Merge remote-tracking branch 'origin/vb_et_instances_synch'

This commit is contained in:
enricoturri1966 2023-01-26 10:26:40 +01:00
commit f43c493731
7 changed files with 123 additions and 66 deletions

View File

@ -872,18 +872,15 @@ Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot
} }
// This should only be called if it is known, that the two rotations only differ in rotation around the Z axis. // This should only be called if it is known, that the two rotations only differ in rotation around the Z axis.
double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to) double rotation_diff_z(const Transform3d &trafo_from, const Transform3d &trafo_to)
{ {
const Eigen::AngleAxisd angle_axis(rotation_xyz_diff(rot_xyz_from, rot_xyz_to)); auto m = trafo_to.linear() * trafo_from.linear().inverse();
const Vec3d& axis = angle_axis.axis(); assert(std::abs(m.determinant() - 1) < EPSILON);
const double angle = angle_axis.angle(); Vec3d vx = m * Vec3d(1., 0., 0);
#ifndef NDEBUG // Verify that the linear part of rotation from trafo_from to trafo_to rotates around Z and is unity.
if (std::abs(angle) > 1e-8) { assert(std::abs(std::hypot(vx.x(), vx.y()) - 1.) < 1e-5);
assert(std::abs(axis.x()) < 1e-8); assert(std::abs(vx.z()) < 1e-5);
assert(std::abs(axis.y()) < 1e-8); return atan2(vx.y(), vx.x());
}
#endif /* NDEBUG */
return (axis.z() < 0) ? -angle : angle;
} }
}} // namespace Slic3r::Geometry }} // namespace Slic3r::Geometry

View File

@ -470,8 +470,7 @@ public:
Transform3d get_mirror_matrix() const; Transform3d get_mirror_matrix() const;
bool is_left_handed() const { bool is_left_handed() const {
const Vec3d mirror = get_mirror(); return m_matrix.affine().determinant() < 0;
return mirror.x() * mirror.y() * mirror.z() < 0.0;
} }
#else #else
bool is_scaling_uniform() const { return std::abs(m_scaling_factor.x() - m_scaling_factor.y()) < 1e-8 && std::abs(m_scaling_factor.x() - m_scaling_factor.z()) < 1e-8; } bool is_scaling_uniform() const { return std::abs(m_scaling_factor.x() - m_scaling_factor.y()) < 1e-8 && std::abs(m_scaling_factor.x() - m_scaling_factor.z()) < 1e-8; }
@ -547,7 +546,7 @@ extern Transform3d transform3d_from_string(const std::string& transform_str);
extern Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to); extern Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to);
// Rotation by Z to align rot_xyz_from to rot_xyz_to. // Rotation by Z to align rot_xyz_from to rot_xyz_to.
// This should only be called if it is known, that the two rotations only differ in rotation around the Z axis. // This should only be called if it is known, that the two rotations only differ in rotation around the Z axis.
extern double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to); extern double rotation_diff_z(const Transform3d &trafo_from, const Transform3d &trafo_to);
// Is the angle close to a multiple of 90 degrees? // Is the angle close to a multiple of 90 degrees?
inline bool is_rotation_ninety_degrees(double a) inline bool is_rotation_ninety_degrees(double a)

View File

@ -1780,7 +1780,7 @@ void ModelObject::bake_xy_rotation_into_meshes(size_t instance_idx)
// Adjust the instances. // Adjust the instances.
for (size_t i = 0; i < this->instances.size(); ++ i) { for (size_t i = 0; i < this->instances.size(); ++ i) {
ModelInstance &model_instance = *this->instances[i]; ModelInstance &model_instance = *this->instances[i];
model_instance.set_rotation(Vec3d(0., 0., Geometry::rotation_diff_z(reference_trafo.get_rotation(), model_instance.get_rotation()))); model_instance.set_rotation(Vec3d(0., 0., Geometry::rotation_diff_z(reference_trafo.get_matrix(), model_instance.get_matrix())));
model_instance.set_scaling_factor(Vec3d(new_scaling_factor, new_scaling_factor, new_scaling_factor)); model_instance.set_scaling_factor(Vec3d(new_scaling_factor, new_scaling_factor, new_scaling_factor));
model_instance.set_mirror(Vec3d(1., 1., 1.)); model_instance.set_mirror(Vec3d(1., 1., 1.));
} }

