Merge branch 'master' of https://github.com/prusa3d/PrusaSlicer into et_layout

This commit is contained in:
enricoturri1966 2020-06-17 09:34:56 +02:00
commit f6b5c64642
18 changed files with 754 additions and 345 deletions

View file

@ -53,7 +53,7 @@ void BridgeDetector::initialize()
this->_edges = intersection_pl(to_polylines(grown), contours);
#ifdef SLIC3R_DEBUG
printf(" bridge has " PRINTF_ZU " support(s)\n", this->_edges.size());
printf(" bridge has %zu support(s)\n", this->_edges.size());
#endif
// detect anchors as intersection between our bridge expolygon and the lower slices

View file

@ -1586,12 +1586,17 @@ std::vector<std::pair<EdgeGrid::Grid::ContourEdge, EdgeGrid::Grid::ContourEdge>>
++ cnt;
}
}
len /= double(cnt);
bbox.offset(20);
EdgeGrid::Grid grid;
grid.set_bbox(bbox);
grid.create(polygons, len);
return grid.intersecting_edges();
std::vector<std::pair<EdgeGrid::Grid::ContourEdge, EdgeGrid::Grid::ContourEdge>> out;
if (cnt > 0) {
len /= double(cnt);
bbox.offset(20);
EdgeGrid::Grid grid;
grid.set_bbox(bbox);
grid.create(polygons, len);
out = grid.intersecting_edges();
}
return out;
}
// Find all pairs of intersectiong edges from the set of polygons, highlight them in an SVG.

View file

@ -404,7 +404,7 @@ void ExPolygon::triangulate_pp(Polygons* polygons) const
{
TPPLPoly p;
p.Init(int(ex->contour.points.size()));
//printf(PRINTF_ZU "\n0\n", ex->contour.points.size());
//printf("%zu\n0\n", ex->contour.points.size());
for (const Point &point : ex->contour.points) {
size_t i = &point - &ex->contour.points.front();
p[i].x = point(0);
@ -419,7 +419,7 @@ void ExPolygon::triangulate_pp(Polygons* polygons) const
for (Polygons::const_iterator hole = ex->holes.begin(); hole != ex->holes.end(); ++hole) {
TPPLPoly p;
p.Init(hole->points.size());
//printf(PRINTF_ZU "\n1\n", hole->points.size());
//printf("%zu\n1\n", hole->points.size());
for (const Point &point : hole->points) {
size_t i = &point - &hole->points.front();
p[i].x = point(0);

View file

@ -1218,7 +1218,7 @@ bool store_amf(const char* path, Model* model, const DynamicPrintConfig* config,
for (ModelInstance *instance : object->instances) {
char buf[512];
sprintf(buf,
" <instance objectid=\"" PRINTF_ZU "\">\n"
" <instance objectid=\"%zu\">\n"
" <deltax>%lf</deltax>\n"
" <deltay>%lf</deltay>\n"
" <deltaz>%lf</deltaz>\n"

View file

@ -393,7 +393,7 @@ GCodeSender::on_read(const boost::system::error_code& error,
}
this->send();
} else {
printf("Cannot resend " PRINTF_ZU " (oldest we have is " PRINTF_ZU ")\n", toresend, this->sent - this->last_sent.size());
printf("Cannot resend %zu (oldest we have is %zu)\n", toresend, this->sent - this->last_sent.size());
}
} else if (boost::starts_with(line, "wait")) {
// ignore

View file

@ -471,7 +471,7 @@ Pointfs arrange(size_t num_parts, const Vec2d &part_size, coordf_t gap, const Bo
size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0)));
size_t cellh = size_t(floor((bed_bbox.size()(1) + gap) / cell_size(1)));
if (num_parts > cellw * cellh)
throw std::invalid_argument(PRINTF_ZU " parts won't fit in your print area!\n", num_parts);
throw std::invalid_argument("%zu parts won't fit in your print area!\n", num_parts);
// Get a bounding box of cellw x cellh cells, centered at the center of the bed.
Vec2d cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap);

