Fix mutable priority queue being wiped when moving out of function
    Without move constructor, the clean() gets called when returning an instance from a function.
The above fix was applied also to MutableSkipHeapPriorityQueue.

Follow-up to 15a082b80b:
Fixed TEST_CASE("Mutable priority queue - first pop", "[MutableSkipHeapPriorityQueue]")
This commit is contained in:
Vojtech Bubnik 2022-05-16 17:27:02 +02:00
parent e931800ea8
commit f5ec76c230
2 changed files with 59 additions and 29 deletions

View File

@ -24,7 +24,7 @@ public:
MutablePriorityQueue& operator=(MutablePriorityQueue &&) = default; MutablePriorityQueue& operator=(MutablePriorityQueue &&) = default;
// This class modifies the outside data through the m_index_setter // This class modifies the outside data through the m_index_setter
// and thus it should not be copied. The semantics are similar to std::unique_ptr // and thus it should not be copied. The semantics is similar to std::unique_ptr
MutablePriorityQueue(const MutablePriorityQueue &) = delete; MutablePriorityQueue(const MutablePriorityQueue &) = delete;
MutablePriorityQueue& operator=(const MutablePriorityQueue &) = delete; MutablePriorityQueue& operator=(const MutablePriorityQueue &) = delete;
@ -267,6 +267,14 @@ public:
{} {}
~MutableSkipHeapPriorityQueue() { clear(); } ~MutableSkipHeapPriorityQueue() { clear(); }
MutableSkipHeapPriorityQueue(MutableSkipHeapPriorityQueue &&) = default;
MutableSkipHeapPriorityQueue &operator=(MutableSkipHeapPriorityQueue &&) = default;
// This class modifies the outside data through the m_index_setter
// and thus it should not be copied. The semantics is similar to std::unique_ptr
MutableSkipHeapPriorityQueue(const MutableSkipHeapPriorityQueue &) = delete;
MutableSkipHeapPriorityQueue &operator=(const MutableSkipHeapPriorityQueue &) = delete;
void clear(); void clear();
// Reserve one unused element per miniheap. // Reserve one unused element per miniheap.
void reserve(size_t cnt) { m_heap.reserve(cnt + ((cnt + (address::block_size - 1)) / (address::block_size - 1))); } void reserve(size_t cnt) { m_heap.reserve(cnt + ((cnt + (address::block_size - 1)) / (address::block_size - 1))); }
@ -278,6 +286,8 @@ public:
void update(size_t idx) { assert(! address::is_padding(idx)); T item = m_heap[idx]; remove(idx); push(item); } void update(size_t idx) { assert(! address::is_padding(idx)); T item = m_heap[idx]; remove(idx); push(item); }
// There is one padding element storead at each miniheap, thus lower the number of elements by the number of miniheaps. // There is one padding element storead at each miniheap, thus lower the number of elements by the number of miniheaps.
size_t size() const noexcept { return m_heap.size() - (m_heap.size() + address::block_size - 1) / address::block_size; } size_t size() const noexcept { return m_heap.size() - (m_heap.size() + address::block_size - 1) / address::block_size; }
// Number of heap elements including padding. heap_size() >= size().
size_t heap_size() const noexcept { return m_heap.size(); }
bool empty() const { return m_heap.empty(); } bool empty() const { return m_heap.empty(); }
T& operator[](std::size_t idx) noexcept { assert(! address::is_padding(idx)); return m_heap[idx]; } T& operator[](std::size_t idx) noexcept { assert(! address::is_padding(idx)); return m_heap[idx]; }
const T& operator[](std::size_t idx) const noexcept { assert(! address::is_padding(idx)); return m_heap[idx]; } const T& operator[](std::size_t idx) const noexcept { assert(! address::is_padding(idx)); return m_heap[idx]; }

