From f49ceb1e0f8450f54a84a71c97cf478a69af5723 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Luk=C3=A1=C5=A1=20Hejl?= Date: Mon, 19 Apr 2021 07:04:50 +0200 Subject: [PATCH] WIP: MMU segmentation without top and bottom layers --- src/libslic3r/Format/3mf.cpp | 7 +- src/libslic3r/Model.cpp | 18 +- src/libslic3r/Model.hpp | 10 +- src/libslic3r/Print.cpp | 9 + src/libslic3r/Print.hpp | 2 + src/libslic3r/PrintObject.cpp | 1287 ++++++++++++++++++++++++++++++++- 6 files changed, 1322 insertions(+), 11 deletions(-) diff --git a/src/libslic3r/Format/3mf.cpp b/src/libslic3r/Format/3mf.cpp index 631f4769c..33e5042a3 100644 --- a/src/libslic3r/Format/3mf.cpp +++ b/src/libslic3r/Format/3mf.cpp @@ -1567,7 +1567,12 @@ namespace Slic3r { m_curr_object.geometry.custom_supports.push_back(get_attribute_value_string(attributes, num_attributes, CUSTOM_SUPPORTS_ATTR)); m_curr_object.geometry.custom_seam.push_back(get_attribute_value_string(attributes, num_attributes, CUSTOM_SEAM_ATTR)); - m_curr_object.geometry.mmu_segmentation.push_back(get_attribute_value_string(attributes, num_attributes, MMU_SEGMENTATION_ATTR)); +// m_curr_object.geometry.mmu_segmentation.push_back(get_attribute_value_string(attributes, num_attributes, MMU_SEGMENTATION_ATTR)); + // FIXME Lukas H.: This is only for backward compatibility with older 3MF test files. Removes this when it is not necessary. + if(get_attribute_value_string(attributes, num_attributes, MMU_SEGMENTATION_ATTR) != "") + m_curr_object.geometry.mmu_segmentation.push_back(get_attribute_value_string(attributes, num_attributes, MMU_SEGMENTATION_ATTR)); + else + m_curr_object.geometry.mmu_segmentation.push_back(get_attribute_value_string(attributes, num_attributes, "slic3rpe:mmu_painting")); return true; } diff --git a/src/libslic3r/Model.cpp b/src/libslic3r/Model.cpp index ddfa26552..30e2436fd 100644 --- a/src/libslic3r/Model.cpp +++ b/src/libslic3r/Model.cpp @@ -2081,8 +2081,10 @@ bool model_volume_list_changed(const ModelObject &model_object_old, const ModelO bool model_custom_supports_data_changed(const ModelObject& mo, const ModelObject& mo_new) { assert(! model_volume_list_changed(mo, mo_new, ModelVolumeType::MODEL_PART)); - assert(mo.volumes.size() == mo_new.volumes.size()); - for (size_t i=0; isupported_facets.timestamp_matches(mo.volumes[i]->supported_facets)) return true; } @@ -2091,8 +2093,10 @@ bool model_custom_supports_data_changed(const ModelObject& mo, const ModelObject bool model_custom_seam_data_changed(const ModelObject& mo, const ModelObject& mo_new) { assert(! model_volume_list_changed(mo, mo_new, ModelVolumeType::MODEL_PART)); - assert(mo.volumes.size() == mo_new.volumes.size()); - for (size_t i=0; iseam_facets.timestamp_matches(mo.volumes[i]->seam_facets)) return true; } @@ -2101,8 +2105,10 @@ bool model_custom_seam_data_changed(const ModelObject& mo, const ModelObject& mo bool model_mmu_segmentation_data_changed(const ModelObject& mo, const ModelObject& mo_new) { assert(! model_volume_list_changed(mo, mo_new, ModelVolumeType::MODEL_PART)); - assert(mo.volumes.size() == mo_new.volumes.size()); - for (size_t i=0; immu_segmentation_facets.timestamp_matches(mo.volumes[i]->mmu_segmentation_facets)) return true; } diff --git a/src/libslic3r/Model.hpp b/src/libslic3r/Model.hpp index 0fce954ff..6b0bd4ed8 100644 --- a/src/libslic3r/Model.hpp +++ b/src/libslic3r/Model.hpp @@ -487,6 +487,7 @@ enum class ModelVolumeType : int { PARAMETER_MODIFIER, SUPPORT_ENFORCER, SUPPORT_BLOCKER, + MMU_SEGMENTATION }; enum class EnforcerBlockerType : int8_t { @@ -600,6 +601,7 @@ public: bool is_support_enforcer() const { return m_type == ModelVolumeType::SUPPORT_ENFORCER; } bool is_support_blocker() const { return m_type == ModelVolumeType::SUPPORT_BLOCKER; } bool is_support_modifier() const { return m_type == ModelVolumeType::SUPPORT_BLOCKER || m_type == ModelVolumeType::SUPPORT_ENFORCER; } + bool is_mmu_segmentation() const { return m_type == ModelVolumeType::MMU_SEGMENTATION; } t_model_material_id material_id() const { return m_material_id; } void set_material_id(t_model_material_id material_id); ModelMaterial* material() const; @@ -681,6 +683,9 @@ public: this->mmu_segmentation_facets.set_new_unique_id(); } + const std::vector &get_mmu_segmentation_expolygons() const { return m_mmu_segmentation_expolygons; } + void set_mmu_segmentation_expolygons(const std::vector &expoly) { m_mmu_segmentation_expolygons = expoly; } + protected: friend class Print; friend class SLAPrint; @@ -705,6 +710,8 @@ private: // The convex hull of this model's mesh. std::shared_ptr m_convex_hull; Geometry::Transformation m_transformation; + // List of segmented regions (ExPolygons) indexed by extruder index + std::vector m_mmu_segmentation_expolygons; // flag to optimize the checking if the volume is splittable // -1 -> is unknown value (before first cheking) @@ -744,7 +751,8 @@ private: ObjectBase(other), name(other.name), source(other.source), m_mesh(other.m_mesh), m_convex_hull(other.m_convex_hull), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation), - supported_facets(other.supported_facets), seam_facets(other.seam_facets), mmu_segmentation_facets(other.mmu_segmentation_facets) + supported_facets(other.supported_facets), seam_facets(other.seam_facets), mmu_segmentation_facets(other.mmu_segmentation_facets), + m_mmu_segmentation_expolygons(other.m_mmu_segmentation_expolygons) { assert(this->id().valid()); assert(this->config.id().valid()); diff --git a/src/libslic3r/Print.cpp b/src/libslic3r/Print.cpp index fbbacad1c..8e23e2767 100644 --- a/src/libslic3r/Print.cpp +++ b/src/libslic3r/Print.cpp @@ -892,6 +892,15 @@ Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_ } } else if (model_custom_seam_data_changed(model_object, model_object_new)) { update_apply_status(this->invalidate_step(psGCodeExport)); + } else if (!print_diff.empty() || model_mmu_segmentation_data_changed(model_object, model_object_new)) { + this->call_cancel_callback(); + update_apply_status(false); + update_apply_status(this->invalidate_all_steps()); + auto range = print_object_status.equal_range(PrintObjectStatus(model_object.id())); + for (auto it = range.first; it != range.second; ++ it) + update_apply_status(it->print_object->invalidate_all_steps()); + // FIXME Lukas H.: Temporary solution to force update regions after change regions size or repainting. + model_volume_list_update_supports(model_object, model_object_new); } if (! model_parts_differ && ! modifiers_differ) { // Synchronize Object's config. diff --git a/src/libslic3r/Print.hpp b/src/libslic3r/Print.hpp index 91f86d010..5414497f8 100644 --- a/src/libslic3r/Print.hpp +++ b/src/libslic3r/Print.hpp @@ -240,6 +240,8 @@ public: // Helpers to project custom facets on slices void project_and_append_custom_facets(bool seam, EnforcerBlockerType type, std::vector& expolys) const; + // Returns MMU segmentation based on painting in MMU segmentation gizmo + std::vector>> mmu_segmentation_by_painting(); private: // to be called from Print only. friend class Print; diff --git a/src/libslic3r/PrintObject.cpp b/src/libslic3r/PrintObject.cpp index cbf3e71ab..e6abfe5a2 100644 --- a/src/libslic3r/PrintObject.cpp +++ b/src/libslic3r/PrintObject.cpp @@ -13,16 +13,25 @@ #include "Utils.hpp" #include "Fill/FillAdaptive.hpp" #include "Format/STL.hpp" +#include "EdgeGrid.hpp" +#include "VoronoiVisualUtils.hpp" +#include "VoronoiOffset.hpp" #include #include #include +#include #include #include #include +#include +#include +#include +#include + //! macro used to mark string used at localization, //! return same string #define L(s) Slic3r::I18N::translate(s) @@ -43,6 +52,31 @@ #include #endif +namespace Slic3r { +struct ColoredLine { + Line line; + int color; + int poly_idx = -1; + int local_line_idx = -1; +}; +} + +#include +namespace boost { namespace polygon { +template <> +struct geometry_concept { typedef segment_concept type; }; + +template <> +struct segment_traits { + typedef coord_t coordinate_type; + typedef Slic3r::Point point_type; + + static inline point_type get(const Slic3r::ColoredLine& line, direction_1d dir) { + return dir.to_int() ? line.line.b : line.line.a; + } +}; +} } + namespace Slic3r { // Constructor is called from the main thread, therefore all Model / ModelObject / ModelIntance data are valid. @@ -1903,6 +1937,52 @@ void PrintObject::_slice(const std::vector &layer_height_profile) upscaled = m_config.xy_size_compensation.value > 0 && num_modifiers == 0; } + // --------------------MMU_SEGMENTATION_BEGIN---------------------- + + // Temporary fix for not assigned lslices + for(size_t layer_idx = 0; layer_idx < m_layers.size(); layer_idx += 1) { + ExPolygons ex_polygons; + for (LayerRegion *region : this->m_layers[layer_idx]->regions()) + for (const Surface &surface : region->slices.surfaces) + ex_polygons.emplace_back(surface.expolygon); + this->m_layers[layer_idx]->lslices = union_ex(ex_polygons); + } + + size_t region_count_before_change = this->region_volumes.size(); + std::vector>> segmented_regions = this->mmu_segmentation_by_painting(); + // Skip region with default extruder + for (size_t region_idx = 1; region_idx < 3; ++region_idx) { + std::vector c_layers(m_layers.size()); + for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++layer_idx) { + for(const std::pair &colored_polygon : segmented_regions[layer_idx]) { + if(colored_polygon.second != region_idx) + continue; + c_layers[layer_idx].emplace_back(colored_polygon.first); + } + } + + ModelVolume *model_volume = this->model_object()->add_volume(TriangleMesh()); + model_volume->set_mmu_segmentation_expolygons(c_layers); + model_volume->set_type(ModelVolumeType::MMU_SEGMENTATION); + model_volume->config.clear(); + model_volume->config.set_key_value("extruder", new ConfigOptionInt(int(region_idx) + 1)); + this->print()->add_region(); + this->add_region_volume(this->print()->regions().size() - 1, this->model_object()->volumes.size()-1, std::make_pair(0, std::numeric_limits::max())); + + size_t num_extruders = this->print()->config().nozzle_diameter.size(); + PrintRegionConfig config = PrintObject::region_config_from_model_volume(this->print()->default_region_config(), nullptr, *model_volume, num_extruders); + this->print()->get_region(m_print->regions().size() - 1)->set_config(std::move(config)); + } + + for (size_t i_layer = 0; i_layer < m_layers.size(); i_layer += 1) { + Layer *layer = m_layers[i_layer]; + // Make sure all layers contain layer region objects for all regions. + for (size_t region_id = region_count_before_change; region_id < this->region_volumes.size(); ++ region_id) + layer->add_region(this->print()->get_region(region_id)); + } + + // --------------------MMU_SEGMENTATION_END---------------------- + // Slice all modifier volumes. if (this->region_volumes.size() > 1) { for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) { @@ -2081,7 +2161,7 @@ std::vector PrintObject::slice_modifiers(size_t region_id, const std for (size_t i = 0; i < volumes_and_ranges.size(); ) { int volume_id = volumes_and_ranges[i].second; const ModelVolume *model_volume = this->model_object()->volumes[volume_id]; - if (model_volume->is_modifier()) { + if (model_volume->is_modifier() || model_volume->is_mmu_segmentation()) { std::vector ranges; ranges.emplace_back(volumes_and_ranges[i].first); size_t j = i + 1; @@ -2108,7 +2188,8 @@ std::vector PrintObject::slice_modifiers(size_t region_id, const std } } - if (equal_ranges && volume_ranges.front().size() == 1 && volume_ranges.front().front() == t_layer_height_range(0, DBL_MAX)) { + if (equal_ranges && volume_ranges.front().size() == 1 && volume_ranges.front().front() == t_layer_height_range(0, DBL_MAX) + && (this->region_volumes[region_id].size() != 1 || !this->model_object()->volumes[this->region_volumes[region_id].front().second]->is_mmu_segmentation())) { // No modifier in this region was split to layer spans. std::vector volumes; for (const std::pair &volume_and_range : this->region_volumes[region_id]) { @@ -2117,7 +2198,13 @@ std::vector PrintObject::slice_modifiers(size_t region_id, const std volumes.emplace_back(volume); } out = this->slice_volumes(slice_zs, SlicingMode::Regular, volumes); - } else { + } else if(equal_ranges && volume_ranges.front().size() == 1 && volume_ranges.front().front() == t_layer_height_range(0, DBL_MAX) + && this->region_volumes[region_id].size() == 1 && this->model_object()->volumes[this->region_volumes[region_id].front().second]->is_mmu_segmentation()) { + int volume_id = this->region_volumes[region_id].front().second; + const ModelVolume *model_volume = this->model_object()->volumes[volume_id]; + t_layer_height_range range = volume_ranges.front().front(); + out = this->slice_volume(slice_zs, {range}, SlicingMode::Regular, *model_volume); + } else { // Some modifier in this region was split to layer spans. std::vector merge; for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) { @@ -2230,6 +2317,9 @@ std::vector PrintObject::slice_volume(const std::vector &z, S { std::vector layers; if (! z.empty()) { + if(volume.is_mmu_segmentation()) { + return volume.get_mmu_segmentation_expolygons(); + } // Compose mesh. //FIXME better to split the mesh into separate shells, perform slicing over each shell separately and then to use a Boolean operation to merge them. TriangleMesh mesh(volume.mesh()); @@ -3032,4 +3122,1195 @@ const Layer *PrintObject::get_first_layer_bellow_printz(coordf_t print_z, coordf return (it == m_layers.begin()) ? nullptr : *(--it); } +// --------------------MMU_START---------------------- +// Assumes that is at most same projected_l length or below than projection_l +static bool project_line_on_line(const Line &projection_l, const Line &projected_l, Line *new_projected) +{ + const Vec2d v1 = (projection_l.b - projection_l.a).cast(); + const Vec2d va = (projected_l.a - projection_l.a).cast(); + const Vec2d vb = (projected_l.b - projection_l.a).cast(); + const double l2 = v1.squaredNorm(); // avoid a sqrt + if (l2 == 0.0) + return false; + double t1 = va.dot(v1) / l2; + double t2 = vb.dot(v1) / l2; + t1 = std::clamp(t1, 0., 1.); + t2 = std::clamp(t2, 0., 1.); + assert(t1 >= 0.); + assert(t2 >= 0.); + assert(t1 <= 1.); + assert(t2 <= 1.); + + Point p1 = (projection_l.a.cast() + t1 * v1).cast(); + Point p2 = (projection_l.a.cast() + t2 * v1).cast(); + *new_projected = Line(p1, p2); + return true; +} + +struct PaintedLine +{ + size_t contour_idx; + size_t line_idx; + Line projected_line; + int color = 1; +}; + +struct PaintedLineVisitor +{ + PaintedLineVisitor(const EdgeGrid::Grid &grid, std::vector &painted_lines) : grid(grid), painted_lines(painted_lines) + { + painted_lines_set.reserve(painted_lines.capacity()); + } + + void reset() { painted_lines_set.clear(); } + + bool operator()(coord_t iy, coord_t ix) + { + // Called with a row and column of the grid cell, which is intersected by a line. + auto cell_data_range = grid.cell_data_range(iy, ix); + for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) { + Line grid_line = grid.line(*it_contour_and_segment); + + const Vec2d v1 = (line_to_test.b - line_to_test.a).cast().normalized(); + const Vec2d v2 = (grid_line.b - grid_line.a).cast().normalized(); + double angle = ::acos(clamp(-1.0, 1.0, v1.dot(v2))); + double angle_deg = Geometry::rad2deg(angle); + // When lines have too different length, it is necessary to normalize them + if ((angle_deg >= 0 && angle_deg <= 30) || (angle_deg >= 150)) { + Line line_to_test_projected; + project_line_on_line(grid_line, line_to_test, &line_to_test_projected); + + if (painted_lines_set.find(*it_contour_and_segment) == painted_lines_set.end()) { + if (Line(grid_line.a, line_to_test_projected.a).length() > Line(grid_line.a, line_to_test_projected.b).length()) { + line_to_test_projected.reverse(); + } + + double dist_1 = grid_line.distance_to(line_to_test.a); + double dist_2 = grid_line.distance_to(line_to_test.b); + double dist_3 = line_to_test.distance_to(grid_line.a); + double dist_4 = line_to_test.distance_to(grid_line.b); + double total_dist = std::min(std::min(dist_1, dist_2), std::min(dist_3, dist_4)); + + if (total_dist > 50 * SCALED_EPSILON) + continue; + + painted_lines.push_back({it_contour_and_segment->first, it_contour_and_segment->second, line_to_test_projected, this->color}); + painted_lines_set.insert(*it_contour_and_segment); + } + } + } + // Continue traversing the grid along the edge. + return true; + } + + const EdgeGrid::Grid &grid; + std::vector &painted_lines; + Line line_to_test; + std::unordered_set, boost::hash>> painted_lines_set; + int color = -1; +}; + +static std::vector to_colored_lines(const Polygon &polygon, int color) +{ + std::vector lines; + lines.reserve(polygon.points.size()); + if (polygon.points.size() > 2) { + for (auto it = polygon.points.begin(); it != polygon.points.end() - 1; ++it) + lines.push_back({Line(*it, *(it + 1)), color}); + lines.push_back({Line(polygon.points.back(), polygon.points.front()), color}); + } + return lines; +} + +static Polygon colored_points_to_polygon(const std::vector &lines) +{ + Points out; + for (const ColoredLine &l : lines) + out.emplace_back(l.line.a); + return Polygon(out); +} + +static Polygons colored_points_to_polygon(const std::vector> &lines) +{ + Polygons out; + for (const std::vector &l : lines) + out.emplace_back(colored_points_to_polygon(l)); + return out; +} + +inline std::vector to_lines(const std::vector> &c_lines) +{ + size_t n_lines = 0; + for (const auto &c_line : c_lines) + n_lines += c_line.size(); + std::vector lines; + lines.reserve(n_lines); + for (const auto &c_line : c_lines) + lines.insert(lines.end(), c_line.begin(), c_line.end()); + return lines; +} + +// Double vertex equal to a coord_t point after conversion to double. +template +inline bool vertex_equal_to_point(const VertexType &vertex, const Point &ipt) +{ + // Convert ipt to doubles, force the 80bit FPU temporary to 64bit and then compare. + // This should work with any settings of math compiler switches and the C++ compiler + // shall understand the memcpies as type punning and it shall optimize them out. + using ulp_cmp_type = boost::polygon::detail::ulp_comparison; + ulp_cmp_type ulp_cmp; + static constexpr int ULPS = boost::polygon::voronoi_diagram_traits::vertex_equality_predicate_type::ULPS; + return ulp_cmp(vertex.x(), double(ipt.x()), ULPS) == ulp_cmp_type::EQUAL && + ulp_cmp(vertex.y(), double(ipt.y()), ULPS) == ulp_cmp_type::EQUAL; +} + +bool vertex_equal_to_point(const Voronoi::VD::vertex_type *vertex, const Point &ipt) { + return vertex_equal_to_point(*vertex, ipt); +} + +static std::vector> get_segments(const std::vector &polygon) +{ + std::vector> segments; + + size_t segment_end = 0; + while (segment_end + 1 < polygon.size() && polygon[segment_end].color == polygon[segment_end + 1].color) + segment_end++; + + if (segment_end == polygon.size() - 1) + return {std::make_pair(0, polygon.size() - 1)}; + + size_t first_different_color = (segment_end + 1) % polygon.size(); + for (size_t line_offset_idx = 0; line_offset_idx < polygon.size(); ++line_offset_idx) { + size_t start_s = (first_different_color + line_offset_idx) % polygon.size(); + size_t end_s = start_s; + + while (line_offset_idx + 1 < polygon.size() && polygon[start_s].color == polygon[(first_different_color + line_offset_idx + 1) % polygon.size()].color) { + end_s = (first_different_color + line_offset_idx + 1) % polygon.size(); + line_offset_idx++; + } + segments.emplace_back(start_s, end_s); + } + return segments; +} + +static std::vector>> get_all_segments(const std::vector> &color_poly) +{ + std::vector>> all_segments(color_poly.size()); + for (size_t poly_idx = 0; poly_idx < color_poly.size(); ++poly_idx) { + const std::vector &c_polygon = color_poly[poly_idx]; + all_segments[poly_idx] = get_segments(c_polygon); + } + return all_segments; +} + +static std::vector colorize_line(const Line & line_to_process, + const size_t start_idx, + const size_t end_idx, + std::vector &painted_lines) +{ + std::vector internal_painted; + for (size_t line_idx = start_idx; line_idx <= end_idx; ++line_idx) { internal_painted.emplace_back(painted_lines[line_idx]); } + const int filter_eps_value = scale_(0.1f); + std::vector filtered_lines; + filtered_lines.emplace_back(internal_painted.front()); + for (size_t line_idx = 1; line_idx < internal_painted.size(); ++line_idx) { + PaintedLine &prev = filtered_lines.back(); + PaintedLine &curr = internal_painted[line_idx]; + + double prev_length = prev.projected_line.length(); + double curr_dist_start = (curr.projected_line.a - prev.projected_line.a).cast().norm(); + double dist_between_lines = curr_dist_start - prev_length; + + if (dist_between_lines >= 0) { + if (prev.color == curr.color) { + if (dist_between_lines <= filter_eps_value) { + prev.projected_line.b = curr.projected_line.b; + } else { + filtered_lines.emplace_back(curr); + } + } else { + filtered_lines.emplace_back(curr); + } + } else { + double curr_dist_end = (curr.projected_line.b - prev.projected_line.a).cast().norm(); + if (curr_dist_end <= prev_length) { + } else { + if (prev.color == curr.color) { + prev.projected_line.b = curr.projected_line.b; + } else { + curr.projected_line.a = prev.projected_line.b; + filtered_lines.emplace_back(curr); + } + } + } + } + + std::vector final_lines; + double dist_to_start = (filtered_lines.front().projected_line.a - line_to_process.a).cast().norm(); + if (dist_to_start <= filter_eps_value) { + filtered_lines.front().projected_line.a = line_to_process.a; + final_lines.push_back({filtered_lines.front().projected_line, filtered_lines.front().color}); + } else { + final_lines.push_back({Line(line_to_process.a, filtered_lines.front().projected_line.a), 0}); + final_lines.push_back({filtered_lines.front().projected_line, filtered_lines.front().color}); + } + + for (size_t line_idx = 1; line_idx < filtered_lines.size(); ++line_idx) { + ColoredLine &prev = final_lines.back(); + PaintedLine &curr = filtered_lines[line_idx]; + + double line_dist = (curr.projected_line.a - prev.line.b).cast().norm(); + if (line_dist <= filter_eps_value) { + if (prev.color == curr.color) { + prev.line.b = curr.projected_line.b; + } else { + prev.line.b = curr.projected_line.a; + final_lines.push_back({curr.projected_line, curr.color}); + } + } else { + final_lines.push_back({Line(prev.line.b, curr.projected_line.a), 0}); + final_lines.push_back({curr.projected_line, curr.color}); + } + } + + double dist_to_end = (final_lines.back().line.b - line_to_process.b).cast().norm(); + if (dist_to_end <= filter_eps_value) + final_lines.back().line.b = line_to_process.b; + else + final_lines.push_back({Line(final_lines.back().line.b, line_to_process.b), 0}); + + for (size_t line_idx = 1; line_idx < final_lines.size(); ++line_idx) + assert(final_lines[line_idx - 1].line.b == final_lines[line_idx].line.a); + + for (size_t line_idx = 2; line_idx < final_lines.size(); ++line_idx) { + const ColoredLine &line_0 = final_lines[line_idx - 2]; + ColoredLine & line_1 = final_lines[line_idx - 1]; + const ColoredLine &line_2 = final_lines[line_idx - 0]; + + if (line_0.color == line_2.color && line_0.color != line_1.color) + if (line_1.line.length() <= scale_(0.2)) line_1.color = line_0.color; + } + + std::vector colored_lines_simpl; + colored_lines_simpl.emplace_back(final_lines.front()); + for (size_t line_idx = 1; line_idx < final_lines.size(); ++line_idx) { + const ColoredLine &line_0 = final_lines[line_idx]; + + if (colored_lines_simpl.back().color == line_0.color) + colored_lines_simpl.back().line.b = line_0.line.b; + else + colored_lines_simpl.emplace_back(line_0); + } + + final_lines = colored_lines_simpl; + + if (final_lines.size() > 1) { + if (final_lines.front().color != final_lines[1].color && final_lines.front().line.length() <= scale_(0.2)) { + final_lines[1].line.a = final_lines.front().line.a; + final_lines.erase(final_lines.begin()); + } + } + + if (final_lines.size() > 1) { + if (final_lines.back().color != final_lines[final_lines.size() - 2].color && final_lines.back().line.length() <= scale_(0.2)) { + final_lines[final_lines.size() - 2].line.b = final_lines.back().line.b; + final_lines.pop_back(); + } + } + + return final_lines; +} + +static std::vector colorize_polygon(const Polygon &poly, const size_t start_idx, const size_t end_idx, std::vector &painted_lines) +{ + std::vector new_lines; + Lines lines = poly.lines(); + + for (size_t idx = 0; idx < painted_lines[start_idx].line_idx; ++idx) + new_lines.emplace_back(ColoredLine{lines[idx], 0}); + + for (size_t first_idx = start_idx; first_idx <= end_idx; ++first_idx) { + size_t second_idx = first_idx; + while (second_idx <= end_idx && painted_lines[first_idx].line_idx == painted_lines[second_idx].line_idx) ++second_idx; + --second_idx; + + assert(painted_lines[first_idx].line_idx == painted_lines[second_idx].line_idx); + std::vector lines_c_line = colorize_line(lines[painted_lines[first_idx].line_idx], first_idx, second_idx, painted_lines); + new_lines.insert(new_lines.end(), lines_c_line.begin(), lines_c_line.end()); + + if (second_idx + 1 <= end_idx) + for (size_t idx = painted_lines[second_idx].line_idx + 1; idx < painted_lines[second_idx + 1].line_idx; ++idx) + new_lines.emplace_back(ColoredLine{lines[idx], 0}); + + first_idx = second_idx; + } + + for (size_t idx = painted_lines[end_idx].line_idx + 1; idx < poly.size(); ++idx) + new_lines.emplace_back(ColoredLine{lines[idx], 0}); + + for (size_t line_idx = 2; line_idx < new_lines.size(); ++line_idx) { + const ColoredLine &line_0 = new_lines[line_idx - 2]; + ColoredLine & line_1 = new_lines[line_idx - 1]; + const ColoredLine &line_2 = new_lines[line_idx - 0]; + + if (line_0.color == line_2.color && line_0.color != line_1.color && line_0.color >= 1) { + if (line_1.line.length() <= scale_(0.5)) line_1.color = line_0.color; + } + } + + for (size_t line_idx = 3; line_idx < new_lines.size(); ++line_idx) { + const ColoredLine &line_0 = new_lines[line_idx - 3]; + ColoredLine & line_1 = new_lines[line_idx - 2]; + ColoredLine & line_2 = new_lines[line_idx - 1]; + const ColoredLine &line_3 = new_lines[line_idx - 0]; + + if (line_0.color == line_3.color && (line_0.color != line_1.color || line_0.color != line_2.color) && line_0.color >= 1 && line_3.color >= 1) { + if ((line_1.line.length() + line_2.line.length()) <= scale_(0.5)) { + line_1.color = line_0.color; + line_2.color = line_0.color; + } + } + } + + std::vector> segments = get_segments(new_lines); + auto segment_length = [&new_lines](const std::pair &segment) { + double total_length = 0; + for (size_t seg_start_idx = segment.first; seg_start_idx != segment.second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0) + total_length += new_lines[seg_start_idx].line.length(); + total_length += new_lines[segment.second].line.length(); + return total_length; + }; + + for (size_t pair_idx = 1; pair_idx < segments.size(); ++pair_idx) { + int color0 = new_lines[segments[pair_idx - 1].first].color; + int color1 = new_lines[segments[pair_idx - 0].first].color; + + double seg0l = segment_length(segments[pair_idx - 1]); + double seg1l = segment_length(segments[pair_idx - 0]); + + if (color0 != color1 && seg0l >= scale_(0.1) && seg1l <= scale_(0.2)) { + for (size_t seg_start_idx = segments[pair_idx].first; seg_start_idx != segments[pair_idx].second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0) + new_lines[seg_start_idx].color = color0; + new_lines[segments[pair_idx].second].color = color0; + } + } + + segments = get_segments(new_lines); + for (size_t pair_idx = 1; pair_idx < segments.size(); ++pair_idx) { + int color0 = new_lines[segments[pair_idx - 1].first].color; + int color1 = new_lines[segments[pair_idx - 0].first].color; + double seg1l = segment_length(segments[pair_idx - 0]); + + if (color0 >= 1 && color0 != color1 && seg1l <= scale_(0.2)) { + for (size_t seg_start_idx = segments[pair_idx].first; seg_start_idx != segments[pair_idx].second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0) + new_lines[seg_start_idx].color = color0; + new_lines[segments[pair_idx].second].color = color0; + } + } + + for (size_t pair_idx = 2; pair_idx < segments.size(); ++pair_idx) { + int color0 = new_lines[segments[pair_idx - 2].first].color; + int color1 = new_lines[segments[pair_idx - 1].first].color; + int color2 = new_lines[segments[pair_idx - 0].first].color; + + if (color0 > 0 && color0 == color2 && color0 != color1 && segment_length(segments[pair_idx - 1]) <= scale_(0.5)) { + for (size_t seg_start_idx = segments[pair_idx].first; seg_start_idx != segments[pair_idx].second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0) + new_lines[seg_start_idx].color = color0; + new_lines[segments[pair_idx].second].color = color0; + } + } + + return new_lines; +} + +static std::vector> colorize_polygons(const Polygons &polygons, std::vector &painted_lines) +{ + const size_t start_idx = 0; + const size_t end_idx = painted_lines.size() - 1; + + std::vector> new_polygons; + + for (size_t idx = 0; idx < painted_lines[start_idx].contour_idx; ++idx) + new_polygons.emplace_back(to_colored_lines(polygons[idx], 0)); + + for (size_t first_idx = start_idx; first_idx <= end_idx; ++first_idx) { + size_t second_idx = first_idx; + while (second_idx <= end_idx && painted_lines[first_idx].contour_idx == painted_lines[second_idx].contour_idx) + ++second_idx; + --second_idx; + + assert(painted_lines[first_idx].contour_idx == painted_lines[second_idx].contour_idx); + std::vector polygon_c = colorize_polygon(polygons[painted_lines[first_idx].contour_idx], first_idx, second_idx, painted_lines); + new_polygons.emplace_back(polygon_c); + + if (second_idx + 1 <= end_idx) + for (size_t idx = painted_lines[second_idx].contour_idx + 1; idx < painted_lines[second_idx + 1].contour_idx; ++idx) + new_polygons.emplace_back(to_colored_lines(polygons[idx], 0)); + + first_idx = second_idx; + } + + for (size_t idx = painted_lines[end_idx].contour_idx + 1; idx < polygons.size(); ++idx) + new_polygons.emplace_back(to_colored_lines(polygons[idx], 0)); + + return new_polygons; +} + +using boost::polygon::voronoi_diagram; + +struct MMU_Graph +{ + enum class ARC_TYPE { BORDER, NON_BORDER }; + + struct Arc + { + size_t from_idx; + size_t to_idx; + int color; + ARC_TYPE type; + bool used{false}; + + bool operator==(const Arc &rhs) const { return (from_idx == rhs.from_idx) && (to_idx == rhs.to_idx) && (color == rhs.color) && (type == rhs.type); } + bool operator!