View file

@ -115,32 +115,94 @@ inline bool segment_segment_intersection(const Vec2d &p1, const Vec2d &v1, const
return true;
}
inline int segments_could_intersect(
const Slic3r::Point &ip1, const Slic3r::Point &ip2,
const Slic3r::Point &jp1, const Slic3r::Point &jp2)
{
Vec2i64 iv = (ip2 - ip1).cast<int64_t>();
Vec2i64 vij1 = (jp1 - ip1).cast<int64_t>();
Vec2i64 vij2 = (jp2 - ip1).cast<int64_t>();
int64_t tij1 = cross2(iv, vij1);
int64_t tij2 = cross2(iv, vij2);
int sij1 = (tij1 > 0) ? 1 : ((tij1 < 0) ? -1 : 0); // signum
int sij2 = (tij2 > 0) ? 1 : ((tij2 < 0) ? -1 : 0);
return sij1 * sij2;
}
inline bool segments_intersect(
const Slic3r::Point &ip1, const Slic3r::Point &ip2,
const Slic3r::Point &jp1, const Slic3r::Point &jp2)
{
assert(ip1 != ip2);
assert(jp1 != jp2);
auto segments_could_intersect = [](
const Slic3r::Point &ip1, const Slic3r::Point &ip2,
const Slic3r::Point &jp1, const Slic3r::Point &jp2) -> std::pair<int, int>
{
Vec2i64 iv = (ip2 - ip1).cast<int64_t>();
Vec2i64 vij1 = (jp1 - ip1).cast<int64_t>();
Vec2i64 vij2 = (jp2 - ip1).cast<int64_t>();
int64_t tij1 = cross2(iv, vij1);
int64_t tij2 = cross2(iv, vij2);
return std::make_pair(
// signum
(tij1 > 0) ? 1 : ((tij1 < 0) ? -1 : 0),
(tij2 > 0) ? 1 : ((tij2 < 0) ? -1 : 0));
};
std::pair<int, int> sign1 = segments_could_intersect(ip1, ip2, jp1, jp2);
std::pair<int, int> sign2 = segments_could_intersect(jp1, jp2, ip1, ip2);
int test1 = sign1.first * sign1.second;
int test2 = sign2.first * sign2.second;
if (test1 <= 0 && test2 <= 0) {
// The segments possibly intersect. They may also be collinear, but not intersect.
if (test1 != 0 || test2 != 0)
// Certainly not collinear, then the segments intersect.
return true;
// If the first segment is collinear with the other, the other is collinear with the first segment.
assert((sign1.first == 0 && sign1.second == 0) == (sign2.first == 0 && sign2.second == 0));
if (sign1.first == 0 && sign1.second == 0) {
// The segments are certainly collinear. Now verify whether they overlap.
Slic3r::Point vi = ip2 - ip1;
// Project both on the longer coordinate of vi.
int axis = std::abs(vi.x()) > std::abs(vi.y()) ? 0 : 1;
coord_t i = ip1(axis);
coord_t j = ip2(axis);
coord_t k = jp1(axis);
coord_t l = jp2(axis);
if (i > j)
std::swap(i, j);
if (k > l)
std::swap(k, l);
return (k >= i && k <= j) || (i >= k && i <= l);
}
}
return false;
}
template<typename T> inline T foot_pt(const T &line_pt, const T &line_dir, const T &pt)
{
return segments_could_intersect(ip1, ip2, jp1, jp2) <= 0 &&
segments_could_intersect(jp1, jp2, ip1, ip2) <= 0;
T v = pt - line_pt;
auto l2 = line_dir.squaredNorm();
auto t = (l2 == 0) ? 0 : v.dot(line_dir) / l2;
return line_pt + line_dir * t;
}
inline Vec2d foot_pt(const Line &iline, const Point &ipt)
{
return foot_pt<Vec2d>(iline.a.cast<double>(), (iline.b - iline.a).cast<double>(), ipt.cast<double>());
}
template<typename T> inline auto ray_point_distance_squared(const T &ray_pt, const T &ray_dir, const T &pt)
{
return (foot_pt(ray_pt, ray_dir, pt) - pt).squaredNorm();
}
template<typename T> inline auto ray_point_distance(const T &ray_pt, const T &ray_dir, const T &pt)
{
return (foot_pt(ray_pt, ray_dir, pt) - pt).norm();
}
inline double ray_point_distance_squared(const Line &iline, const Point &ipt)
{
return (foot_pt(iline, ipt) - ipt.cast<double>()).squaredNorm();
}
inline double ray_point_distance(const Line &iline, const Point &ipt)
{
return (foot_pt(iline, ipt) - ipt.cast<double>()).norm();
}
// Based on Liang-Barsky function by Daniel White @ http://www.skytopia.com/project/articles/compsci/clipping.html
template<typename T>
bool liang_barsky_line_clipping(
inline bool liang_barsky_line_clipping(
// Start and end points of the source line, result will be stored there as well.
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x0,
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x1,

View file

@ -264,7 +264,7 @@ void LayerRegion::process_external_surfaces(const Layer *lower_layer, const Poly
this->flow(frInfill, true).scaled_width()
);
#ifdef SLIC3R_DEBUG
printf("Processing bridge at layer " PRINTF_ZU ":\n", this->layer()->id());
printf("Processing bridge at layer %zu:\n", this->layer()->id());
#endif
double custom_angle = Geometry::deg2rad(this->region()->config().bridge_angle.value);
if (bd.detect_angle(custom_angle)) {

View file

@ -153,9 +153,11 @@ inline Lines to_lines(const Polygon &poly)
{
Lines lines;
lines.reserve(poly.points.size());
for (Points::const_iterator it = poly.points.begin(); it != poly.points.end()-1; ++it)
lines.push_back(Line(*it, *(it + 1)));
lines.push_back(Line(poly.points.back(), poly.points.front()));
if (poly.points.size() > 2) {
for (Points::const_iterator it = poly.points.begin(); it != poly.points.end()-1; ++it)
lines.push_back(Line(*it, *(it + 1)));
lines.push_back(Line(poly.points.back(), poly.points.front()));
}
return lines;
}

View file

@ -1431,7 +1431,7 @@ void PrintObject::bridge_over_infill()
}
#ifdef SLIC3R_DEBUG
printf("Bridging " PRINTF_ZU " internal areas at layer " PRINTF_ZU "\n", to_bridge.size(), layer->id());
printf("Bridging %zu internal areas at layer %zu\n", to_bridge.size(), layer->id());
#endif
// compute the remaning internal solid surfaces as difference

View file

@ -21,6 +21,7 @@ bool SVG::open(const char* afilename)
" <polyline fill=\"darkblue\" points=\"0,0 10,5 0,10 1,5\" />\n"
" </marker>\n"
);
fprintf(this->f, "<rect fill='white' stroke='none' x='0' y='0' width='%f' height='%f'/>\n", 2000.f, 2000.f);
return true;
}
@ -42,6 +43,7 @@ bool SVG::open(const char* afilename, const BoundingBox &bbox, const coord_t bbo
" <polyline fill=\"darkblue\" points=\"0,0 10,5 0,10 1,5\" />\n"
" </marker>\n",
h, w);
fprintf(this->f, "<rect fill='white' stroke='none' x='0' y='0' width='%f' height='%f'/>\n", w, h);
return true;
}

View file

@ -952,7 +952,7 @@ void TriangleMeshSlicer::slice(const std::vector<float> &z, SlicingMode mode, co
[&layers_p, mode, closing_radius, layers, throw_on_cancel, this](const tbb::blocked_range<size_t>& range) {
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
#ifdef SLIC3R_TRIANGLEMESH_DEBUG
printf("Layer " PRINTF_ZU " (slice_z = %.2f):\n", layer_id, z[layer_id]);
printf("Layer %zu (slice_z = %.2f):\n", layer_id, z[layer_id]);
#endif
throw_on_cancel();
ExPolygons &expolygons = (*layers)[layer_id];
@ -1779,7 +1779,7 @@ void TriangleMeshSlicer::make_expolygons(const Polygons &loops, const float clos
size_t holes_count = 0;
for (ExPolygons::const_iterator e = ex_slices.begin(); e != ex_slices.end(); ++ e)
holes_count += e->holes.size();
printf(PRINTF_ZU " surface(s) having " PRINTF_ZU " holes detected from " PRINTF_ZU " polylines\n",
printf("%zu surface(s) having %zu holes detected from %zu polylines\n",
ex_slices.size(), holes_count, loops.size());
#endif

