Least supports optimization revived.
Fix missing include on Win32 Cleanup benchmarking code
This commit is contained in:
parent
0194094afa
commit
f3e3aabec7
@ -11,16 +11,16 @@
|
||||
#include "libslic3r/PrintConfig.hpp"
|
||||
|
||||
#include <libslic3r/Geometry.hpp>
|
||||
#include "Model.hpp"
|
||||
|
||||
#include <thread>
|
||||
|
||||
#include <libnest2d/tools/benchmark.h>
|
||||
|
||||
namespace Slic3r { namespace sla {
|
||||
|
||||
namespace {
|
||||
|
||||
inline const Vec3f DOWN = {0.f, 0.f, -1.f};
|
||||
constexpr double POINTS_PER_UNIT_AREA = 1.f;
|
||||
|
||||
// Get the vertices of a triangle directly in an array of 3 points
|
||||
std::array<Vec3f, 3> get_triangle_vertices(const TriangleMesh &mesh,
|
||||
size_t faceidx)
|
||||
@ -54,11 +54,11 @@ T sum_score(AccessFn &&accessfn, size_t facecount, size_t Nthreads)
|
||||
size_t grainsize = facecount / Nthreads;
|
||||
size_t from = 0, to = facecount;
|
||||
|
||||
return execution::reduce(ex_seq, from, to, initv, mergefn, accessfn, grainsize);
|
||||
return execution::reduce(ex_tbb, from, to, initv, mergefn, accessfn, grainsize);
|
||||
}
|
||||
|
||||
// Try to guess the number of support points needed to support a mesh
|
||||
double get_model_supportedness(const TriangleMesh &mesh, const Transform3f &tr)
|
||||
double get_misalginment_score(const TriangleMesh &mesh, const Transform3f &tr)
|
||||
{
|
||||
if (mesh.its.vertices.empty()) return std::nan("");
|
||||
|
||||
@ -78,6 +78,100 @@ double get_model_supportedness(const TriangleMesh &mesh, const Transform3f &tr)
|
||||
return S / facecount;
|
||||
}
|
||||
|
||||
// Get area and normal of a triangle
|
||||
struct Facestats {
|
||||
Vec3f normal;
|
||||
double area;
|
||||
|
||||
explicit Facestats(const std::array<Vec3f, 3> &triangle)
|
||||
{
|
||||
Vec3f U = triangle[1] - triangle[0];
|
||||
Vec3f V = triangle[2] - triangle[0];
|
||||
Vec3f C = U.cross(V);
|
||||
normal = C.normalized();
|
||||
area = 0.5 * C.norm();
|
||||
}
|
||||
};
|
||||
|
||||
// The score function for a particular face
|
||||
inline double get_supportedness_score(const Facestats &fc)
|
||||
{
|
||||
// Simply get the angle (acos of dot product) between the face normal and
|
||||
// the DOWN vector.
|
||||
float phi = 1. - std::acos(fc.normal.dot(DOWN)) / float(PI);
|
||||
|
||||
// Only consider faces that have have slopes below 90 deg:
|
||||
phi = phi * (phi > 0.5);
|
||||
|
||||
// Make the huge slopes more significant than the smaller slopes
|
||||
phi = phi * phi * phi;
|
||||
|
||||
// Multiply with the area of the current face
|
||||
return fc.area * POINTS_PER_UNIT_AREA * phi;
|
||||
}
|
||||
|
||||
// Try to guess the number of support points needed to support a mesh
|
||||
double get_supportedness_score(const TriangleMesh &mesh, const Transform3f &tr)
|
||||
{
|
||||
if (mesh.its.vertices.empty()) return std::nan("");
|
||||
|
||||
auto accessfn = [&mesh, &tr](size_t fi) {
|
||||
Facestats fc{get_transformed_triangle(mesh, tr, fi)};
|
||||
|
||||
return get_supportedness_score(fc);
|
||||
};
|
||||
|
||||
size_t facecount = mesh.its.indices.size();
|
||||
size_t Nthreads = std::thread::hardware_concurrency();
|
||||
double S = unscaled(sum_score<int_fast64_t>(accessfn, facecount, Nthreads));
|
||||
|
||||
return S / facecount;
|
||||
}
|
||||
|
||||
// Find transformed mesh ground level without copy and with parallel reduce.