View File

@ -405,7 +405,7 @@ bool Print::sequential_print_horizontal_clearance_valid(const Print& print, Poly
} }
// Make a copy, so it may be rotated for instances. // Make a copy, so it may be rotated for instances.
Polygon convex_hull0 = it_convex_hull->second; Polygon convex_hull0 = it_convex_hull->second;
const double z_diff = Geometry::rotation_diff_z(model_instance0->get_rotation(), print_object->instances().front().model_instance->get_rotation()); const double z_diff = Geometry::rotation_diff_z(model_instance0->get_matrix(), print_object->instances().front().model_instance->get_matrix());
if (std::abs(z_diff) > EPSILON) if (std::abs(z_diff) > EPSILON)
convex_hull0.rotate(z_diff); convex_hull0.rotate(z_diff);
// Now we check that no instance of convex_hull intersects any of the previously checked object instances. // Now we check that no instance of convex_hull intersects any of the previously checked object instances.

View File

@ -76,7 +76,7 @@ PrintObject::PrintObject(Print* print, ModelObject* model_object, const Transfor
BoundingBoxf3 bbox = model_object->raw_bounding_box(); BoundingBoxf3 bbox = model_object->raw_bounding_box();
Vec3d bbox_center = bbox.center(); Vec3d bbox_center = bbox.center();
// We may need to rotate the bbox / bbox_center from the original instance to the current instance. // We may need to rotate the bbox / bbox_center from the original instance to the current instance.
double z_diff = Geometry::rotation_diff_z(model_object->instances.front()->get_rotation(), instances.front().model_instance->get_rotation()); double z_diff = Geometry::rotation_diff_z(model_object->instances.front()->get_matrix(), instances.front().model_instance->get_matrix());
if (std::abs(z_diff) > EPSILON) { if (std::abs(z_diff) > EPSILON) {
auto z_rot = Eigen::AngleAxisd(z_diff, Vec3d::UnitZ()); auto z_rot = Eigen::AngleAxisd(z_diff, Vec3d::UnitZ());
bbox = bbox.transformed(Transform3d(z_rot)); bbox = bbox.transformed(Transform3d(z_rot));

View File

@ -190,14 +190,13 @@ static std::vector<SLAPrintObject::Instance> sla_instances(const ModelObject &mo
std::vector<SLAPrintObject::Instance> instances; std::vector<SLAPrintObject::Instance> instances;
assert(! model_object.instances.empty()); assert(! model_object.instances.empty());
if (! model_object.instances.empty()) { if (! model_object.instances.empty()) {
Vec3d rotation0 = model_object.instances.front()->get_rotation(); const Transform3d& trafo0 = model_object.instances.front()->get_matrix();
rotation0(2) = 0.;
for (ModelInstance *model_instance : model_object.instances) for (ModelInstance *model_instance : model_object.instances)
if (model_instance->is_printable()) { if (model_instance->is_printable()) {
instances.emplace_back( instances.emplace_back(
model_instance->id(), model_instance->id(),
Point::new_scale(model_instance->get_offset(X), model_instance->get_offset(Y)), Point::new_scale(model_instance->get_offset(X), model_instance->get_offset(Y)),
float(Geometry::rotation_diff_z(rotation0, model_instance->get_rotation()))); float(Geometry::rotation_diff_z(trafo0, model_instance->get_matrix())));
} }
} }
return instances; return instances;