View file

@ -15,7 +15,8 @@ namespace Slic3r {
using VD = Geometry::VoronoiDiagram;
namespace detail {
// Intersect a circle with a ray, return the two parameters
// Intersect a circle with a ray, return the two parameters.
// Currently used for unbounded Voronoi edges only.
double first_circle_segment_intersection_parameter(
const Vec2d &center, const double r, const Vec2d &pt, const Vec2d &v)
{
@ -61,70 +62,109 @@ namespace detail {
// Return maximum two points, that are at distance "d" from both points
Intersections point_point_equal_distance_points(const Point &pt1, const Point &pt2, const double d)
{
// input points
const auto cx = double(pt1.x());
const auto cy = double(pt1.y());
const auto qx = double(pt2.x());
const auto qy = double(pt2.y());
// Calculating determinant.
auto x0 = 2. * qy;
auto cx2 = cx * cx;
auto cy2 = cy * cy;
auto x5 = 2 * cx * qx;
auto x6 = cy * x0;
auto qx2 = qx * qx;
auto qy2 = qy * qy;
auto x9 = qx2 + qy2;
auto x10 = cx2 + cy2 - x5 - x6 + x9;
auto x11 = - cx2 - cy2;
auto discr = x10 * (4. * d + x11 + x5 + x6 - qx2 - qy2);
if (discr < 0.)
// Calculate the two intersection points.
// With the help of Python package sympy:
// res = solve([(x - cx)**2 + (y - cy)**2 - d**2, x**2 + y**2 - d**2], [x, y])
// ccode(cse((res[0][0], res[0][1], res[1][0], res[1][1])))
// where cx, cy is the center of pt1 relative to pt2,
// d is distance from the line and the point (0, 0).
// The result is then shifted to pt2.
auto cx = double(pt1.x() - pt2.x());
auto cy = double(pt1.y() - pt2.y());
double cl = cx * cx + cy * cy;
double discr = 4. * d * d - cl;
if (discr < 0.) {
// No intersection point found, the two circles are too far away.
return Intersections { 0, { Vec2d(), Vec2d() } };
}
// Avoid division by zero if a gets too small.
bool xy_swapped = std::abs(cx) < std::abs(cy);
if (xy_swapped)
std::swap(cx, cy);
double u;
int cnt;
if (discr == 0.) {
cnt = 1;
u = 0;
} else {
cnt = 2;
u = 0.5 * cx * sqrt(cl * discr) / cl;
}
double v = 0.5 * cy - u;
double w = 2. * cy;
double e = 0.5 / cx;
double f = 0.5 * cy + u;
Intersections out { cnt, { Vec2d(-e * (v * w - cl), v),
Vec2d(-e * (w * f - cl), f) } };
if (xy_swapped) {
std::swap(out.pts[0].x(), out.pts[0].y());
std::swap(out.pts[1].x(), out.pts[1].y());
}
out.pts[0] += pt2.cast<double>();
out.pts[1] += pt2.cast<double>();
// Some intersections are found.
int npoints = (discr > 0) ? 2 : 1;
auto x1 = 2. * cy - x0;
auto x2 = cx - qx;
auto x12 = 0.5 * x2 * sqrt(discr) / x10;
auto x13 = 0.5 * (cy + qy);
auto x14 = - x12 + x13;
auto x15 = x11 + x9;
auto x16 = 0.5 / x2;
auto x17 = x12 + x13;
return Intersections { npoints, { Vec2d(- x16 * (x1 * x14 + x15), x14),
Vec2d(- x16 * (x1 * x17 + x15), x17) } };
assert(std::abs((out.pts[0] - pt1.cast<double>()).norm() - d) < SCALED_EPSILON);
assert(std::abs((out.pts[1] - pt1.cast<double>()).norm() - d) < SCALED_EPSILON);
assert(std::abs((out.pts[0] - pt2.cast<double>()).norm() - d) < SCALED_EPSILON);
assert(std::abs((out.pts[1] - pt2.cast<double>()).norm() - d) < SCALED_EPSILON);
return out;
}
// Return maximum two points, that are at distance "d" from both the line and point.
Intersections line_point_equal_distance_points(const Line &line, const Point &pt, const double d)
Intersections line_point_equal_distance_points(const Line &line, const Point &ipt, const double d)
{
assert(line.a != pt && line.b != pt);
assert(line.a != ipt && line.b != ipt);
// Calculating two points of distance "d" to a ray and a point.
// Point.
auto x0 = double(pt.x());
auto y0 = double(pt.y());
// Ray equation. Vector (a, b) is perpendicular to line.
auto a = double(line.a.y() - line.b.y());
auto b = double(line.b.x() - line.a.x());
// pt shall not lie on line.
assert(std::abs((x0 - line.a.x()) * a + (y0 - line.a.y()) * b) < SCALED_EPSILON);
// Orient line so that the vector (a, b) points towards pt.
if (a * (x0 - line.a.x()) + b * (y0 - line.a.y()) < 0.)
std::swap(x0, y0);
double c = - a * double(line.a.x()) - b * double(line.a.y());
// Calculate the two points.
double a2 = a * a;
double b2 = b * b;
double a2b2 = a2 + b2;
double d2 = d * d;
double s = a2*d2 - a2*sqr(x0) - 2*a*b*x0*y0 - 2*a*c*x0 + 2*a*d*x0 + b2*d2 - b2*sqr(y0) - 2*b*c*y0 + 2*b*d*y0 - sqr(c) + 2*c*d - d2;
Vec2d pt = ipt.cast<double>();
Vec2d lv = (line.b - line.a).cast<double>();
double l2 = lv.squaredNorm();
Vec2d lpv = (line.a - ipt).cast<double>();
double c = cross2(lpv, lv);
if (c < 0) {
lv = - lv;
c = - c;
}
// Line equation (ax + by + c - d * sqrt(l2)).
auto a = - lv.y();
auto b = lv.x();
// Line point shifted by -ipt is on the line.
assert(std::abs(lpv.x() * a + lpv.y() * b + c) < SCALED_EPSILON);
// Line vector (a, b) points towards ipt.
assert(a * lpv.x() + b * lpv.y() < - SCALED_EPSILON);
#ifndef NDEBUG
{
// Foot point of ipt on line.
Vec2d ft = Geometry::foot_pt(line, ipt);
// Center point between ipt and line, its distance to both line and ipt is equal.
Vec2d centerpt = 0.5 * (ft + pt) - pt;
double dcenter = 0.5 * (ft - pt).norm();
// Verify that the center point
assert(std::abs(centerpt.x() * a + centerpt.y() * b + c - dcenter * sqrt(l2)) < SCALED_EPSILON * sqrt(l2));
}
#endif // NDEBUG
// Calculate the two intersection points.
// With the help of Python package sympy:
// res = solve([a * x + b * y + c - d * sqrt(a**2 + b**2), x**2 + y**2 - d**2], [x, y])
// ccode(cse((res[0][0], res[0][1], res[1][0], res[1][1])))
// where (a, b, c, d) is the line equation, not normalized (vector a,b is not normalized),