|
||||
float find_ground_level(const TriangleMesh &mesh,
|
||||
const Transform3f & tr,
|
||||
size_t threads)
|
||||
{
|
||||
size_t vsize = mesh.its.vertices.size();
|
||||
|
||||
auto minfn = [](float a, float b) { return std::min(a, b); };
|
||||
|
||||
auto accessfn = [&mesh, &tr] (size_t vi) {
|
||||
return (tr * mesh.its.vertices[vi]).z();
|
||||
};
|
||||
|
||||
auto zmin = std::numeric_limits<float>::max();
|
||||
size_t granularity = vsize / threads;
|
||||
return execution::reduce(ex_tbb, size_t(0), vsize, zmin, minfn, accessfn, granularity);
|
||||
}
|
||||
|
||||
float get_supportedness_onfloor_score(const TriangleMesh &mesh,
|
||||
const Transform3f & tr)
|
||||
{
|
||||
if (mesh.its.vertices.empty()) return std::nan("");
|
||||
|
||||
size_t Nthreads = std::thread::hardware_concurrency();
|
||||
|
||||
float zmin = find_ground_level(mesh, tr, Nthreads);
|
||||
float zlvl = zmin + 0.1f; // Set up a slight tolerance from z level
|
||||
|
||||
auto accessfn = [&mesh, &tr, zlvl](size_t fi) {
|
||||
std::array<Vec3f, 3> tri = get_transformed_triangle(mesh, tr, fi);
|
||||
Facestats fc{tri};
|
||||
|
||||
if (tri[0].z() <= zlvl && tri[1].z() <= zlvl && tri[2].z() <= zlvl)
|
||||
return -fc.area * POINTS_PER_UNIT_AREA;
|
||||
|
||||
return get_supportedness_score(fc);
|
||||
};
|
||||
|
||||
size_t facecount = mesh.its.indices.size();
|
||||
double S = unscaled(sum_score<int_fast64_t>(accessfn, facecount, Nthreads));
|
||||
|
||||
return S / facecount;
|
||||
}
|
||||
|
||||
using XYRotation = std::array<double, 2>;
|
||||
|
||||
// prepare the rotation transformation
|
||||
@ -90,13 +184,107 @@ Transform3f to_transform3f(const XYRotation &rot)
|
||||
return rt;
|
||||
}
|
||||
|
||||
XYRotation from_transform3f(const Transform3f &tr)
|
||||
{
|
||||
Vec3d rot3 = Geometry::Transformation{tr.cast<double>()}.get_rotation();
|
||||
return {rot3.x(), rot3.y()};
|
||||
}
|
||||
|
||||
inline bool is_on_floor(const SLAPrintObject &mo)
|
||||
{
|
||||
auto opt_elevation = mo.config().support_object_elevation.getFloat();
|
||||
auto opt_padaround = mo.config().pad_around_object.getBool();
|
||||
|
||||
return opt_elevation < EPSILON || opt_padaround;
|
||||
}
|
||||
|
||||
// collect the rotations for each face of the convex hull
|
||||
std::vector<XYRotation> get_chull_rotations(const TriangleMesh &mesh, size_t max_count)
|
||||
{
|
||||
TriangleMesh chull = mesh.convex_hull_3d();
|
||||
chull.require_shared_vertices();
|
||||
double chull2d_area = chull.convex_hull().area();
|
||||
double area_threshold = chull2d_area / (scaled<double>(1e3) * scaled(1.));
|
||||
|
||||
size_t facecount = chull.its.indices.size();
|
||||
|
||||
struct RotArea { XYRotation rot; double area; };
|
||||
|
||||
auto inputs = reserve_vector<RotArea>(facecount);
|
||||
|
||||
auto rotcmp = [](const RotArea &r1, const RotArea &r2) {
|
||||
double xdiff = r1.rot[X] - r2.rot[X], ydiff = r1.rot[Y] - r2.rot[Y];
|
||||
return std::abs(xdiff) < EPSILON ? ydiff < 0. : xdiff < 0.;
|
||||
};
|
||||
|
||||
auto eqcmp = [](const XYRotation &r1, const XYRotation &r2) {
|
||||
double xdiff = r1[X] - r2[X], ydiff = r1[Y] - r2[Y];
|
||||
return std::abs(xdiff) < EPSILON && std::abs(ydiff) < EPSILON;
|
||||
};
|
||||
|
||||
for (size_t fi = 0; fi < facecount; ++fi) {
|
||||
Facestats fc{get_triangle_vertices(chull, fi)};
|
||||
|
||||
if (fc.area > area_threshold) {
|
||||
auto q = Eigen::Quaternionf{}.FromTwoVectors(fc.normal, DOWN);
|
||||
XYRotation rot = from_transform3f(Transform3f::Identity() * q);
|
||||
RotArea ra = {rot, fc.area};
|
||||
|
||||
auto it = std::lower_bound(inputs.begin(), inputs.end(), ra, rotcmp);
|
||||
|
||||
if (it == inputs.end() || !eqcmp(it->rot, rot))
|
||||
inputs.insert(it, ra);
|
||||
}
|
||||
}
|
||||
|
||||
inputs.shrink_to_fit();
|
||||
if (!max_count) max_count = inputs.size();
|
||||
std::sort(inputs.begin(), inputs.end(),
|
||||
[](const RotArea &ra, const RotArea &rb) {
|
||||
return ra.area > rb.area;
|
||||
});
|
||||
|
||||
auto ret = reserve_vector<XYRotation>(std::min(max_count, inputs.size()));
|
||||
for (const RotArea &ra : inputs) ret.emplace_back(ra.rot);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Find the best score from a set of function inputs. Evaluate for every point.
