Fixed some of the raft issues introduced in the new C++ supports.

This commit is contained in:
bubnikv 2017-02-14 19:49:30 +01:00
parent 420e387055
commit f5e4026aee
2 changed files with 181 additions and 103 deletions

View File

@ -290,20 +290,6 @@ void PrintObjectSupportMaterial::generate(PrintObject &object)
// top contacts over the bottom contacts. // top contacts over the bottom contacts.
this->trim_top_contacts_by_bottom_contacts(object, bottom_contacts, top_contacts); this->trim_top_contacts_by_bottom_contacts(object, bottom_contacts, top_contacts);
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating raft";
// If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette with holes filled.
// There is also a 1st intermediate layer containing bases of support columns.
// Inflate the bases of the support columns and create the raft base under the object.
MyLayersPtr raft_layers = this->generate_raft_base(object, top_contacts, intermediate_layers, layer_storage);
/*
// If we wanted to apply some special logic to the first support layers lying on
// object's top surfaces this is the place to detect them
LayersSet shape;
if (m_objectconfig->support_material_pattern.value == smpPillars)
shape = this->generate_pillars_shape(contact, support_z);
*/
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating interfaces"; BOOST_LOG_TRIVIAL(info) << "Support generator - Creating interfaces";
@ -311,6 +297,13 @@ void PrintObjectSupportMaterial::generate(PrintObject &object)
MyLayersPtr interface_layers = this->generate_interface_layers( MyLayersPtr interface_layers = this->generate_interface_layers(
object, bottom_contacts, top_contacts, intermediate_layers, layer_storage); object, bottom_contacts, top_contacts, intermediate_layers, layer_storage);
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating raft";
// If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette with holes filled.
// There is also a 1st intermediate layer containing bases of support columns.
// Inflate the bases of the support columns and create the raft base under the object.
MyLayersPtr raft_layers = this->generate_raft_base(object, top_contacts, interface_layers, intermediate_layers, layer_storage);
#ifdef SLIC3R_DEBUG #ifdef SLIC3R_DEBUG
for (MyLayersPtr::const_iterator it = interface_layers.begin(); it != interface_layers.end(); ++ it) for (MyLayersPtr::const_iterator it = interface_layers.begin(); it != interface_layers.end(); ++ it)
Slic3r::SVG::export_expolygons( Slic3r::SVG::export_expolygons(
@ -716,7 +709,11 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
new_layer.print_z = layer.print_z - nozzle_dmr - m_object_config->support_material_contact_distance; new_layer.print_z = layer.print_z - nozzle_dmr - m_object_config->support_material_contact_distance;
new_layer.bottom_z = new_layer.print_z; new_layer.bottom_z = new_layer.print_z;
new_layer.height = 0.; new_layer.height = 0.;
if (this->synchronize_layers()) { if (layer_id == 0) {
// This is a raft contact layer sitting directly on the print bed.
new_layer.bottom_z = m_slicing_params.raft_interface_top_z;
new_layer.height = m_slicing_params.contact_raft_layer_height;
} else if (this->synchronize_layers()) {
// Align bottom of this layer with a top of the closest object layer // Align bottom of this layer with a top of the closest object layer
// while not trespassing into the 1st layer and keeping the support layer thickness bounded. // while not trespassing into the 1st layer and keeping the support layer thickness bounded.
int layer_id_below = int(layer_id) - 1; int layer_id_below = int(layer_id) - 1;
@ -749,7 +746,8 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_
// Don't want to print a layer below the first layer height as it may not stick well. // Don't want to print a layer below the first layer height as it may not stick well.