// d is distance from the line and the point (0, 0).
// The result is then shifted to ipt.
double dscaled = d * sqrt(l2);
double s = c * (2. * dscaled - c);
if (s < 0.)
// Distance of pt from line is bigger than 2 * d.
return Intersections { 0 };
double u;
int cnt;
// Avoid division by zero if a gets too small.
bool xy_swapped = std::abs(a) < std::abs(b);
if (xy_swapped)
std::swap(a, b);
if (s == 0.) {
// Distance of pt from line is 2 * d.
cnt = 1;
@ -132,110 +172,34 @@ namespace detail {
} else {
// Distance of pt from line is smaller than 2 * d.
cnt = 2;
u = a*sqrt(s)/a2b2;
u = a * sqrt(s) / l2;
}
double v = (-a2*y0 + a*b*x0 + b*c - b*d)/a2b2;
return Intersections { cnt, { Vec2d((b * ( u + v) - c + d) / a, - u - v),
Vec2d((b * (- u + v) - c + d) / a, u - v) } };
double e = dscaled - c;
double f = b * e / l2;
double g = f - u;
double h = f + u;
Intersections out { cnt, { Vec2d((- b * g + e) / a, g),
Vec2d((- b * h + e) / a, h) } };
if (xy_swapped) {
std::swap(out.pts[0].x(), out.pts[0].y());
std::swap(out.pts[1].x(), out.pts[1].y());
}
out.pts[0] += pt;
out.pts[1] += pt;
assert(std::abs(Geometry::ray_point_distance<Vec2d>(line.a.cast<double>(), (line.b - line.a).cast<double>(), out.pts[0]) - d) < SCALED_EPSILON);
assert(std::abs(Geometry::ray_point_distance<Vec2d>(line.a.cast<double>(), (line.b - line.a).cast<double>(), out.pts[1]) - d) < SCALED_EPSILON);
assert(std::abs((out.pts[0] - ipt.cast<double>()).norm() - d) < SCALED_EPSILON);
assert(std::abs((out.pts[1] - ipt.cast<double>()).norm() - d) < SCALED_EPSILON);
return out;
}
Vec2d voronoi_edge_offset_point(
const VD &vd,
const Lines &lines,
// Distance of a VD vertex to the closest site (input polygon edge or vertex).
const std::vector<double> &vertex_dist,
// Minium distance of a VD edge to the closest site (input polygon edge or vertex).
// For a parabolic segment the distance may be smaller than the distance of the two end points.
const std::vector<double> &edge_dist,
// Edge for which to calculate the offset point. If the distance towards the input polygon
// is not monotonical, pick the offset point closer to edge.vertex0().
const VD::edge_type &edge,
// Distance from the input polygon along the edge.
const double offset_distance)
{
const VD::vertex_type *v0 = edge.vertex0();
const VD::vertex_type *v1 = edge.vertex1();
const VD::cell_type *cell = edge.cell();
const VD::cell_type *cell2 = edge.twin()->cell();
const Line &line0 = lines[cell->source_index()];
const Line &line1 = lines[cell2->source_index()];
if (v0 == nullptr || v1 == nullptr) {
assert(edge.is_infinite());
assert(v0 != nullptr || v1 != nullptr);
// Offsetting on an unconstrained edge.
assert(offset_distance > vertex_dist[(v0 ? v0 : v1) - &vd.vertices().front()] - EPSILON);
Vec2d pt, dir;
double t;
if (cell->contains_point() && cell2->contains_point()) {
const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
// Direction vector of this unconstrained Voronoi edge.
dir = Vec2d(double(pt0.y() - pt1.y()), double(pt1.x() - pt0.x()));
if (v0 == nullptr) {
v0 = v1;
dir = - dir;
}
pt = Vec2d(v0->x(), v0->y());
t = detail::first_circle_segment_intersection_parameter(Vec2d(pt0.x(), pt0.y()), offset_distance, pt, dir);
} else {
// Infinite edges could not be created by two segment sites.
assert(cell->contains_point() != cell2->contains_point());
// Linear edge goes through the endpoint of a segment.
assert(edge.is_linear());
assert(edge.is_secondary());
const Line &line = cell->contains_segment() ? line0 : line1;
const Point &ipt = cell->contains_segment() ?
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b) :
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b);
assert(line.a == ipt || line.b == ipt);
pt = Vec2d(ipt.x(), ipt.y());
dir = Vec2d(line.a.y() - line.b.y(), line.b.x() - line.a.x());
assert(dir.norm() > 0.);
t = offset_distance / dir.norm();
if (((line.a == ipt) == cell->contains_point()) == (v0 == nullptr))
t = - t;
}
return pt + t * dir;
} else {
// Constrained edge.
Vec2d p0(v0->x(), v0->y());
Vec2d p1(v1->x(), v1->y());
double d0 = vertex_dist[v0 - &vd.vertices().front()];
double d1 = vertex_dist[v1 - &vd.vertices().front()];
if (cell->contains_segment() && cell2->contains_segment()) {
// This edge is a bisector of two line segments. Distance to the input polygon increases/decreases monotonically.
double ddif = d1 - d0;
assert(offset_distance > std::min(d0, d1) - EPSILON && offset_distance < std::max(d0, d1) + EPSILON);
double t = (ddif == 0) ? 0. : clamp(0., 1., (offset_distance - d0) / ddif);
return Slic3r::lerp(p0, p1, t);
} else {
// One cell contains a point, the other contains an edge or a point.
assert(cell->contains_point() || cell2->contains_point());
const Point &ipt = cell->contains_point() ?
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b) :
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b);
double t = detail::first_circle_segment_intersection_parameter(
Vec2d(ipt.x(), ipt.y()), offset_distance, p0, p1 - p0);
return Slic3r::lerp(p0, p1, t);
}
}
}
};
static Vec2d foot_pt(const Line &iline, const Point &ipt)
{
Vec2d pt = iline.a.cast<double>();
Vec2d dir = (iline.b - iline.a).cast<double>();
Vec2d v = ipt.cast<double>() - pt;
double l2 = dir.squaredNorm();
double t = (l2 == 0.) ? 0. : v.dot(dir) / l2;
return pt + dir * t;
}
} // namespace detail
Polygons voronoi_offset(
const Geometry::VoronoiDiagram &vd,
const Lines &lines,