|
||||
template<size_t N, class Fn, class It, class StopCond>
|
||||
std::array<double, N> find_min_score(Fn &&fn, It from, It to, StopCond &&stopfn)
|
||||
{
|
||||
std::array<double, N> ret = {};
|
||||
|
||||
double score = std::numeric_limits<double>::max();
|
||||
|
||||
size_t Nthreads = std::thread::hardware_concurrency();
|
||||
size_t dist = std::distance(from, to);
|
||||
std::vector<double> scores(dist, score);
|
||||
|
||||
execution::for_each(
|
||||
ex_tbb, size_t(0), dist, [&stopfn, &scores, &fn, &from](size_t i) {
|
||||
if (stopfn()) return;
|
||||
|
||||
scores[i] = fn(*(from + i));
|
||||
},
|
||||
dist / Nthreads);
|
||||
|
||||
auto it = std::min_element(scores.begin(), scores.end());
|
||||
|
||||
if (it != scores.end())
|
||||
ret = *(from + std::distance(scores.begin(), it));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
Vec2d find_best_misalignment_rotation(const SLAPrintObject & po,
|
||||
float accuracy,
|
||||
std::function<bool(int)> statuscb)
|
||||
Vec2d find_best_misalignment_rotation(const SLAPrintObject & po,
|
||||
float accuracy,
|
||||
RotOptimizeStatusCB statuscb)
|
||||
{
|
||||
static const unsigned MAX_TRIES = 1000;
|
||||
static constexpr unsigned MAX_TRIES = 1000;
|
||||
|
||||
// return value
|
||||
XYRotation rot;
|
||||
@ -136,22 +324,91 @@ Vec2d find_best_misalignment_rotation(const SLAPrintObject & po,
|
||||
// We can specify the bounds for a dimension in the following way:
|
||||
auto bounds = opt::bounds({ {-PI/2, PI/2}, {-PI/2, PI/2} });
|
||||
|
||||
Benchmark bench;
|
||||
|
||||
bench.start();
|
||||
auto result = solver.to_max().optimize(
|
||||
[&mesh, &statusfn] (const XYRotation &rot)
|
||||
{
|
||||
statusfn();
|
||||
return get_model_supportedness(mesh, to_transform3f(rot));
|
||||
return get_misalginment_score(mesh, to_transform3f(rot));
|
||||
}, opt::initvals({0., 0.}), bounds);
|
||||
bench.stop();
|
||||
|
||||
rot = result.optimum;
|
||||
|
||||
std::cout << "Optimum score: " << result.score << std::endl;
|
||||
std::cout << "Optimum rotation: " << result.optimum[0] << " " << result.optimum[1] << std::endl;
|
||||
std::cout << "Optimization took: " << bench.getElapsedSec() << " seconds" << std::endl;
|
||||
return {rot[0], rot[1]};
|
||||
}
|
||||
|
||||
Vec2d find_least_supports_rotation(const SLAPrintObject & po,
|
||||
float accuracy,
|
||||
RotOptimizeStatusCB statuscb)
|
||||
{
|
||||
static const unsigned MAX_TRIES = 1000;
|
||||
|
||||
// return value
|
||||
XYRotation rot;
|
||||
|
||||
// We will use only one instance of this converted mesh to examine different
|
||||
// rotations
|
||||
TriangleMesh mesh = po.model_object()->raw_mesh();
|
||||
mesh.require_shared_vertices();
|
||||
|
||||
// To keep track of the number of iterations
|
||||
unsigned status = 0;
|
||||
|
||||
// The maximum number of iterations
|
||||
auto max_tries = unsigned(accuracy * MAX_TRIES);
|
||||
|
||||