//FIXME there may be a need for a single layer support, then one may decide to print it either as a bottom contact or a top contact //FIXME there may be a need for a single layer support, then one may decide to print it either as a bottom contact or a top contact
// and it may actually make sense to do it with a thinner layer than the first layer height. // and it may actually make sense to do it with a thinner layer than the first layer height.
if (new_layer.print_z < m_slicing_params.first_print_layer_height + m_support_layer_height_min) if (new_layer.print_z < m_slicing_params.first_print_layer_height - EPSILON)
// This contact layer is below the first layer height, therefore not printable. Don't support this surface.
continue; continue;
#if 0 #if 0
@ -1027,7 +1025,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::raft_and_int
return intermediate_layers; return intermediate_layers;
std::sort(extremes.begin(), extremes.end()); std::sort(extremes.begin(), extremes.end());
assert(extremes.front().z() > m_slicing_params.raft_interface_top_z && extremes.front().z() >= m_slicing_params.first_print_layer_height); assert(extremes.front().z() > m_slicing_params.raft_interface_top_z - EPSILON && (m_slicing_params.raft_layers() == 1 || extremes.front().z() > m_slicing_params.first_print_layer_height - EPSILON));
// bool synchronize = m_slicing_params.soluble_interface || this->synchronize_layers(); // bool synchronize = m_slicing_params.soluble_interface || this->synchronize_layers();
bool synchronize = this->synchronize_layers(); bool synchronize = this->synchronize_layers();
@ -1038,10 +1036,15 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::raft_and_int
// Intermediate layers are always printed with a normal etrusion flow (non-bridging). // Intermediate layers are always printed with a normal etrusion flow (non-bridging).
size_t idx_layer_object = 0; size_t idx_layer_object = 0;
for (size_t idx_extreme = 0; idx_extreme < extremes.size(); ++ idx_extreme) { for (size_t idx_extreme = 0; idx_extreme < extremes.size(); ++ idx_extreme) {
LayerExtreme &extr2 = extremes[idx_extreme];
coordf_t extr2z = extr2.z();
if (std::abs(extr2z - m_slicing_params.raft_interface_top_z) < EPSILON)
// This is a raft contact layer.
continue;
LayerExtreme *extr1 = (idx_extreme == 0) ? NULL : &extremes[idx_extreme - 1]; LayerExtreme *extr1 = (idx_extreme == 0) ? NULL : &extremes[idx_extreme - 1];
coordf_t extr1z = (extr1 == NULL) ? m_slicing_params.raft_interface_top_z : extr1->z(); coordf_t extr1z = (extr1 == NULL) ? m_slicing_params.raft_interface_top_z : extr1->z();
assert(extremes[idx_extreme].z() > extr1z); assert(extr2z > extr1z + EPSILON);
if (extr1z == 0.) { if (std::abs(extr1z) < EPSILON) {
// This layer interval starts with the 1st layer. Print the 1st layer using the prescribed 1st layer thickness. // This layer interval starts with the 1st layer. Print the 1st layer using the prescribed 1st layer thickness.
assert(intermediate_layers.empty()); assert(intermediate_layers.empty());
MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate); MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
@ -1051,8 +1054,6 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::raft_and_int
intermediate_layers.push_back(&layer_new); intermediate_layers.push_back(&layer_new);
// Continue printing the other layers up to extr2z. // Continue printing the other layers up to extr2z.
} }
LayerExtreme &extr2 = extremes[idx_extreme];
coordf_t extr2z = extr2.z();
coordf_t dist = extr2z - extr1z; coordf_t dist = extr2z - extr1z;
assert(dist >= 0.); assert(dist >= 0.);
if (dist == 0.) if (dist == 0.)
@ -1316,38 +1317,49 @@ void PrintObjectSupportMaterial::trim_support_layers_by_object(
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_raft_base( PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_raft_base(
const PrintObject &object, const PrintObject &object,
const MyLayersPtr &top_contacts, const MyLayersPtr &top_contacts,
MyLayersPtr &intermediate_layers, const MyLayersPtr &interface_layers,
const MyLayersPtr &base_layers,
MyLayerStorage &layer_storage) const MyLayerStorage &layer_storage) const
{ {
// Areas covered by the raft, supporting the raft interface and the support columns.