View File

@ -2852,6 +2852,16 @@ void Selection::render_debug_window() const
} }
#endif // ENABLE_WORLD_COORDINATE_DEBUG #endif // ENABLE_WORLD_COORDINATE_DEBUG
static bool is_left_handed(const Transform3d::ConstLinearPart& m)
{
return m.determinant() < 0;
}
static bool is_left_handed(const Transform3d& m)
{
return is_left_handed(m.linear());
}
#ifndef NDEBUG #ifndef NDEBUG
static bool is_rotation_xy_synchronized(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to) static bool is_rotation_xy_synchronized(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
{ {
@ -2866,6 +2876,7 @@ static bool is_rotation_xy_synchronized(const Vec3d &rot_xyz_from, const Vec3d &
return std::abs(axis.x()) < 1e-8 && std::abs(axis.y()) < 1e-8 && std::abs(std::abs(axis.z()) - 1.) < 1e-8; return std::abs(axis.x()) < 1e-8 && std::abs(axis.y()) < 1e-8 && std::abs(std::abs(axis.z()) - 1.) < 1e-8;
} }
#if 0
static void verify_instances_rotation_synchronized(const Model &model, const GLVolumePtrs &volumes) static void verify_instances_rotation_synchronized(const Model &model, const GLVolumePtrs &volumes)
{ {
for (int idx_object = 0; idx_object < int(model.objects.size()); ++idx_object) { for (int idx_object = 0; idx_object < int(model.objects.size()); ++idx_object) {
@ -2887,8 +2898,103 @@ static void verify_instances_rotation_synchronized(const Model &model, const GLV
} }
} }
} }
#endif
static bool is_rotation_xy_synchronized(const Transform3d::ConstLinearPart &trafo_from, const Transform3d::ConstLinearPart &trafo_to)
{
auto rot = trafo_to * trafo_from.inverse();
static constexpr const double eps = EPSILON;
return
// Looks like a rotation around Z: block(0..1, 0..1) + no change of Z component.
is_approx(rot(0, 0), rot(1, 1), eps) &&
is_approx(rot(0, 1), - rot(1, 0), eps) &&
is_approx(rot(2, 2), 1., eps) &&
// Rest should be zeros.
is_approx(rot(0, 2), 0., eps) &&
is_approx(rot(1, 2), 0., eps) &&
is_approx(rot(2, 0), 0., eps) &&
is_approx(rot(2, 1), 0., eps) &&
// Determinant equals 1
is_approx(rot.determinant(), 1., eps) &&
// and finally the rotated X and Y axes shall be perpendicular.
is_approx(rot(0, 0) * rot(0, 1) + rot(1, 0) * rot(1, 1), 0., eps);
}
static bool is_rotation_xy_synchronized(const Transform3d& trafo_from, const Transform3d& trafo_to)
{
return is_rotation_xy_synchronized(trafo_from.linear(), trafo_to.linear());
}
static void verify_instances_rotation_synchronized(const Model &model, const GLVolumePtrs &volumes)
{
for (int idx_object = 0; idx_object < int(model.objects.size()); ++idx_object) {
int idx_volume_first = -1;
for (int i = 0; i < (int)volumes.size(); ++i) {
if (volumes[i]->object_idx() == idx_object) {
idx_volume_first = i;
break;
}
}
assert(idx_volume_first != -1); // object without instances?
if (idx_volume_first == -1)
continue;
const Transform3d::ConstLinearPart &rotation0 = volumes[idx_volume_first]->get_instance_transformation().get_matrix().linear();
for (int i = idx_volume_first + 1; i < (int)volumes.size(); ++i)
if (volumes[i]->object_idx() == idx_object) {
const Transform3d::ConstLinearPart &rotation = volumes[i]->get_instance_transformation().get_matrix().linear();
assert(is_rotation_xy_synchronized(rotation, rotation0));
}
}
}
#endif /* NDEBUG */ #endif /* NDEBUG */
#if ENABLE_WORLD_COORDINATE
void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_type)
{
std::set<unsigned int> done; // prevent processing volumes twice
done.insert(m_list.begin(), m_list.end());
for (unsigned int i : m_list) {
if (done.size() == m_volumes->size())
break;
const GLVolume* volume_i = (*m_volumes)[i];
if (volume_i->is_wipe_tower)
continue;
const int object_idx = volume_i->object_idx();
const int instance_idx = volume_i->instance_idx();
const Transform3d& curr_inst_trafo_i = volume_i->get_instance_transformation().get_matrix();