// call status callback with zero, because we are at the start
|
||||
statuscb(status);
|
||||
|
||||
auto statusfn = [&statuscb, &status, &max_tries] {
|
||||
// report status
|
||||
statuscb(unsigned(++status * 100.0/max_tries) );
|
||||
};
|
||||
|
||||
auto stopcond = [&statuscb] {
|
||||
return ! statuscb(-1);
|
||||
};
|
||||
|
||||
// Different search methods have to be used depending on the model elevation
|
||||
if (is_on_floor(po)) {
|
||||
|
||||
std::vector<XYRotation> inputs = get_chull_rotations(mesh, max_tries);
|
||||
max_tries = inputs.size();
|
||||
|
||||
// If the model can be placed on the bed directly, we only need to
|
||||
// check the 3D convex hull face rotations.
|
||||
|
||||
auto objfn = [&mesh, &statusfn](const XYRotation &rot) {
|
||||
statusfn();
|
||||
Transform3f tr = to_transform3f(rot);
|
||||
return get_supportedness_onfloor_score(mesh, tr);
|
||||
};
|
||||
|
||||
rot = find_min_score<2>(objfn, inputs.begin(), inputs.end(), stopcond);
|
||||
|
||||
} else {
|
||||
|
||||
// Preparing the optimizer.
|
||||
size_t gridsize = std::sqrt(max_tries); // 2D grid has gridsize^2 calls
|
||||
opt::Optimizer<opt::AlgBruteForce> solver(opt::StopCriteria{}
|
||||
.max_iterations(max_tries)
|
||||
.stop_condition(stopcond),
|
||||
gridsize);
|
||||
|
||||
// We are searching rotations around only two axes x, y. Thus the
|
||||
// problem becomes a 2 dimensional optimization task.
|
||||
// We can specify the bounds for a dimension in the following way:
|
||||
auto bounds = opt::bounds({ {-PI, PI}, {-PI, PI} });
|
||||
|
||||
auto result = solver.to_min().optimize(
|
||||
[&mesh, &statusfn] (const XYRotation &rot)
|
||||
{
|
||||
statusfn();
|
||||
return get_supportedness_score(mesh, to_transform3f(rot));
|
||||
}, opt::initvals({0., 0.}), bounds);
|
||||
|
||||
// Save the result
|
||||
rot = result.optimum;
|
||||
}
|
||||
|
||||
return {rot[0], rot[1]};
|
||||
}
|
||||
|
@ -37,7 +37,11 @@ Vec2d find_best_misalignment_rotation(
|
||||
RotOptimizeStatusCB statuscb = [] (int) { return true; }
|
||||
);
|
||||
|
||||
|
||||
Vec2d find_least_supports_rotation(
|
||||
const SLAPrintObject& modelobj,
|
||||
float accuracy = 1.0f,
|
||||
RotOptimizeStatusCB statuscb = [] (int) { return true; }
|
||||
);
|
||||
|
||||
} // namespace sla
|
||||
} // namespace Slic3r
|
||||
|
@ -21,7 +21,7 @@ class RotoptimizeJob : public PlaterJob
|
||||
|
||||
static inline const FindMethod Methods[] = {
|
||||
{ L("Best misalignment"), sla::find_best_misalignment_rotation },
|
||||
{ L("Least supports"), sla::find_best_misalignment_rotation }
|
||||
{ L("Least supports"), sla::find_least_supports_rotation }
|
||||
};
|
||||
|
||||
size_t m_method_id = 0;
|
||||
|
@ -1,6 +1,7 @@
|
||||
#include <unordered_set>
|
||||
#include <unordered_map>
|
||||
#include <random>
|
||||
#include <numeric>
|
||||
#include <cstdint>
|
||||
|
||||
#include "sla_test_utils.hpp"
|
||||
|
Loading…
Reference in New Issue
Block a user