Polygons raft_polygons;
// How much to inflate the support columns to be stable. This also applies to the 1st layer, if no raft layers are to be printed. // How much to inflate the support columns to be stable. This also applies to the 1st layer, if no raft layers are to be printed.
const float inflate_factor = scale_(3.); const float inflate_factor_fine = float(scale_(0.5));
const float inflate_factor_1st_layer = float(scale_(3.)) - inflate_factor_fine;
MyLayer *contacts = top_contacts .empty() ? nullptr : top_contacts .front(); MyLayer *contacts = top_contacts .empty() ? nullptr : top_contacts .front();
MyLayer *columns_base = intermediate_layers.empty() ? nullptr : intermediate_layers.front(); MyLayer *interfaces = interface_layers.empty() ? nullptr : interface_layers.front();
MyLayer *columns_base = base_layers .empty() ? nullptr : base_layers .front();
if (contacts != nullptr && contacts->print_z > m_slicing_params.raft_contact_top_z + EPSILON) if (contacts != nullptr && contacts->print_z > m_slicing_params.raft_contact_top_z + EPSILON)
// This is not the raft contact layer. // This is not the raft contact layer.
contacts = nullptr; contacts = nullptr;
if (interfaces != nullptr && interfaces->bottom_print_z() > m_slicing_params.raft_interface_top_z + EPSILON)
// This is not the raft column base layer.
interfaces = nullptr;
if (columns_base != nullptr && columns_base->bottom_print_z() > m_slicing_params.raft_interface_top_z + EPSILON)
// This is not the raft interface layer.
columns_base = nullptr;
Polygons interface_polygons;
if (contacts != nullptr && ! contacts->polygons.empty())
polygons_append(interface_polygons, offset(contacts->polygons, inflate_factor_fine, SUPPORT_SURFACES_OFFSET_PARAMETERS));
if (interfaces != nullptr && ! interfaces->polygons.empty())
polygons_append(interface_polygons, offset(interfaces->polygons, inflate_factor_fine, SUPPORT_SURFACES_OFFSET_PARAMETERS));
// Output vector. // Output vector.
MyLayersPtr raft_layers; MyLayersPtr raft_layers;
// Expand the 1st intermediate layer, which contains the bases of the support columns. if (m_slicing_params.raft_layers() > 1) {
Polygons base; Polygons base;
Polygons columns;
if (columns_base != nullptr) { if (columns_base != nullptr) {
base = offset(columns_base->polygons, inflate_factor); base = columns_base->polygons;
// Modify the 1st intermediate layer with the expanded support columns. columns = base;
columns_base->polygons = diff( if (! interface_polygons.empty())
base, // Trim the 1st layer columns with the inflated interface polygons.
offset(m_object->layers.front()->slices.expolygons, scale_(m_gap_xy), SUPPORT_SURFACES_OFFSET_PARAMETERS)); columns = diff(columns, interface_polygons);
if (contacts != nullptr)
columns_base->polygons = diff(columns_base->polygons, contacts->polygons);
} }
if (m_slicing_params.has_raft() && contacts != nullptr) { if (! interface_polygons.empty()) {
// Merge the untrimmed columns base with the expanded raft interface, to be used for the support base and interface. // Merge the untrimmed columns base with the expanded raft interface, to be used for the support base and interface.
base = union_(base, offset(contacts->polygons, inflate_factor, SUPPORT_SURFACES_OFFSET_PARAMETERS)); base = union_(base, interface_polygons);
} }
if (m_slicing_params.has_raft() && m_slicing_params.raft_layers() > 1 && ! base.empty()) {
// Do not add the raft contact layer, only add the raft layers below the contact layer. // Do not add the raft contact layer, only add the raft layers below the contact layer.
// Insert the 1st layer. // Insert the 1st layer.