double offset_distance,
const Geometry::VoronoiDiagram &vd,
const Lines &lines,
double offset_distance,
double discretization_error)
{
#ifndef NDEBUG
@ -259,20 +223,94 @@ Polygons voronoi_offset(
}
#endif // NDEBUG
enum class EdgeState : unsigned char {
// Initial state, don't know.
Unknown,
// This edge will certainly not be intersected by the offset curve.
Inactive,
// This edge will certainly be intersected by the offset curve.
Active,
// This edge will possibly be intersected by the offset curve.
Possible
};
enum class CellState : unsigned char {
// Initial state, don't know.
Unknown,
// Inactive cell is inside for outside curves and outside for inside curves.
Inactive,
// Active cell is outside for outside curves and inside for inside curves.
Active,
// Boundary cell is intersected by the input segment, part of it is active.
Boundary
};
// Mark edges with outward vertex pointing outside the polygons, thus there is a chance
// that such an edge will have an intersection with our desired offset curve.
bool outside = offset_distance > 0.;
std::vector<char> edge_candidate(vd.num_edges(), 2); // unknown state
const VD::edge_type *front_edge = &vd.edges().front();
bool outside = offset_distance > 0.;
std::vector<EdgeState> edge_state(vd.num_edges(), EdgeState::Unknown);
std::vector<CellState> cell_state(vd.num_cells(), CellState::Unknown);
const VD::edge_type *front_edge = &vd.edges().front();
const VD::cell_type *front_cell = &vd.cells().front();
auto set_edge_state_initial = [&edge_state, front_edge](const VD::edge_type *edge, EdgeState new_edge_type) {
EdgeState &edge_type = edge_state[edge - front_edge];
assert(edge_type == EdgeState::Unknown || edge_type == new_edge_type);
assert(new_edge_type == EdgeState::Possible || new_edge_type == EdgeState::Inactive);
edge_type = new_edge_type;
};
auto set_edge_state_final = [&edge_state, front_edge](const size_t edge_id, EdgeState new_edge_type) {
EdgeState &edge_type = edge_state[edge_id];
assert(edge_type == EdgeState::Possible || edge_type == new_edge_type);
assert(new_edge_type == EdgeState::Active || new_edge_type == EdgeState::Inactive);
edge_type = new_edge_type;
};
auto set_cell_state = [&cell_state, front_cell](const VD::cell_type *cell, CellState new_cell_type) -> bool {
CellState &cell_type = cell_state[cell - front_cell];
assert(cell_type == CellState::Active || cell_type == CellState::Inactive || cell_type == CellState::Boundary || cell_type == CellState::Unknown);
assert(new_cell_type == CellState::Active || new_cell_type == CellState::Inactive || new_cell_type == CellState::Boundary);
switch (cell_type) {
case CellState::Unknown:
break;
case CellState::Active:
if (new_cell_type == CellState::Inactive)
new_cell_type = CellState::Boundary;
break;
case CellState::Inactive:
if (new_cell_type == CellState::Active)
new_cell_type = CellState::Boundary;
break;
case CellState::Boundary:
return false;
}
if (cell_type != new_cell_type) {
cell_type = new_cell_type;
return true;
}
return false;
};
for (const VD::edge_type &edge : vd.edges())
if (edge.vertex1() == nullptr) {
// Infinite Voronoi edge separating two Point sites.
// Infinite Voronoi edge separating two Point sites or a Point site and a Segment site.
// Infinite edge is always outside and it has at least one valid vertex.
assert(edge.vertex0() != nullptr);
edge_candidate[&edge - front_edge] = outside;
set_edge_state_initial(&edge, outside ? EdgeState::Possible : EdgeState::Inactive);
// Opposite edge of an infinite edge is certainly not active.
edge_candidate[edge.twin() - front_edge] = 0;
} else if (edge.vertex1() != nullptr) {
set_edge_state_initial(edge.twin(), EdgeState::Inactive);
if (edge.is_secondary()) {
// edge.vertex0() must lie on source contour.
const VD::cell_type *cell = edge.cell();
const VD::cell_type *cell2 = edge.twin()->cell();
if (cell->contains_segment())
std::swap(cell, cell2);
// State of a cell containing a boundary point is known.
assert(cell->contains_point());
set_cell_state(cell, outside ? CellState::Active : CellState::Inactive);
// State of a cell containing a boundary edge is Boundary.
assert(cell2->contains_segment());
set_cell_state(cell2, CellState::Boundary);
}
} else if (edge.vertex0() != nullptr) {
// Finite edge.
const VD::cell_type *cell = edge.cell();
const Line *line = cell->contains_segment() ? &lines[cell->source_index()] : nullptr;
@ -281,38 +319,114 @@ Polygons voronoi_offset(
line = cell->contains_segment() ? &lines[cell->source_index()] : nullptr;
}
if (line) {
const VD::vertex_type *v1 = edge.vertex1();
const VD::vertex_type *v1 = edge.vertex1();
const VD::cell_type *cell2 = (cell == edge.cell()) ? edge.twin()->cell() : edge.cell();
assert(v1);
const Point *pt_on_contour = nullptr;
if (cell == edge.cell() && edge.twin()->cell()->contains_segment()) {
// Constrained bisector of two segments.
// If the two segments share a point, then one end of the current Voronoi edge shares this point as well.
// Find pt_on_contour if it exists.
const Line &line2 = lines[cell2->source_index()];
if (line->a == line2.b)
pt_on_contour = &line->a;
else if (line->b == line2.a)
pt_on_contour = &line->b;
} else if (edge.is_secondary()) {
assert(edge.is_linear());
// One end of the current Voronoi edge shares a point of a contour.
assert(edge.cell()->contains_point() != edge.twin()->cell()->contains_point());
const Line &line2 = lines[cell2->source_index()];