=(const Arc &rhs) const { return !operator==(rhs); } + }; + + struct Node + { + Point point; + std::list neighbours; + + void remove_edge(const size_t to_idx) + { + for (auto arc_it = this->neighbours.begin(); arc_it != this->neighbours.end(); ++arc_it) { + if (arc_it->to_idx == to_idx) { + assert(arc_it->type != ARC_TYPE::BORDER); + this->neighbours.erase(arc_it); + break; + } + } + } + }; + + std::vector nodes; + std::vector arcs; + size_t all_border_points{}; + + std::vector polygon_idx_offset; + std::vector polygon_sizes; + + void remove_edge(const size_t from_idx, const size_t to_idx) + { + nodes[from_idx].remove_edge(to_idx); + nodes[to_idx].remove_edge(from_idx); + } + + size_t get_global_index(const size_t poly_idx, const size_t point_idx) const { return polygon_idx_offset[poly_idx] + point_idx; } + + void append_edge(const size_t &from_idx, const size_t &to_idx, int color = -1, ARC_TYPE type = ARC_TYPE::NON_BORDER) + { + // Don't append duplicate edges between the same nodes. + for (const MMU_Graph::Arc &arc : this->nodes[from_idx].neighbours) + if (arc.to_idx == to_idx) + return; + for (const MMU_Graph::Arc &arc : this->nodes[to_idx].neighbours) + if (arc.to_idx == to_idx) + return; + + this->nodes[from_idx].neighbours.push_back({from_idx, to_idx, color, type}); + this->nodes[to_idx].neighbours.push_back({to_idx, from_idx, color, type}); + this->arcs.push_back({from_idx, to_idx, color, type}); + this->arcs.push_back({to_idx, from_idx, color, type}); + } + + // Ignoring arcs in the opposite direction + MMU_Graph::Arc get_arc(size_t idx) { return this->arcs[idx * 2]; } + + size_t nodes_count() const { return this->nodes.size(); } + + void remove_nodes_with_one_arc() + { + std::queue update_queue; + for (const MMU_Graph::Node &node : this->nodes) + if (node.neighbours.size() == 1) update_queue.emplace(&node - &this->nodes.front()); + + while (!update_queue.empty()) { + size_t node_from_idx = update_queue.front(); + MMU_Graph::Node &node_from = this->nodes[update_queue.front()]; + update_queue.pop(); + if (node_from.neighbours.empty()) + continue; + + assert(node_from.neighbours.size() == 1); + size_t node_to_idx = node_from.neighbours.front().to_idx; + MMU_Graph::Node &node_to = this->nodes[node_to_idx]; + this->remove_edge(node_from_idx, node_to_idx); + if (node_to.neighbours.size() == 1) + update_queue.emplace(node_to_idx); + } + } + + void add_contours(const std::vector> &color_poly) + { + this->all_border_points = nodes.size(); + this->polygon_sizes = std::vector(color_poly.size()); + for (size_t polygon_idx = 0; polygon_idx < color_poly.size(); ++polygon_idx) + this->polygon_sizes[polygon_idx] = color_poly[polygon_idx].size(); + this->polygon_idx_offset = std::vector(color_poly.size()); + this->polygon_idx_offset[0] = 0; + for (size_t polygon_idx = 1; polygon_idx < color_poly.size(); ++polygon_idx) { + this->polygon_idx_offset[polygon_idx] = this->polygon_idx_offset[polygon_idx - 1] + color_poly[polygon_idx - 1].size(); + } + + size_t poly_idx = 0; + for (const std::vector &color_lines : color_poly) { + size_t line_idx = 0; + for (const ColoredLine &color_line : color_lines) { + size_t from_idx = this->get_global_index(poly_idx, line_idx); + size_t to_idx = this->get_global_index(poly_idx, (line_idx + 1) % color_lines.size()); + this->append_edge(from_idx, to_idx, color_line.color, ARC_TYPE::BORDER); + ++line_idx; + } + ++poly_idx; + } + } + + // Nodes 0..all_border_points are only one with are on countour. Other vertexis are consider as not on coouter. So we check if base on attach index + inline bool is_vertex_on_contour(const Voronoi::VD::vertex_type *vertex) const + { + assert(vertex != nullptr); + return vertex->color() < this->all_border_points; + } + + inline bool is_edge_attach_to_contour(const voronoi_diagram::const_edge_iterator &edge_iterator) const + { + return this->is_vertex_on_contour(edge_iterator->vertex0()) || this->is_vertex_on_contour(edge_iterator->vertex1()); + } + + inline bool is_edge_connecting_two_contour_vertices(const voronoi_diagram::const_edge_iterator &edge_iterator) const + { + return this->is_vertex_on_contour(edge_iterator->vertex0()) && this->is_vertex_on_contour(edge_iterator->vertex1()); + } +}; + +namespace bg = boost::geometry; +namespace bgm = boost::geometry::model; +namespace bgi = boost::geometry::index; + +// float is needed because for coord_t bgi::intersects throws "bad numeric conversion: positive overflow" +using rtree_point_t = bgm::point; +using rtree_t = bgi::rtree, bgi::rstar<16, 4>>; + +static inline rtree_point_t mk_rtree_point(const Point &pt) { return rtree_point_t(float(pt.x()), float(pt.y())); } + +static inline Point mk_point(const Voronoi::VD::vertex_type *point) { return Point(coord_t(point->x()), coord_t(point->y())); } + +static inline Point mk_point(const Voronoi::Internal::point_type &point) { return Point(coord_t(point.x()), coord_t(point.y())); } + +static inline Point mk_point(const voronoi_diagram::vertex_type &point) { return Point(coord_t(point.x()), coord_t(point.y())); } + +static inline void mark_processed(const voronoi_diagram::const_edge_iterator &edge_iterator) +{ + edge_iterator->color(true); + edge_iterator->twin()->color(true); +} + +// Return true, if "p" is closer to line.a, then line.b +static inline bool is_point_closer_to_beginning_of_line(const Line &line, const Point &p) +{ + return (p - line.a).cast().squaredNorm() < (p - line.b).cast().squaredNorm(); +} + +static inline bool has_same_color(const ColoredLine &cl1, const ColoredLine &cl2) { return cl1.color == cl2.color; } + +// Determines if the line points from the point between two contour lines is pointing inside polygon or outside. +static inline bool points_inside(const Line &contour_first, const Line &contour_second, const Point &new_point) +{ + // Used in points_inside for decision if line leading thought the common point of two lines is pointing inside polygon or outside + auto three_points_inward_normal = [](const Point &left, const Point &middle, const Point &right) -> Vec2d { + assert(left != middle); + assert(middle != right); + return (perp(Point(middle - left)).cast().normalized() + perp(Point(right - middle)).cast().normalized()).normalized(); + }; + + assert(contour_first.b == contour_second.a); + Vec2d inward_normal = three_points_inward_normal(contour_first.a, contour_first.b, contour_second.b); + Vec2d edge_norm = (new_point - contour_first.b).cast().normalized(); + double side = inward_normal.dot(edge_norm); + // assert(side != 0.); + return side > 0.; +} + +static inline bool line_intersection_with_epsilon(const Line &line_to_extend, const Line &other, Point *intersection) +{ + Line extended_line = line_to_extend; + extended_line.extend(15 * SCALED_EPSILON); + return extended_line.intersection(other, intersection); +} + +// For every ColoredLine in lines_colored_out, assign the index of the polygon to which belongs and also the index of this line inside of the polygon. +static inline void init_polygon_indices(const MMU_Graph &graph, + const std::vector> &color_poly, + std::vector &lines_colored_out) +{ + size_t poly_idx = 0; + for (const std::vector &color_lines : color_poly) { + size_t line_idx = 0; + for (size_t color_line_idx = 0; color_line_idx < color_lines.size(); ++color_line_idx) { + size_t from_idx = graph.get_global_index(poly_idx, line_idx); + lines_colored_out[from_idx].poly_idx = int(poly_idx); + lines_colored_out[from_idx].local_line_idx = int(line_idx); + ++line_idx; + } + ++poly_idx; + } +} + +static MMU_Graph build_graph(size_t layer_idx, const std::vector> &color_poly) +{ + Geometry::VoronoiDiagram vd; + std::vector lines_colored = to_lines(color_poly); + Polygons color_poly_tmp = colored_points_to_polygon(color_poly); + const Points points = to_points(color_poly_tmp); + const Lines lines = to_lines(color_poly_tmp); + + boost::polygon::construct_voronoi(lines_colored.begin(), lines_colored.end(), &vd); + MMU_Graph graph; + for (const Point &point : points) + graph.nodes.push_back({point}); + + graph.add_contours(color_poly); + init_polygon_indices(graph, color_poly, lines_colored); + + assert(graph.nodes.size() == lines_colored.size()); + + // All Voronoi vertices are post-processes to merge very close vertices to single. Witch Eliminates issues with intersection edges. + // Also, Voronoi vertices outside of the bounding of input polygons are throw away by marking them. + auto append_voronoi_vertices_to_graph = [&graph, &color_poly_tmp, &vd]() -> void { + auto is_equal_points = [](const Point &p1, const Point &p2) { return p1 == p2 || (p1 - p2).cast().norm() <= 3 * SCALED_EPSILON; }; + + BoundingBox bbox = get_extents(color_poly_tmp); + bbox.offset(SCALED_EPSILON); + // EdgeGrid is used for vertices near to contour and rtree for other vertices + // FIXME Lukas H.: Get rid of EdgeGrid and rtree. Use only one structure for both cases. + EdgeGrid::Grid grid; + grid.set_bbox(bbox); + grid.create(color_poly_tmp, coord_t(scale_(10.))); + rtree_t rtree; + for (const voronoi_diagram::vertex_type &vertex : vd.vertices()) { + vertex.color(-1); + Point vertex_point = mk_point(vertex); + + const Point &first_point = graph.nodes[graph.get_arc(vertex.incident_edge()->cell()->source_index()).from_idx].point; + const Point &second_point = graph.nodes[graph.get_arc(vertex.incident_edge()->twin()->cell()->source_index()).from_idx].point; + + if (vertex_equal_to_point(&vertex, first_point)) { + assert(vertex.color() != vertex.incident_edge()->cell()->source_index()); + assert(vertex.color() != vertex.incident_edge()->twin()->cell()->source_index()); + vertex.color(graph.get_arc(vertex.incident_edge()->cell()->source_index()).from_idx); + } else if (vertex_equal_to_point(&vertex, second_point)) { + assert(vertex.color() != vertex.incident_edge()->cell()->source_index()); + assert(vertex.color() != vertex.incident_edge()->twin()->cell()->source_index()); + vertex.color(graph.get_arc(vertex.incident_edge()->twin()->cell()->source_index()).from_idx); + } else if (bbox.contains(vertex_point)) { + EdgeGrid::Grid::ClosestPointResult cp = grid.closest_point_signed_distance(vertex_point, coord_t(3 * SCALED_EPSILON)); + if (cp.valid()) { + size_t global_idx = graph.get_global_index(cp.contour_idx, cp.start_point_idx); + size_t global_idx_next = graph.get_global_index(cp.contour_idx, (cp.start_point_idx + 1) % color_poly_tmp[cp.contour_idx].points.size()); + vertex.color(is_equal_points(vertex_point, graph.nodes[global_idx].point) ? global_idx : global_idx_next); + } else { + if (rtree.empty()) { + rtree.insert(std::make_pair(mk_rtree_point(vertex_point), graph.nodes_count())); + vertex.color(graph.nodes_count()); + graph.nodes.push_back({vertex_point}); + } else { + std::vector> closest; + rtree.query(bgi::nearest(mk_rtree_point(vertex_point), 1), std::back_inserter(closest)); + assert(!closest.empty()); + rtree_point_t r_point = closest.front().first; + Point closest_p(bg::get<0>(r_point), bg::get<1>(r_point)); + if (Line(vertex_point, closest_p).length() > 3 * SCALED_EPSILON) { + rtree.insert(std::make_pair(mk_rtree_point(vertex_point), graph.nodes_count())); + vertex.color(graph.nodes_count()); + graph.nodes.push_back({vertex_point}); + } else { + vertex.color(closest.front().second); + } + } + } + } + } + }; + + append_voronoi_vertices_to_graph(); + + auto get_prev_contour_line = [&lines_colored, &color_poly, &graph](const voronoi_diagram::const_edge_iterator &edge_it) -> ColoredLine { + size_t contour_line_local_idx = lines_colored[edge_it->cell()->source_index()].local_line_idx; + size_t contour_line_size = color_poly[lines_colored[edge_it->cell()->source_index()].poly_idx].size(); + size_t contour_prev_idx = graph.get_global_index(lines_colored[edge_it->cell()->source_index()].poly_idx, + (contour_line_local_idx > 0) ? contour_line_local_idx - 1 : contour_line_size - 1); + return lines_colored[contour_prev_idx]; + }; + + auto get_next_contour_line = [&lines_colored, &color_poly, &graph](const voronoi_diagram::const_edge_iterator &edge_it) -> ColoredLine { + size_t contour_line_local_idx = lines_colored[edge_it->cell()->source_index()].local_line_idx; + size_t contour_line_size = color_poly[lines_colored[edge_it->cell()->source_index()].poly_idx].size(); + size_t contour_next_idx = graph.get_global_index(lines_colored[edge_it->cell()->source_index()].poly_idx, + (contour_line_local_idx + 1) % contour_line_size); + return lines_colored[contour_next_idx]; + }; + + BoundingBox bbox = get_extents(color_poly_tmp); + bbox.offset(scale_(10.)); + const double bbox_dim_max = double(std::max(bbox.size().x(), bbox.size().y())); + + // Make a copy of the input segments with the double type. + std::vector segments; + for (const Line &line : lines) + segments.emplace_back(Voronoi::Internal::point_type(double(line.a(0)), double(line.a(1))), + Voronoi::Internal::point_type(double(line.b(0)), double(line.b(1)))); + + for (auto edge_it = vd.edges().begin(); edge_it != vd.edges().end(); ++edge_it) { + // Skip second half-edge + if (edge_it->cell()->source_index() > edge_it->twin()->cell()->source_index() || edge_it->color()) + continue; + + if (edge_it->is_infinite()) { + // Infinite edge is leading through a point on the counter, but there are no Voronoi vertices. + // So we could fix this case by computing the intersection between the contour line and infinity edge. + std::vector samples; + Voronoi::Internal::clip_infinite_edge(points, segments, *edge_it, bbox_dim_max, &samples); + if (samples.empty()) + continue; + + const Line edge_line(mk_point(samples[0]), mk_point(samples[1])); + const ColoredLine &contour_line = lines_colored[edge_it->cell()->source_index()]; + Point contour_intersection; + + if (line_intersection_with_epsilon(contour_line.line, edge_line, &contour_intersection)) { + const MMU_Graph::Arc &graph_arc = graph.get_arc(edge_it->cell()->source_index()); + const size_t from_idx = (edge_it->vertex1() != nullptr) ? edge_it->vertex1()->color() : edge_it->vertex0()->color(); + size_t to_idx = ((contour_line.line.a - contour_intersection).cast().squaredNorm() < + (contour_line.line.b - contour_intersection).cast().squaredNorm()) ? + graph_arc.from_idx : + graph_arc.to_idx; + if (from_idx != to_idx && from_idx < graph.nodes_count() && to_idx < graph.nodes_count()) { + graph.append_edge(from_idx, to_idx); + mark_processed(edge_it); + } + } + } else if (edge_it->is_finite()) { + const Point v0 = mk_point(edge_it->vertex0()); + const Point v1 = mk_point(edge_it->vertex1()); + const size_t from_idx = edge_it->vertex0()->color(); + const size_t to_idx = edge_it->vertex1()->color(); + + // Both points are on contour, so skip them. In cases of duplicate Voronoi vertices, skip edges between the same two points. + if (graph.is_edge_connecting_two_contour_vertices(edge_it) || (edge_it->vertex0()->color() == edge_it->vertex1()->color())) continue; + + const Line edge_line(v0, v1); + const Line contour_line = lines_colored[edge_it->cell()->source_index()].line; + const ColoredLine colored_line = lines_colored[edge_it->cell()->source_index()]; + const ColoredLine contour_line_prev = get_prev_contour_line(edge_it); + const ColoredLine contour_line_next = get_next_contour_line(edge_it); + + Point intersection; + if (edge_it->vertex0()->color() >= graph.nodes_count() || edge_it->vertex1()->color() >= graph.nodes_count()) { +// if(edge_it->vertex0()->color() < graph.nodes_count() && !graph.is_vertex_on_contour(edge_it->vertex0())) { +// +// } + if (edge_it->vertex1()->color() < graph.nodes_count() && !graph.is_vertex_on_contour(edge_it->vertex1())) { + Line contour_line_twin = lines_colored[edge_it->twin()->cell()->source_index()].line; + if (line_intersection_with_epsilon(contour_line_twin, edge_line, &intersection)) { + const MMU_Graph::Arc &graph_arc = graph.get_arc(edge_it->twin()->cell()->source_index()); + const size_t to_idx_l = is_point_closer_to_beginning_of_line(contour_line_twin, intersection) ? graph_arc.from_idx : + graph_arc.to_idx; + graph.append_edge(edge_it->vertex1()->color(), to_idx_l); + } else if (line_intersection_with_epsilon(contour_line, edge_line, &intersection)) { + const MMU_Graph::Arc &graph_arc = graph.get_arc(edge_it->cell()->source_index()); + const size_t