {
auto &[plr, azm, t] = input;
auto d = spheric_to_dir(plr, azm).normalized();
double ret = pinhead_mesh_intersect(jp, d, radius, new_radius, t)
.distance();
@ -705,24 +707,22 @@ void SupportTreeBuildsteps::filter()
// viable normal that doesn't collide with the model
// geometry and its very close to the default.
// stc.stop_score = w; // space greater than w is enough
Optimizer<AlgNLoptGenetic> solver(get_criteria(m_cfg));
solver.seed(0);
//solver.seed(0); // we want deterministic behavior
solver.seed(0); // we want deterministic behavior
auto oresult = solver.to_max().optimize(
[this, pin_r, back_r, hp](double plr, double azm, double l)
[this, pin_r, back_r, hp](const opt::Input<3> &input)
{
auto &[plr, azm, l] = input;
auto dir = spheric_to_dir(plr, azm).normalized();
double score = pinhead_mesh_intersect(
return pinhead_mesh_intersect(
hp, dir, pin_r, back_r, l).distance();
return score;
},
initvals({polar, azimuth, (lmin + lmax) / 2.}), // start with what we have
bounds({
{PI - m_cfg.bridge_slope, PI}, // Must not exceed the tilt limit
{PI - m_cfg.bridge_slope, PI}, // Must not exceed the slope limit
{-PI, PI}, // azimuth can be a full search
{lmin, lmax}
}));
@ -924,7 +924,8 @@ bool SupportTreeBuildsteps::connect_to_ground(Head &head)
double r_back = head.r_back_mm;
Vec3d hjp = head.junction_point();
auto oresult = solver.to_max().optimize(
[this, hjp, r_back](double plr, double azm) {
[this, hjp, r_back](const opt::Input<2> &input) {
auto &[plr, azm] = input;
Vec3d n = spheric_to_dir(plr, azm).normalized();
return bridge_mesh_distance(hjp, n, r_back);
},