pt_on_contour = &((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line2.a : line2.b);
}
if (pt_on_contour) {
// One end of the current Voronoi edge shares a point of a contour.
// Find out which one it is.
const VD::vertex_type *v0 = edge.vertex0();
Vec2d vec0(v0->x() - pt_on_contour->x(), v0->y() - pt_on_contour->y());
Vec2d vec1(v1->x() - pt_on_contour->x(), v1->y() - pt_on_contour->y());
double d0 = vec0.squaredNorm();
double d1 = vec1.squaredNorm();
assert(std::min(d0, d1) < SCALED_EPSILON * SCALED_EPSILON);
if (d0 < d1) {
// v0 is equal to pt.
} else {
// Skip secondary edge pointing to a contour point.
set_edge_state_initial(&edge, EdgeState::Inactive);
continue;
}
}
Vec2d l0(line->a.cast<double>());
Vec2d lv((line->b - line->a).cast<double>());
double side = cross2(lv, Vec2d(v1->x(), v1->y()) - l0);
edge_candidate[&edge - front_edge] = outside ? (side < 0.) : (side > 0.);
bool edge_active = outside ? (side < 0.) : (side > 0.);
set_edge_state_initial(&edge, edge_active ? EdgeState::Possible : EdgeState::Inactive);
assert(cell->contains_segment());
set_cell_state(cell,
pt_on_contour ? CellState::Boundary :
edge_active ? CellState::Active : CellState::Inactive);
set_cell_state(cell2,
(pt_on_contour && cell2->contains_segment()) ?
CellState::Boundary :
edge_active ? CellState::Active : CellState::Inactive);
}
}
for (const VD::edge_type &edge : vd.edges())
if (edge_candidate[&edge - front_edge] == 2) {
assert(edge.cell()->contains_point() && edge.twin()->cell()->contains_point());
// Edge separating two point sources, not yet classified as inside / outside.
const VD::edge_type *e = &edge;
char state;
do {
state = edge_candidate[e - front_edge];
if (state != 2)
break;
e = e->next();
} while (e != &edge);
e = &edge;
do {
char &s = edge_candidate[e - front_edge];
if (s == 2) {
assert(e->cell()->contains_point() && e->twin()->cell()->contains_point());
assert(edge_candidate[e->twin() - front_edge] == 2);
s = state;
edge_candidate[e->twin() - front_edge] = state;
{
// Perform one round of expansion marking Voronoi edges and cells next to boundary cells as active / inactive.
std::vector<const VD::cell_type*> cell_queue;
for (const VD::edge_type &edge : vd.edges())
if (edge_state[&edge - front_edge] == EdgeState::Unknown) {
assert(edge.cell()->contains_point() && edge.twin()->cell()->contains_point());
// Edge separating two point sources, not yet classified as inside / outside.
CellState cs = cell_state[edge.cell() - front_cell];
CellState cs2 = cell_state[edge.twin()->cell() - front_cell];
if (cs != CellState::Unknown || cs2 != CellState::Unknown) {
if (cs == CellState::Unknown) {
cs = cs2;
if (set_cell_state(edge.cell(), cs))
cell_queue.emplace_back(edge.cell());
} else if (set_cell_state(edge.twin()->cell(), cs))
cell_queue.emplace_back(edge.twin()->cell());
EdgeState es = (cs == CellState::Active) ? EdgeState::Possible : EdgeState::Inactive;
set_edge_state_initial(&edge, es);
set_edge_state_initial(edge.twin(), es);
} else {
const VD::edge_type *e = edge.twin()->rot_prev();
do {
EdgeState es = edge_state[e->twin() - front_edge];
if (es != EdgeState::Unknown) {
assert(es == EdgeState::Possible || es == EdgeState::Inactive);
set_edge_state_initial(&edge, es);
CellState cs = (es == EdgeState::Possible) ? CellState::Active : CellState::Inactive;
if (set_cell_state(edge.cell(), cs))
cell_queue.emplace_back(edge.cell());
if (set_cell_state(edge.twin()->cell(), cs))
cell_queue.emplace_back(edge.twin()->cell());
break;
}
e = e->rot_prev();
} while (e != edge.twin());
}
e = e->next();
} while (e != &edge);
}
// Do a final seed fill over Voronoi cells and unmarked Voronoi edges.
while (! cell_queue.empty()) {
const VD::cell_type *cell = cell_queue.back();
const CellState cs = cell_state[cell - front_cell];
cell_queue.pop_back();
const VD::edge_type *first_edge = cell->incident_edge();
const VD::edge_type *edge = cell->incident_edge();
EdgeState es = (cs == CellState::Active) ? EdgeState::Possible : EdgeState::Inactive;
do {
if (set_cell_state(edge->twin()->cell(), cs)) {
set_edge_state_initial(edge, es);
set_edge_state_initial(edge->twin(), es);
cell_queue.emplace_back(edge->twin()->cell());
}
edge = edge->next();
} while (edge != first_edge);
}
}
if (! outside)
offset_distance = - offset_distance;
@ -323,10 +437,12 @@ Polygons voronoi_offset(
bbox.min -= (0.01 * bbox.size().cast<double>()).cast<coord_t>();
bbox.max += (0.01 * bbox.size().cast<double>()).cast<coord_t>();
}
static int irun = 0;
++ irun;
{
Lines helper_lines;
for (const VD::edge_type &edge : vd.edges())
if (edge_candidate[&edge - front_edge]) {
if (edge_state[&edge - front_edge] == EdgeState::Possible) {
const VD::vertex_type *v0 = edge.vertex0();
const VD::vertex_type *v1 = edge.vertex1();
assert(v0 != nullptr);
@ -370,16 +486,16 @@ Polygons voronoi_offset(
}
helper_lines.emplace_back(Line(Point(pt1.cast<coord_t>()), Point(((pt1 + pt2) * 0.5).cast<coord_t>())));
}
dump_voronoi_to_svg(debug_out_path("voronoi-offset-candidates1.svg").c_str(), vd, Points(), lines, Polygons(), helper_lines);
dump_voronoi_to_svg(debug_out_path("voronoi-offset-candidates1-%d.svg", irun).c_str(), vd, Points(), lines, Polygons(), helper_lines);
}
#endif // VORONOI_DEBUG_OUT
std::vector<Vec2d> edge_offset_point(vd.num_edges(), Vec2d());
const double offset_distance2 = offset_distance * offset_distance;
for (const VD::edge_type &edge : vd.edges()) {
assert(edge_candidate[&edge - front_edge] != 2);
assert(edge_state[&edge - front_edge] != EdgeState::Unknown);