{ {
@ -1356,7 +1368,7 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_raf
new_layer.print_z = m_slicing_params.first_print_layer_height; new_layer.print_z = m_slicing_params.first_print_layer_height;
new_layer.height = m_slicing_params.first_print_layer_height; new_layer.height = m_slicing_params.first_print_layer_height;
new_layer.bottom_z = 0.; new_layer.bottom_z = 0.;
new_layer.polygons = base; new_layer.polygons = offset(base, inflate_factor_1st_layer);
} }
// Insert the base layers. // Insert the base layers.
for (size_t i = 1; i < m_slicing_params.base_raft_layers; ++ i) { for (size_t i = 1; i < m_slicing_params.base_raft_layers; ++ i) {
@ -1376,8 +1388,17 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_raf
new_layer.print_z = print_z + m_slicing_params.interface_raft_layer_height; new_layer.print_z = print_z + m_slicing_params.interface_raft_layer_height;
new_layer.height = m_slicing_params.interface_raft_layer_height; new_layer.height = m_slicing_params.interface_raft_layer_height;
new_layer.bottom_z = print_z; new_layer.bottom_z = print_z;
new_layer.polygons = base; new_layer.polygons = interface_polygons;
//FIXME misusing contact_polygons for support columns.
new_layer.contact_polygons = new Polygons(columns);
} }
} else if (columns_base != nullptr) {
// Expand the bases of the support columns in the 1st layer.
columns_base->polygons = diff(
offset(columns_base->polygons, inflate_factor_1st_layer),
offset(m_object->layers.front()->slices.expolygons, scale_(m_gap_xy), SUPPORT_SURFACES_OFFSET_PARAMETERS));
if (contacts != nullptr)
columns_base->polygons = diff(columns_base->polygons, interface_polygons);
} }
return raft_layers; return raft_layers;
@ -2079,15 +2100,27 @@ void PrintObjectSupportMaterial::generate_toolpaths(
LoopInterfaceProcessor loop_interface_processor(1.5 * m_support_material_interface_flow.scaled_width()); LoopInterfaceProcessor loop_interface_processor(1.5 * m_support_material_interface_flow.scaled_width());
loop_interface_processor.n_contact_loops = this->has_contact_loops() ? 1 : 0; loop_interface_processor.n_contact_loops = this->has_contact_loops() ? 1 : 0;
float base_angle = float(Geometry::deg2rad(m_object_config->support_material_angle));
float interface_angle = float(Geometry::deg2rad(m_object_config->support_material_angle + 90.));
coordf_t interface_spacing = m_object_config->support_material_interface_spacing.value + m_support_material_interface_flow.spacing();
coordf_t interface_density = std::min(1., m_support_material_interface_flow.spacing() / interface_spacing);
coordf_t support_spacing = m_object_config->support_material_spacing.value + m_support_material_flow.spacing();
coordf_t support_density = std::min(1., m_support_material_flow.spacing() / support_spacing);
if (m_object_config->support_material_interface_layers.value == 0) {
// No interface layers allowed, print everything with the base support pattern.
interface_spacing = support_spacing;
interface_density = support_density;
}
// Prepare fillers. // Prepare fillers.
SupportMaterialPattern support_pattern = m_object_config->support_material_pattern; SupportMaterialPattern support_pattern = m_object_config->support_material_pattern;
bool with_sheath = m_object_config->support_material_with_sheath; bool with_sheath = m_object_config->support_material_with_sheath;
InfillPattern infill_pattern; InfillPattern infill_pattern;
std::vector<double> angles; std::vector<float> angles;
angles.push_back(Geometry::deg2rad(m_object_config->support_material_angle)); angles.push_back(base_angle);
switch (support_pattern) { switch (support_pattern) {
case smpRectilinearGrid: case smpRectilinearGrid:
angles.push_back(angles[0] + Geometry::deg2rad(90.)); angles.push_back(interface_angle);
// fall through // fall through
case smpRectilinear: case smpRectilinear:
infill_pattern = ipRectilinear; infill_pattern = ipRectilinear;
@ -2106,20 +2139,36 @@ void PrintObjectSupportMaterial::generate_toolpaths(
filler_support->set_bounding_box(bbox_object); filler_support->set_bounding_box(bbox_object);
} }
coordf_t interface_angle = Geometry::deg2rad(m_object_config->support_material_angle + 90.);
coordf_t interface_spacing = m_object_config->support_material_interface_spacing.value + m_support_material_interface_flow.spacing();
coordf_t interface_density = std::min(1., m_support_material_interface_flow.spacing() / interface_spacing);
coordf_t support_spacing = m_object_config->support_material_spacing.value + m_support_material_flow.spacing();
coordf_t support_density = std::min(1., m_support_material_flow.spacing() / support_spacing);
if (m_object_config->support_material_interface_layers.value == 0) {
// No interface layers allowed, print everything with the base support pattern.