to_idx_l = is_point_closer_to_beginning_of_line(contour_line, intersection) ? graph_arc.from_idx : graph_arc.to_idx; + graph.append_edge(edge_it->vertex1()->color(), to_idx_l); + } + mark_processed(edge_it); + } + } else if (graph.is_edge_attach_to_contour(edge_it)) { + mark_processed(edge_it); + // Skip edges witch connection two points on a contour + if (graph.is_edge_connecting_two_contour_vertices(edge_it)) + continue; + + if (graph.is_vertex_on_contour(edge_it->vertex0())) { + if (is_point_closer_to_beginning_of_line(contour_line, v0)) { + if (!has_same_color(contour_line_prev, colored_line) && points_inside(contour_line_prev.line, contour_line, v1)) { + graph.append_edge(from_idx, to_idx); + } + } else { + if (!has_same_color(contour_line_next, colored_line) && points_inside(contour_line, contour_line_next.line, v1)) { + graph.append_edge(from_idx, to_idx); + } + } + } else { + assert(graph.is_vertex_on_contour(edge_it->vertex1())); + if (is_point_closer_to_beginning_of_line(contour_line, v1)) { + if (!has_same_color(contour_line_prev, colored_line) && points_inside(contour_line_prev.line, contour_line, v0)) { + graph.append_edge(from_idx, to_idx); + } + } else { + if (!has_same_color(contour_line_next, colored_line) && points_inside(contour_line, contour_line_next.line, v0)) { + graph.append_edge(from_idx, to_idx); + } + } + } + } else if (line_intersection_with_epsilon(contour_line, edge_line, &intersection)) { + mark_processed(edge_it); + Point real_v0 = graph.nodes[edge_it->vertex0()->color()].point; + Point real_v1 = graph.nodes[edge_it->vertex1()->color()].point; + + if (is_point_closer_to_beginning_of_line(contour_line, intersection)) { + Line first_part(intersection, real_v0); + Line second_part(intersection, real_v1); + + if (!has_same_color(contour_line_prev, colored_line)) { + if (points_inside(contour_line_prev.line, contour_line, first_part.b)) { + graph.append_edge(edge_it->vertex0()->color(), graph.get_arc(edge_it->cell()->source_index()).from_idx); + } + if (points_inside(contour_line_prev.line, contour_line, second_part.b)) { + graph.append_edge(edge_it->vertex1()->color(), graph.get_arc(edge_it->cell()->source_index()).from_idx); + } + } + } else { + const size_t int_point_idx = graph.get_arc(edge_it->cell()->source_index()).to_idx; + const Point int_point = graph.nodes[int_point_idx].point; + + const Line first_part(int_point, real_v0); + const Line second_part(int_point, real_v1); + + if (!has_same_color(contour_line_next, colored_line)) { + if (points_inside(contour_line, contour_line_next.line, first_part.b)) { + graph.append_edge(edge_it->vertex0()->color(), int_point_idx); + } + if (points_inside(contour_line, contour_line_next.line, second_part.b)) { + graph.append_edge(edge_it->vertex1()->color(), int_point_idx); + } + } + } + } + } + } + + for (auto edge_it = vd.edges().begin(); edge_it != vd.edges().end(); ++edge_it) { + // Skip second half-edge and processed edges + if (edge_it->cell()->source_index() > edge_it->twin()->cell()->source_index() || edge_it->color()) + continue; + + if (edge_it->is_finite() && !bool(edge_it->color()) && edge_it->vertex0()->color() < graph.nodes_count() && + edge_it->vertex1()->color() < graph.nodes_count()) { + // Skip cases, when the edge is between two same vertices, which is in cases two near vertices were merged together. + if (edge_it->vertex0()->color() == edge_it->vertex1()->color()) + continue; + + size_t from_idx = edge_it->vertex0()->color(); + size_t to_idx = edge_it->vertex1()->color(); + graph.append_edge(from_idx, to_idx); + } + mark_processed(edge_it); + } + + graph.remove_nodes_with_one_arc(); + return graph; +} + +static inline Polygon to_polygon(const Lines &lines) +{ + Polygon poly_out; + poly_out.points.reserve(lines.size()); + for (const Line &line : lines) + poly_out.points.emplace_back(line.a); + return poly_out; +} + +// Returns list of polygons and assigned colors. +// It iterates through all nodes on the border between two different colors, and from this point, +// start selection always left most edges for every node to construct CCW polygons. +// Assumes that graph is planar (without self-intersection edges) +static std::vector> extract_colored_segments(MMU_Graph &graph) +{ + // When there is no next arc, then is returned original_arc or edge with is marked as used + auto get_next = [&graph](const Line &process_line, MMU_Graph::Arc &original_arc) -> MMU_Graph::Arc & { + std::vector> sorted_arcs; + for (MMU_Graph::Arc &arc : graph.nodes[original_arc.to_idx].neighbours) { + if (graph.nodes[arc.to_idx].point == process_line.a || arc.used) + continue; + + assert(original_arc.to_idx == arc.from_idx); + Vec2d process_line_vec_n = (process_line.a - process_line.b).cast().normalized(); + Vec2d neighbour_line_vec_n = (graph.nodes[arc.to_idx].point - graph.nodes[arc.from_idx].point).cast().normalized(); + + double angle = ::acos(clamp(-1.0, 1.0, neighbour_line_vec_n.dot(process_line_vec_n))); + if (Slic3r::cross2(neighbour_line_vec_n, process_line_vec_n) < 0.0) + angle = 2.0 * (double) PI - angle; + + sorted_arcs.emplace_back(&arc, angle); + } + + std::sort(sorted_arcs.begin(), sorted_arcs.end(), + [](std::pair &l, std::pair &r) -> bool { return l.second < r.second; }); + + // Try to return left most edge witch is unused + for (auto &sorted_arc : sorted_arcs) + if (!sorted_arc.first->used) + return *sorted_arc.first; + + if (sorted_arcs.empty()) + return original_arc; + + return *(sorted_arcs.front().first); + }; + + std::vector> polygons_segments; + for (MMU_Graph::Node &node : graph.nodes) + for (MMU_Graph::Arc &arc : node.neighbours) + arc.used = false; + + for (size_t node_idx = 0; node_idx < graph.all_border_points; ++node_idx) { + MMU_Graph::Node &node = graph.nodes[node_idx]; + + for (MMU_Graph::Arc &arc : node.neighbours) { + if (arc.type == MMU_Graph::ARC_TYPE::NON_BORDER || arc.used) continue; + + Line process_line(node.point, graph.nodes[arc.to_idx].point); + arc.used = true; + + Lines face_lines; + face_lines.emplace_back(process_line); + Point start_p = process_line.a; + + Line p_vec = process_line; + MMU_Graph::Arc *p_arc = &arc; + do { + MMU_Graph::Arc &next = get_next(p_vec, *p_arc); + face_lines.emplace_back(Line(graph.nodes[next.from_idx].point, graph.nodes[next.to_idx].point)); + if (next.used) break; + + next.used = true; + p_vec = Line(graph.nodes[next.from_idx].point, graph.nodes[next.to_idx].point); + p_arc = &next; + } while (graph.nodes[p_arc->to_idx].point != start_p); + + Polygon poly = to_polygon(face_lines); + if (poly.is_counter_clockwise() && poly.is_valid()) + polygons_segments.emplace_back(poly, arc.color); + } + } + return polygons_segments; +} + +// Used in remove_multiple_edges_in_vertices() +// Returns length of edge with is connected to contour. To this length is include other edges with follows it if they are almost straight (with the +// tolerance of 15) And also if node between two subsequent edges is connected only to these two edges. +static inline double compute_edge_length(MMU_Graph &graph, size_t start_idx, MMU_Graph::Arc &start_edge) +{ + for (MMU_Graph::Node &node : graph.nodes) + for (MMU_Graph::Arc &arc : node.neighbours) + arc.used = false; + + start_edge.used = true; + MMU_Graph::Arc *arc = &start_edge; + size_t idx = start_idx; + double line_total_length = Line(graph.nodes[idx].point, graph.nodes[arc->to_idx].point).length(); + while (graph.nodes[arc->to_idx].neighbours.size() == 2) { + bool found = false; + for (MMU_Graph::Arc &arc_n : graph.nodes[arc->to_idx].neighbours) { + if (arc_n.type == MMU_Graph::ARC_TYPE::NON_BORDER && !arc_n.used && arc_n.to_idx != idx) { + Line first_line(graph.nodes[idx].point, graph.nodes[arc->to_idx].point); + Line second_line(graph.nodes[arc->to_idx].point, graph.nodes[arc_n.to_idx].point); + + Vec2d