size_t edge_idx = &edge - front_edge;
if (edge_candidate[edge_idx] == 1) {
if (edge_state[edge_idx] == EdgeState::Possible) {
// Edge candidate, intersection points were not calculated yet.
const VD::vertex_type *v0 = edge.vertex0();
const VD::vertex_type *v1 = edge.vertex1();
@ -391,11 +507,14 @@ Polygons voronoi_offset(
size_t edge_idx2 = edge.twin() - front_edge;
if (v1 == nullptr) {
assert(edge.is_infinite());
assert(edge_candidate[edge_idx2] == 0);
assert(edge.is_linear());
assert(edge_state[edge_idx2] == EdgeState::Inactive);
if (cell->contains_point() && cell2->contains_point()) {
assert(! edge.is_secondary());
const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
double dmin2 = (Vec2d(v0->x(), v0->y()) - pt0.cast<double>()).squaredNorm();
assert(dmin2 >= SCALED_EPSILON * SCALED_EPSILON);
if (dmin2 <= offset_distance2) {
// There shall be an intersection of this unconstrained edge with the offset curve.
// Direction vector of this unconstrained Voronoi edge.
@ -403,14 +522,13 @@ Polygons voronoi_offset(
Vec2d pt(v0->x(), v0->y());
double t = detail::first_circle_segment_intersection_parameter(Vec2d(pt0.x(), pt0.y()), offset_distance, pt, dir);
edge_offset_point[edge_idx] = pt + t * dir;
edge_candidate[edge_idx] = 3;
set_edge_state_final(edge_idx, EdgeState::Active);
} else
edge_candidate[edge_idx] = 0;
set_edge_state_final(edge_idx, EdgeState::Inactive);
} else {
// Infinite edges could not be created by two segment sites.
assert(cell->contains_point() != cell2->contains_point());
// Linear edge goes through the endpoint of a segment.
assert(edge.is_linear());
assert(edge.is_secondary());
const Point &ipt = cell->contains_segment() ?
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b) :
@ -428,20 +546,15 @@ Polygons voronoi_offset(
assert((Vec2d(v0->x(), v0->y()) - ipt.cast<double>()).norm() < SCALED_EPSILON);
#endif /* NDEBUG */
// Infinite edge starts at an input contour, therefore there is always an intersection with an offset curve.
const Line &line = cell->contains_segment() ? line0 : line1;
const Line &line = cell->contains_segment() ? line0 : line1;
assert(line.a == ipt || line.b == ipt);
Vec2d pt = ipt.cast<double>();
Vec2d dir(line.a.y() - line.b.y(), line.b.x() - line.a.x());
assert(dir.norm() > 0.);
double t = offset_distance / dir.norm();
if (((line.a == ipt) == cell->contains_point()) == (v0 == nullptr))
t = - t;
edge_offset_point[edge_idx] = pt + t * dir;
edge_candidate[edge_idx] = 3;
edge_offset_point[edge_idx] = ipt.cast<double>() + offset_distance * Vec2d(line.b.y() - line.a.y(), line.a.x() - line.b.x()).normalized();
set_edge_state_final(edge_idx, EdgeState::Active);
}
// The other edge of an unconstrained edge starting with null vertex shall never be intersected.
edge_candidate[edge_idx2] = 0;
set_edge_state_final(edge_idx2, EdgeState::Inactive);
} else if (edge.is_secondary()) {
assert(edge.is_linear());
assert(cell->contains_point() != cell2->contains_point());
const Line &line0 = lines[edge.cell()->source_index()];
const Line &line1 = lines[edge.twin()->cell()->source_index()];
@ -455,11 +568,11 @@ Polygons voronoi_offset(
double l2 = dir.squaredNorm();
if (offset_distance2 <= l2) {
edge_offset_point[edge_idx] = pt.cast<double>() + (offset_distance / sqrt(l2)) * dir;
edge_candidate[edge_idx] = 3;
set_edge_state_final(edge_idx, EdgeState::Active);
} else {
edge_candidate[edge_idx] = 0;
set_edge_state_final(edge_idx, EdgeState::Inactive);
}
edge_candidate[edge_idx2] = 0;
set_edge_state_final(edge_idx2, EdgeState::Inactive);
} else {
// Finite edge has valid points at both sides.
bool done = false;
@ -492,8 +605,8 @@ Polygons voronoi_offset(
}
double t = clamp(0., 1., (offset_distance - dmin) / ddif);
edge_offset_point[edge_idx] = Vec2d(lerp(v0->x(), v1->x(), t), lerp(v0->y(), v1->y(), t));
edge_candidate[edge_idx] = 3;
edge_candidate[edge_idx2] = 0;
set_edge_state_final(edge_idx, EdgeState::Active);
set_edge_state_final(edge_idx2, EdgeState::Inactive);
done = true;
}
}
@ -512,23 +625,44 @@ Polygons voronoi_offset(
double dmin = std::min(d0, d1);
double dmax = std::max(d0, d1);
bool has_intersection = false;
bool possibly_two_points = false;
if (offset_distance2 <= dmax) {
if (offset_distance2 >= dmin) {
has_intersection = true;
} else {
double dmin_new;
double dmin_new = dmin;
if (point_vs_segment) {
Vec2d ft = foot_pt(cell->contains_segment() ? line0 : line1, pt0);
dmin_new = (ft - px).squaredNorm() * 0.25;
// Project on the source segment.
const Line &line = cell->contains_segment() ? line0 : line1;
const Vec2d pt_line = line.a.cast<double>();
const Vec2d v_line = (line.b - line.a).cast<double>();
double t0 = (p0 - pt_line).dot(v_line);
double t1 = (p1 - pt_line).dot(v_line);
double tx = (px - pt_line).dot(v_line);
if ((tx >= t0 && tx <= t1) || (tx >= t1 && tx <= t0)) {
// Projection of the Point site falls between the projections of the Voronoi edge end points
// onto the Line site.
Vec2d ft = pt_line + (tx / v_line.squaredNorm()) * v_line;
dmin_new = (ft - px).squaredNorm() * 0.25;
}
} else {
// point vs. point
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
dmin_new = (pt1.cast<double>() - px).squaredNorm() * 0.25;
// Point-Point Voronoi sites. Project point site onto the current Voronoi edge.
Vec2d v = p1 - p0;
auto l2 = v.squaredNorm();
assert(l2 > 0);
auto t = v.dot(px - p0);
if (t >= 0. && t <= l2) {
// Projection falls onto the Voronoi edge. Calculate foot point and distance.