const bool curr_inst_left_handed = is_left_handed(curr_inst_trafo_i);
const Transform3d& old_inst_trafo_i = m_cache.volumes_data[i].get_instance_transform().get_matrix();
bool mirrored = is_left_handed(curr_inst_trafo_i) != is_left_handed(old_inst_trafo_i);
// bool mirrored = curr_inst_trafo_i.linear().determinant() * old_inst_trafo_i.linear().determinant() < 0;
// Process unselected instances.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) {
if (done.size() == m_volumes->size())
break;
if (done.find(j) != done.end())
continue;
GLVolume* volume_j = (*m_volumes)[j];
if (volume_j->object_idx() != object_idx || volume_j->instance_idx() == instance_idx)
continue;
const Transform3d& old_inst_trafo_j = m_cache.volumes_data[j].get_instance_transform().get_matrix();
assert(is_rotation_xy_synchronized(old_inst_trafo_i, old_inst_trafo_j));
Transform3d new_inst_trafo_j = volume_j->get_instance_transformation().get_matrix();
if (sync_rotation_type != SyncRotationType::NONE || mirrored)
new_inst_trafo_j.linear() = (old_inst_trafo_j.linear() * old_inst_trafo_i.linear().inverse()) * curr_inst_trafo_i.linear();
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA)
new_inst_trafo_j.translation().z() = curr_inst_trafo_i.translation().z();
assert(is_rotation_xy_synchronized(curr_inst_trafo_i, new_inst_trafo_j));
volume_j->set_instance_transformation(new_inst_trafo_j);
done.insert(j);
}
}
#ifndef NDEBUG
verify_instances_rotation_synchronized(*m_model, *m_volumes);
#endif /* NDEBUG */
}
#else
void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_type) void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_type)
{ {
std::set<unsigned int> done; // prevent processing volumes twice std::set<unsigned int> done; // prevent processing volumes twice
@ -2904,17 +3010,9 @@ void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_
const int object_idx = volume_i->object_idx(); const int object_idx = volume_i->object_idx();
const int instance_idx = volume_i->instance_idx(); const int instance_idx = volume_i->instance_idx();
#if ENABLE_WORLD_COORDINATE
const Geometry::Transformation& curr_inst_trafo_i = volume_i->get_instance_transformation();
const Vec3d curr_inst_rotation_i = curr_inst_trafo_i.get_rotation();
const Vec3d& curr_inst_scaling_factor_i = curr_inst_trafo_i.get_scaling_factor();
const Vec3d& curr_inst_mirror_i = curr_inst_trafo_i.get_mirror();
const Vec3d old_inst_rotation_i = m_cache.volumes_data[i].get_instance_transform().get_rotation();
#else
const Vec3d& rotation = volume_i->get_instance_rotation(); const Vec3d& rotation = volume_i->get_instance_rotation();
const Vec3d& scaling_factor = volume_i->get_instance_scaling_factor(); const Vec3d& scaling_factor = volume_i->get_instance_scaling_factor();
const Vec3d& mirror = volume_i->get_instance_mirror(); const Vec3d& mirror = volume_i->get_instance_mirror();
#endif // ENABLE_WORLD_COORDINATE
// Process unselected instances. // Process unselected instances.
for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) { for (unsigned int j = 0; j < (unsigned int)m_volumes->size(); ++j) {
@ -2928,64 +3026,27 @@ void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_
if (volume_j->object_idx() != object_idx || volume_j->instance_idx() == instance_idx) if (volume_j->object_idx() != object_idx || volume_j->instance_idx() == instance_idx)
continue; continue;
#if ENABLE_WORLD_COORDINATE
const Vec3d old_inst_rotation_j = m_cache.volumes_data[j].get_instance_transform().get_rotation();
assert(is_rotation_xy_synchronized(old_inst_rotation_i, old_inst_rotation_j));
const Geometry::Transformation& curr_inst_trafo_j = volume_j->get_instance_transformation();
const Vec3d curr_inst_rotation_j = curr_inst_trafo_j.get_rotation();