first_line_vec = (first_line.a - first_line.b).cast(); + Vec2d second_line_vec = (second_line.b - second_line.a).cast(); + Vec2d first_line_vec_n = first_line_vec.normalized(); + Vec2d second_line_vec_n = second_line_vec.normalized(); + double angle = ::acos(clamp(-1.0, 1.0, first_line_vec_n.dot(second_line_vec_n))); + if (Slic3r::cross2(first_line_vec_n, second_line_vec_n) < 0.0) + angle = 2.0 * (double) PI - angle; + + if (std::abs(angle - PI) >= (PI / 12)) + continue; + + idx = arc->to_idx; + arc = &arc_n; + + line_total_length += Line(graph.nodes[idx].point, graph.nodes[arc->to_idx].point).length(); + arc_n.used = true; + found = true; + break; + } + } + if (!found) + break; + } + + return line_total_length; +} + +// Used for fixing double Voronoi edges for concave parts of the polygon. +static void remove_multiple_edges_in_vertices(MMU_Graph &graph, const std::vector> &color_poly) +{ + std::vector>> colored_segments = get_all_segments(color_poly); + for (const std::vector> &colored_segment_p : colored_segments) { + size_t poly_idx = &colored_segment_p - &colored_segments.front(); + for (const std::pair &colored_segment : colored_segment_p) { + size_t first_idx = graph.get_global_index(poly_idx, colored_segment.first); + size_t second_idx = graph.get_global_index(poly_idx, (colored_segment.second + 1) % graph.polygon_sizes[poly_idx]); + Line seg_line(graph.nodes[first_idx].point, graph.nodes[second_idx].point); + + if (graph.nodes[first_idx].neighbours.size() >= 3) { + std::vector> arc_to_check; + for (MMU_Graph::Arc &n_arc : graph.nodes[first_idx].neighbours) { + if (n_arc.type == MMU_Graph::ARC_TYPE::NON_BORDER) { + double total_len = compute_edge_length(graph, first_idx, n_arc); + arc_to_check.emplace_back(&n_arc, total_len); + } + } + std::sort(arc_to_check.begin(), arc_to_check.end(), + [](std::pair &l, std::pair &r) -> bool { return l.second > r.second; }); + + while (arc_to_check.size() > 1) { + graph.remove_edge(first_idx, arc_to_check.back().first->to_idx); + arc_to_check.pop_back(); + } + } + } + } +} + +std::vector>> PrintObject::mmu_segmentation_by_painting() +{ + std::vector>> segmented_regions(this->layers().size()); + std::vector> painted_lines(this->layers().size()); + std::vector edge_grids(this->layers().size()); + + for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++layer_idx) { + const Layer *layer = m_layers[layer_idx]; + BoundingBox bbox(get_extents(layer->lslices)); + bbox.offset(SCALED_EPSILON); + edge_grids[layer_idx].set_bbox(bbox); + edge_grids[layer_idx].create(layer->lslices, coord_t(scale_(10.))); + } + + for (const ModelVolume *mv : this->model_object()->volumes) { + for (const auto ¶ms : {std::make_pair(EnforcerBlockerType::ENFORCER, 1), std::make_pair(EnforcerBlockerType::BLOCKER, 2)}) { + const indexed_triangle_set custom_facets = mv->mmu_segmentation_facets.get_facets(*mv, params.first); + if (!mv->is_model_part() || custom_facets.indices.empty()) + continue; + + const Transform3f tr = this->trafo().cast() * mv->get_matrix().cast(); + for (size_t facet_idx = 0; facet_idx < custom_facets.indices.size(); ++facet_idx) { + float min_z = std::numeric_limits::max(); + float max_z = std::numeric_limits::lowest(); + + std::array facet; + Points projected_facet(3); + for (int p_idx = 0; p_idx < 3; ++p_idx) { + facet[p_idx] = tr * custom_facets.vertices[custom_facets.indices[facet_idx](p_idx)]; + max_z = std::max(max_z, facet[p_idx].z()); + min_z = std::min(min_z, facet[p_idx].z()); + } + + // Sort the vertices by z-axis for simplification of projected_facet on slices + std::sort(facet.begin(), facet.end(), [](const Vec3f &p1, const Vec3f &p2) { return p1.z() < p2.z(); }); + + for (int p_idx = 0; p_idx < 3; ++p_idx) { + projected_facet[p_idx] = Point(scale_(facet[p_idx].x()), scale_(facet[p_idx].y())); + projected_facet[p_idx] = projected_facet[p_idx] - this->center_offset(); + } + + ExPolygon triangle = ExPolygon(projected_facet); + + // Find lowest slice not below the triangle. + auto first_layer = std::upper_bound(this->layers().begin(), this->layers().end(), float(min_z - EPSILON), + [](float z, const Layer *l1) { return z < l1->slice_z; }); + auto last_layer = std::upper_bound(this->layers().begin(), this->layers().end(), float(max_z + EPSILON), + [](float z, const Layer *l1) { return z < l1->slice_z; }); + --last_layer; + + for (auto layer_it = first_layer; layer_it != (last_layer + 1); ++layer_it) { + const Layer *layer = *layer_it; + size_t layer_idx = layer_it - this->layers().begin(); + if (facet[0].z() > layer->slice_z || layer->slice_z > facet[2].z()) + continue; + + // https://kandepet.com/3d-printing-slicing-3d-objects/ + float t = (float(layer->slice_z) - facet[0].z()) / (facet[2].z() - facet[0].z()); + Vec3f line_start_f = facet[0] + t * (facet[2] - facet[0]); + Vec3f line_end_f; + + if (facet[1].z() > layer->slice_z) { + // [P0, P2] a [P0, P1] + float t1 = (float(layer->slice_z) - facet[0].z()) / (facet[1].z() - facet[0].z()); + line_end_f = facet[0] + t1 * (facet[1] - facet[0]); + } else if (facet[1].z() <= layer->slice_z) { + // [P0, P2] a [P1, P2] + float t2 = (float(layer->slice_z) - facet[1].z()) / (facet[2].z() - facet[1].z()); + line_end_f = facet[1] + t2 * (facet[2] - facet[1]); + } + + Point line_start(scale_(line_start_f.x()), scale_(line_start_f.y())); + Point line_end(scale_(line_end_f.x()), scale_(line_end_f.y())); + line_start -= this->center_offset(); + line_end -= this->center_offset(); + + std::vector painted_line_tmp; + PaintedLineVisitor visitor(edge_grids[layer_idx], painted_line_tmp); + visitor.reset(); + visitor.line_to_test.a = line_start; + visitor.line_to_test.b = line_end; + visitor.color = params.second; + edge_grids[layer_idx].visit_cells_intersecting_line(line_start, line_end, visitor); + + if (!painted_line_tmp.empty()) + painted_lines[layer_idx].insert(painted_lines[layer_idx].end(), painted_line_tmp.begin(), painted_line_tmp.end()); + } + } + } + } + + tbb::parallel_for(tbb::blocked_range(0, this->layers().size()), [&](const tbb::blocked_range &range) { + for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) { + // for(size_t layer_idx = 0; layer_idx < this->layers().size(); ++layer_idx) { + BOOST_LOG_TRIVIAL(debug) << "MMU segmentation of layer: " << layer_idx; + auto comp = [&edge_grids, &layer_idx](const PaintedLine &first, const PaintedLine &second) { + Point first_start_p = *(edge_grids[layer_idx].contours()[first.contour_idx].begin() + first.line_idx); + + return first.contour_idx < second.contour_idx || + (first.contour_idx == second.contour_idx && + (first.line_idx < second.line_idx || + (first.line_idx == second.line_idx && + Line(first_start_p, first.projected_line.a).length() < Line(first_start_p, second.projected_line.a).length()))); + }; + + std::sort(painted_lines[layer_idx].begin(), painted_lines[layer_idx].end(), comp); + std::vector &painted_lines_single = painted_lines[layer_idx]; + + if (!painted_lines_single.empty()) { + Polygons original_polygons; + for (const Slic3r::EdgeGrid::Contour &contour : edge_grids[layer_idx].contours()) { + Points points; + for (const Point &point : contour) points.emplace_back(point); + original_polygons.emplace_back(points); + } + + std::vector> color_poly = colorize_polygons(original_polygons, painted_lines_single); + MMU_Graph graph = build_graph(layer_idx, color_poly); + remove_multiple_edges_in_vertices(graph, color_poly); + graph.remove_nodes_with_one_arc(); + std::vector> segmentation = extract_colored_segments(graph); + for (const std::pair ®ion : segmentation) + segmented_regions[layer_idx].emplace_back(region); + } + } + }); // end of parallel_for + + return segmented_regions; +} +// --------------------MMU_END---------------------- + } // namespace Slic3r