View File

@ -347,21 +347,35 @@ TEST_CASE("Mutable priority queue - first pop", "[MutableSkipHeapPriorityQueue]"
float val; float val;
}; };
static constexpr const size_t count = 50000; static constexpr const size_t count = 50000;
std::vector<size_t> idxs(count, {0});
auto q = make_miniheap_mutable_priority_queue<MyValue, 16, true>( auto q = make_miniheap_mutable_priority_queue<MyValue, 16, true>(
[](MyValue &v, size_t idx) { v.id = idx; }, [&idxs](MyValue &v, size_t idx) { idxs[v.id] = idx; },
[](MyValue &l, MyValue &r) { return l.val < r.val; }); [](MyValue &l, MyValue &r) { return l.val < r.val; });
using QueueType = decltype(q); using QueueType = decltype(q);
THEN("Skip queue has 0th element unused, 1st element is the top of the queue.") {
CHECK(QueueType::address::is_padding(0));
CHECK(!QueueType::address::is_padding(1));
}
q.reserve(count); q.reserve(count);
for (size_t id = 0; id < count; ++ id) for (size_t id = 0; id < count; ++ id)
q.push({ id, rand() / 100.f }); q.push({ id, rand() / 100.f });
MyValue v = q.top(); // copy MyValue v = q.top(); // copy
// is valid id (no initial value default value) THEN("Element at the top of the queue has a valid ID.") {
CHECK(QueueType::address::is_padding(0)); CHECK(v.id >= 0);
CHECK(!QueueType::address::is_padding(1)); CHECK(v.id < count);
}
THEN("Element at the top of the queue has its position stored in idxs.") {
CHECK(idxs[v.id] == 1);
}
q.pop(); q.pop();
CHECK(v.id == 1); THEN("Element removed from the queue has its position in idxs reset to invalid.") {
// is first item in queue valid value CHECK(idxs[v.id] == q.invalid_id());
CHECK(q.top().id == 1); }
THEN("Element was removed from the queue, new top of the queue has its index set correctly.") {
CHECK(q.top().id >= 0);
CHECK(q.top().id < count);
CHECK(idxs[q.top().id] == 1);
}
} }
TEST_CASE("Mutable priority queue complex", "[MutableSkipHeapPriorityQueue]") TEST_CASE("Mutable priority queue complex", "[MutableSkipHeapPriorityQueue]")
@ -379,23 +393,23 @@ TEST_CASE("Mutable priority queue complex", "[MutableSkipHeapPriorityQueue]")
q.reserve(count); q.reserve(count);
auto rand_val = [&]()->float { return (rand() % 53) / 10.f; }; auto rand_val = [&]()->float { return (rand() % 53) / 10.f; };
size_t ord = 0; for (size_t id = 0; id < count; ++ id)
for (size_t id = 0; id < count; id++) { q.push({ id, rand_val() });
MyValue mv;
mv.id = ord++;
mv.val = rand_val();
q.push(mv);
}
auto check = [&]()->bool{ auto check = [&]()->bool{
for (size_t i = 0; i < idxs.size(); ++i) { for (size_t i = 0; i < idxs.size(); ++i) {
if (dels[i]) continue; if (dels[i]) {
size_t qid = idxs[i]; if (idxs[i] != q.invalid_id())
if (qid > 3*count) { return false; // ERROR
return false; } else {
} size_t qid = idxs[i];
MyValue &mv = q[qid]; if (qid >= q.heap_size()) {
if (mv.id != i) { return false; // ERROR
return false; // ERROR }
MyValue &mv = q[qid];
if (mv.id != i) {
return false; // ERROR
}
} }
} }
return true; return true;
@ -403,6 +417,7 @@ TEST_CASE("Mutable priority queue complex", "[MutableSkipHeapPriorityQueue]")
CHECK(check()); // initial check CHECK(check()); // initial check
// Generate an element ID of an elmenet, which was not yet deleted, thus it is still valid.
auto get_valid_id = [&]()->int { auto get_valid_id = [&]()->int {
int id = 0; int id = 0;
do { do {
@ -410,23 +425,28 @@ TEST_CASE("Mutable priority queue complex", "[MutableSkipHeapPriorityQueue]")
} while (dels[id]); } while (dels[id]);
return id; return id;
}; };
// Remove first 100 elements from the queue of 5000 elements, cross-validate indices.
// Re-enter every 20th element back to the queue.
for (size_t i = 0; i < 100; i++) { for (size_t i = 0; i < 100; i++) {
MyValue it = q.top(); // copy MyValue v = q.top(); // copy
q.pop(); q.pop();
dels[it.id] = true; dels[v.id] = true;
CHECK(check()); CHECK(check());
if (i % 20 == 0) { if (i % 20 == 0) {
it.val = rand_val(); v.val = rand_val();
q.push(it); q.push(v);
dels[it.id] = false; dels[v.id] = false;
CHECK(check()); CHECK(check());
continue; continue;
} }
// Remove some valid element from the queue.
int id = get_valid_id(); int id = get_valid_id();
CHECK(idxs[id] != q.invalid_id());
q.remove(idxs[id]); q.remove(idxs[id]);
dels[id] = true; dels[id] = true;
CHECK(check()); CHECK(check());
// and change 5 random elements and reorder them in the queue.
for (size_t j = 0; j < 5; j++) { for (size_t j = 0; j < 5; j++) {
int id = get_valid_id(); int id = get_valid_id();
size_t qid = idxs[id]; size_t qid = idxs[id];