interface_spacing = support_spacing;
interface_density = support_density;
}
// const coordf_t link_max_length_factor = 3.; // const coordf_t link_max_length_factor = 3.;
const coordf_t link_max_length_factor = 0.; const coordf_t link_max_length_factor = 0.;
float raft_angle_1st_layer = 0.f;
float raft_angle_base = 0.f;
float raft_angle_interface = 0.f;
if (m_slicing_params.base_raft_layers > 1) {
// There are all raft layer types (1st layer, base, interface & contact layers) available.
raft_angle_1st_layer = interface_angle;
raft_angle_base = base_angle;
raft_angle_interface = interface_angle;
} else if (m_slicing_params.base_raft_layers == 1 || m_slicing_params.interface_raft_layers > 1) {
// 1st layer, interface & contact layers available.
raft_angle_1st_layer = base_angle;
if (this->has_support())
// Print 1st layer at 45 degrees from both the interface and base angles as both can land on the 1st layer.
raft_angle_1st_layer += 0.7854f;
raft_angle_interface = interface_angle;
} else if (m_slicing_params.interface_raft_layers == 1) {
// Only the contact raft layer is non-empty, which will be printed as the 1st layer.
assert(m_slicing_params.base_raft_layers == 0);
assert(m_slicing_params.interface_raft_layers == 1);
assert(m_slicing_params.raft_layers() == 1 && raft_layers.size() == 0);
} else {
// No raft.
assert(m_slicing_params.base_raft_layers == 0);
assert(m_slicing_params.interface_raft_layers == 0);
assert(m_slicing_params.raft_layers() == 0 && raft_layers.size() == 0);
}
//FIXME Parallelize the support generator. //FIXME Parallelize the support generator.
// Insert the raft base layers. // Insert the raft base layers.
size_t support_layer_id = 0; size_t support_layer_id = 0;
@ -2130,35 +2179,24 @@ void PrintObjectSupportMaterial::generate_toolpaths(
assert(support_layer.support_interface_fills.entities.empty()); assert(support_layer.support_interface_fills.entities.empty());
assert(support_layer.support_islands.expolygons.empty()); assert(support_layer.support_islands.expolygons.empty());
MyLayer &raft_layer = *raft_layers[support_layer_id]; MyLayer &raft_layer = *raft_layers[support_layer_id];
//FIXME When paralellizing, each thread shall have its own copy of the fillers.
Fill *filler = filler_support.get(); // Print the support base below the support columns, or the support base for the support columns plus the contacts.
filler->angle = 0.; if (support_layer_id > 0) {
// We don't use $base_flow->spacing because we need a constant spacing Polygons to_infill_polygons = (support_layer_id < m_slicing_params.base_raft_layers) ?
// value that guarantees that all layers are correctly aligned. raft_layer.polygons :
//FIXME misusing contact_polygons for support columns.
((raft_layer.contact_polygons == nullptr) ? Polygons() : *raft_layer.contact_polygons);
if (! to_infill_polygons.empty()) {
Flow flow(m_support_material_flow.width, raft_layer.height, m_support_material_flow.nozzle_diameter, raft_layer.bridging); Flow flow(m_support_material_flow.width, raft_layer.height, m_support_material_flow.nozzle_diameter, raft_layer.bridging);
filler->spacing = m_support_material_flow.spacing();
filler->link_max_length = scale_(filler->spacing * link_max_length_factor / support_density);
float density = support_density;
// find centerline of the external loop/extrusions // find centerline of the external loop/extrusions
ExPolygons to_infill = (support_layer_id == 0 || ! with_sheath) ? ExPolygons to_infill = (support_layer_id == 0 || ! with_sheath) ?