Vec3d new_inst_offset_j = curr_inst_trafo_j.get_offset();
Vec3d new_inst_rotation_j = curr_inst_rotation_j;
#else
assert(is_rotation_xy_synchronized(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation())); assert(is_rotation_xy_synchronized(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation()));
#endif // ENABLE_WORLD_COORDINATE
switch (sync_rotation_type) { switch (sync_rotation_type) {
case SyncRotationType::NONE: { case SyncRotationType::NONE: {
// z only rotation -> synch instance z // z only rotation -> synch instance z
// The X,Y rotations should be synchronized from start to end of the rotation. // The X,Y rotations should be synchronized from start to end of the rotation.
#if ENABLE_WORLD_COORDINATE
assert(is_rotation_xy_synchronized(curr_inst_rotation_i, curr_inst_rotation_j));
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA)
new_inst_offset_j.z() = curr_inst_trafo_i.get_offset().z();
#else
assert(is_rotation_xy_synchronized(rotation, volume_j->get_instance_rotation())); assert(is_rotation_xy_synchronized(rotation, volume_j->get_instance_rotation()));
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA) if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA)
volume_j->set_instance_offset(Z, volume_i->get_instance_offset().z()); volume_j->set_instance_offset(Z, volume_i->get_instance_offset().z());
#endif // ENABLE_WORLD_COORDINATE
break; break;
} }
case SyncRotationType::GENERAL: { case SyncRotationType::GENERAL: {
// generic rotation -> update instance z with the delta of the rotation. // generic rotation -> update instance z with the delta of the rotation.
#if ENABLE_WORLD_COORDINATE
const double z_diff = Geometry::rotation_diff_z(old_inst_rotation_i, old_inst_rotation_j);
new_inst_rotation_j = curr_inst_rotation_i + z_diff * Vec3d::UnitZ();
#else
const double z_diff = Geometry::rotation_diff_z(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation()); const double z_diff = Geometry::rotation_diff_z(m_cache.volumes_data[i].get_instance_rotation(), m_cache.volumes_data[j].get_instance_rotation());
volume_j->set_instance_rotation({ rotation.x(), rotation.y(), rotation.z() + z_diff }); volume_j->set_instance_rotation({ rotation.x(), rotation.y(), rotation.z() + z_diff });
#endif // ENABLE_WORLD_COORDINATE
break; break;
} }
#if ENABLE_WORLD_COORDINATE
case SyncRotationType::FULL: {
// generic rotation -> update instance z with the delta of the rotation.
const Eigen::AngleAxisd angle_axis(Geometry::rotation_xyz_diff(curr_inst_rotation_i, old_inst_rotation_j));
const Vec3d& axis = angle_axis.axis();
const double z_diff = (std::abs(axis.x()) > EPSILON || std::abs(axis.y()) > EPSILON) ?
angle_axis.angle() * axis.z() : Geometry::rotation_diff_z(curr_inst_rotation_i, old_inst_rotation_j);
new_inst_rotation_j = curr_inst_rotation_i + z_diff * Vec3d::UnitZ();
break;
}
#endif // ENABLE_WORLD_COORDINATE
} }
#if ENABLE_WORLD_COORDINATE
volume_j->set_instance_transformation(Geometry::assemble_transform(new_inst_offset_j, new_inst_rotation_j,
curr_inst_scaling_factor_i, curr_inst_mirror_i));
#else
volume_j->set_instance_scaling_factor(scaling_factor); volume_j->set_instance_scaling_factor(scaling_factor);
volume_j->set_instance_mirror(mirror); volume_j->set_instance_mirror(mirror);
#endif // ENABLE_WORLD_COORDINATE
done.insert(j); done.insert(j);
} }
@ -2995,6 +3056,7 @@ void Selection::synchronize_unselected_instances(SyncRotationType sync_rotation_
verify_instances_rotation_synchronized(*m_model, *m_volumes); verify_instances_rotation_synchronized(*m_model, *m_volumes);
#endif /* NDEBUG */ #endif /* NDEBUG */
} }
#endif // ENABLE_WORLD_COORDINATE
void Selection::synchronize_unselected_volumes() void Selection::synchronize_unselected_volumes()
{ {