// union_ex(base_polygons, true) : // union_ex(base_polygons, true) :
offset2_ex(raft_layer.polygons, SCALED_EPSILON, - SCALED_EPSILON) : offset2_ex(to_infill_polygons, SCALED_EPSILON, - SCALED_EPSILON) :
offset2_ex(raft_layer.polygons, SCALED_EPSILON, - SCALED_EPSILON - 0.5*flow.scaled_width()); offset2_ex(to_infill_polygons, SCALED_EPSILON, - SCALED_EPSILON - 0.5*flow.scaled_width());
if (support_layer_id == 0) { if (! to_infill.empty() && with_sheath) {
// Base flange.
filler = filler_interface.get();
filler->angle = Geometry::deg2rad(m_object_config->support_material_angle + 90.);
density = 0.5f;
flow = m_first_layer_flow;
// use the proper spacing for first layer as we don't need to align
// its pattern to the other layers
//FIXME When paralellizing, each thread shall have its own copy of the fillers.
filler->spacing = flow.spacing();
filler->link_max_length = scale_(filler->spacing * link_max_length_factor / density);
} else if (with_sheath) {
// Draw a perimeter all around the support infill. This makes the support stable, but difficult to remove. // Draw a perimeter all around the support infill. This makes the support stable, but difficult to remove.
// TODO: use brim ordering algorithm // TODO: use brim ordering algorithm
Polygons to_infill_polygons = to_polygons(to_infill); to_infill_polygons = to_polygons(to_infill);
// TODO: use offset2_ex() // TODO: use offset2_ex()
to_infill = offset_ex(to_infill, - flow.scaled_spacing()); to_infill = offset_ex(to_infill, - flow.scaled_spacing());
extrusion_entities_append_paths( extrusion_entities_append_paths(
@ -2166,16 +2204,54 @@ void PrintObjectSupportMaterial::generate_toolpaths(
to_polylines(STDMOVE(to_infill_polygons)), to_polylines(STDMOVE(to_infill_polygons)),
erSupportMaterial, flow.mm3_per_mm(), flow.width, flow.height); erSupportMaterial, flow.mm3_per_mm(), flow.width, flow.height);
} }
if (! to_infill.empty()) {
// We don't use $base_flow->spacing because we need a constant spacing
// value that guarantees that all layers are correctly aligned.
Fill *filler = filler_support.get();
filler->angle = raft_angle_base;
filler->spacing = m_support_material_flow.spacing();
filler->link_max_length = scale_(filler->spacing * link_max_length_factor / support_density);
fill_expolygons_generate_paths( fill_expolygons_generate_paths(
// Destination // Destination
support_layer.support_fills.entities, support_layer.support_fills.entities,
// Regions to fill // Regions to fill
STDMOVE(to_infill), STDMOVE(to_infill),
// Filler and its parameters // Filler and its parameters
filler, density, filler, support_density,
// Extrusion parameters // Extrusion parameters
erSupportMaterial, flow); erSupportMaterial, flow);
}
}
}
//FIXME When paralellizing, each thread shall have its own copy of the fillers.
Fill *filler = filler_interface.get();
Flow flow = m_first_layer_flow;
float density = 0.f;
if (support_layer_id == 0) {
// Base flange.
filler->angle = raft_angle_1st_layer;
filler->spacing = m_first_layer_flow.spacing();
density = 0.5f;
} else if (support_layer_id >= m_slicing_params.base_raft_layers) {
filler->angle = raft_angle_interface;
// We don't use $base_flow->spacing because we need a constant spacing
// value that guarantees that all layers are correctly aligned.
filler->spacing = m_support_material_flow.spacing();
flow = Flow(m_support_material_interface_flow.width, raft_layer.height, m_support_material_flow.nozzle_diameter, raft_layer.bridging);
density = interface_density;
} else
continue;
filler->link_max_length = scale_(filler->spacing * link_max_length_factor / density);
fill_expolygons_generate_paths(
// Destination
support_layer.support_fills.entities,
// Regions to fill
offset2_ex(raft_layer.polygons, SCALED_EPSILON, - SCALED_EPSILON),
// Filler and its parameters
filler, density,
// Extrusion parameters
(support_layer_id < m_slicing_params.base_raft_layers) ? erSupportMaterial : erSupportMaterialInterface, flow);
} }
// Indices of the 1st layer in their respective container at the support layer height. // Indices of the 1st layer in their respective container at the support layer height.
@ -2237,16 +2313,17 @@ void PrintObjectSupportMaterial::generate_toolpaths(
// Top and bottom contacts, interface layers. // Top and bottom contacts, interface layers.
for (size_t i = 0; i < 3; ++ i) { for (size_t i = 0; i < 3; ++ i) {
MyLayerExtruded &layer_ex = (i == 0) ? top_contact_layer : (i == 1 ? interface_layer : bottom_contact_layer); MyLayerExtruded &layer_ex = (i == 0) ? top_contact_layer : (i == 1 ? bottom_contact_layer : interface_layer);
if (layer_ex.empty() || layer_ex.polygons_to_extrude().empty()) if (layer_ex.empty() || layer_ex.polygons_to_extrude().empty())
continue; continue;
//FIXME When paralellizing, each thread shall have its own copy of the fillers. //FIXME When paralellizing, each thread shall have its own copy of the fillers.
bool interface_as_base = (&layer_ex == &interface_layer) && m_object_config->support_material_interface_layers.value == 0;
Flow interface_flow( Flow interface_flow(
layer_ex.layer->bridging ? layer_ex.layer->height : m_support_material_interface_flow.width, layer_ex.layer->bridging ? layer_ex.layer->height : (interface_as_base ? m_support_material_flow.width : m_support_material_interface_flow.width),
layer_ex.layer->height, layer_ex.layer->height,
m_support_material_interface_flow.nozzle_diameter, m_support_material_interface_flow.nozzle_diameter,
layer_ex.layer->bridging); layer_ex.layer->bridging);
filler_interface->angle = (i == 2 && m_object_config->support_material_interface_layers.value == 0) ? filler_interface->angle = interface_as_base ?
// If zero interface layers are configured, use the same angle as for the base layers. // If zero interface layers are configured, use the same angle as for the base layers.
angles[support_layer_id % angles.size()] : angles[support_layer_id % angles.size()] :
// Use interface angle for the interface layers. // Use interface angle for the interface layers.
@ -2281,7 +2358,7 @@ void PrintObjectSupportMaterial::generate_toolpaths(
offset2_ex(base_layer.polygons_to_extrude(), SCALED_EPSILON, - SCALED_EPSILON) : offset2_ex(base_layer.polygons_to_extrude(), SCALED_EPSILON, - SCALED_EPSILON) :
offset2_ex(base_layer.polygons_to_extrude(), SCALED_EPSILON, - SCALED_EPSILON - 0.5*flow.scaled_width()); offset2_ex(base_layer.polygons_to_extrude(), SCALED_EPSILON, - SCALED_EPSILON - 0.5*flow.scaled_width());
if (base_layer.layer->bottom_z < EPSILON) { if (base_layer.layer->bottom_z < EPSILON) {
// Base flange. // Base flange (the 1st layer).
filler = filler_interface.get(); filler = filler_interface.get();
filler->angle = Geometry::deg2rad(m_object_config->support_material_angle + 90.); filler->angle = Geometry::deg2rad(m_object_config->support_material_angle + 90.);
density = 0.5f; density = 0.5f;

View File

@ -178,7 +178,8 @@ private:
MyLayersPtr generate_raft_base( MyLayersPtr generate_raft_base(
const PrintObject &object, const PrintObject &object,
const MyLayersPtr &top_contacts, const MyLayersPtr &top_contacts,
MyLayersPtr &intermediate_layers, const MyLayersPtr &interface_layers,
const MyLayersPtr &base_layers,
MyLayerStorage &layer_storage) const; MyLayerStorage &layer_storage) const;
// Turn some of the base layers into interface layers. // Turn some of the base layers into interface layers.