Vec2d ft = p0 + (t / l2) * v;
dmin_new = (ft - px).squaredNorm();
}
}
assert(dmin_new < dmax + SCALED_EPSILON);
assert(dmin_new < dmin + SCALED_EPSILON);
dmin = dmin_new;
has_intersection = offset_distance2 >= dmin;
if (dmin_new < dmin) {
dmin = dmin_new;
has_intersection = possibly_two_points = offset_distance2 >= dmin;
}
}
}
if (has_intersection) {
@ -540,67 +674,90 @@ Polygons voronoi_offset(
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
intersections = detail::point_point_equal_distance_points(pt0, pt1, offset_distance);
}
// If the span of distances of start / end point / foot point to the point site indicate an intersection,
// we should find one.
assert(intersections.count > 0);
if (intersections.count == 2) {
// Now decide which points fall on this Voronoi edge.
// Tangential points (single intersection) are ignored.
Vec2d v = p1 - p0;
double l2 = v.squaredNorm();
double t0 = v.dot(intersections.pts[0] - p0);
double t1 = v.dot(intersections.pts[1] - p0);
if (t0 > t1) {
std::swap(t0, t1);
std::swap(intersections.pts[0], intersections.pts[1]);
}
// Remove points outside of the line range.
if (t0 < 0. || t0 > l2) {
if (t1 < 0. || t1 > l2)
intersections.count = 0;
else {
-- intersections.count;
t0 = t1;
intersections.pts[0] = intersections.pts[1];
if (possibly_two_points) {
Vec2d v = p1 - p0;
double l2 = v.squaredNorm();
double t0 = v.dot(intersections.pts[0] - p0);
double t1 = v.dot(intersections.pts[1] - p0);
if (t0 > t1) {
std::swap(t0, t1);
std::swap(intersections.pts[0], intersections.pts[1]);
}
} else if (t1 < 0. || t1 > l2)
// Remove points outside of the line range.
if (t0 < 0. || t0 > l2) {
if (t1 < 0. || t1 > l2)
intersections.count = 0;
else {
-- intersections.count;
t0 = t1;
intersections.pts[0] = intersections.pts[1];
}
} else if (t1 < 0. || t1 > l2)
-- intersections.count;
} else {
// Take the point furthest from the end points of the Voronoi edge or a Voronoi parabolic arc.
double d0 = std::max((intersections.pts[0] - p0).squaredNorm(), (intersections.pts[0] - p1).squaredNorm());
double d1 = std::max((intersections.pts[1] - p0).squaredNorm(), (intersections.pts[1] - p1).squaredNorm());
if (d0 > d1)
intersections.pts[0] = intersections.pts[1];
-- intersections.count;
}
assert(intersections.count > 0);
if (intersections.count == 2) {
edge_candidate[edge_idx] = edge_candidate[edge_idx2] = 3;
edge_offset_point[edge_idx] = intersections.pts[0];
edge_offset_point[edge_idx2] = intersections.pts[1];
set_edge_state_final(edge_idx, EdgeState::Active);
set_edge_state_final(edge_idx2, EdgeState::Active);
edge_offset_point[edge_idx] = intersections.pts[1];
edge_offset_point[edge_idx2] = intersections.pts[0];
done = true;
} else if (intersections.count == 1) {
if (d1 > d0) {
if (d1 < d0)
std::swap(edge_idx, edge_idx2);
edge_candidate[edge_idx] = 3;
edge_candidate[edge_idx2] = 0;
edge_offset_point[edge_idx] = intersections.pts[0];
}
set_edge_state_final(edge_idx, EdgeState::Active);
set_edge_state_final(edge_idx2, EdgeState::Inactive);
edge_offset_point[edge_idx] = intersections.pts[0];
done = true;
}
}
if (! done)
edge_candidate[edge_idx] = edge_candidate[edge_idx2] = 0;
}
}
if (! done) {
set_edge_state_final(edge_idx, EdgeState::Inactive);
set_edge_state_final(edge_idx2, EdgeState::Inactive);
}
}
}
}
#ifndef NDEBUG
for (const VD::edge_type &edge : vd.edges()) {
assert(edge_state[&edge - front_edge] == EdgeState::Inactive || edge_state[&edge - front_edge] == EdgeState::Active);
// None of a new edge candidate may start with null vertex.
assert(edge_state[&edge - front_edge] == EdgeState::Inactive || edge.vertex0() != nullptr);
assert(edge_state[edge.twin() - front_edge] == EdgeState::Inactive || edge.twin()->vertex0() != nullptr);
}
#endif // NDEBUG
#ifdef VORONOI_DEBUG_OUT
{
Lines helper_lines;
for (const VD::edge_type &edge : vd.edges())
if (edge_candidate[&edge - front_edge] == 3)
if (edge_state[&edge - front_edge] == EdgeState::Active)
helper_lines.emplace_back(Line(Point(edge.vertex0()->x(), edge.vertex0()->y()), Point(edge_offset_point[&edge - front_edge].cast<coord_t>())));
dump_voronoi_to_svg(debug_out_path("voronoi-offset-candidates2.svg").c_str(), vd, Points(), lines, Polygons(), helper_lines);
dump_voronoi_to_svg(debug_out_path("voronoi-offset-candidates2-%d.svg", irun).c_str(), vd, Points(), lines, Polygons(), helper_lines);
}
#endif // VORONOI_DEBUG_OUT
auto next_offset_edge = [&edge_candidate, front_edge](const VD::edge_type *start_edge) -> const VD::edge_type* {
auto next_offset_edge = [&edge_state, front_edge](const VD::edge_type *start_edge) -> const VD::edge_type* {
for (const VD::edge_type *edge = start_edge->next(); edge != start_edge; edge = edge->next())
if (edge_candidate[edge->twin() - front_edge] == 3)
if (edge_state[edge->twin() - front_edge] == EdgeState::Active)
return edge->twin();
assert(false);
// assert(false);
return nullptr;
};
@ -609,56 +766,66 @@ Polygons voronoi_offset(
const Line &line = lines[cell.source_index()];
return cell.contains_point() ?
(((cell.source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line.a : line.b).cast<double>() - point).norm() :
line.distance_to(point.cast<coord_t>());
(Geometry::foot_pt<Vec2d>(line.a.cast<double>(), (line.b - line.a).cast<double>(), point) - point).norm();
};
#endif /* NDEBUG */
// Track the offset curves.
Polygons out;
double angle_step = 2. * acos((offset_distance - discretization_error) / offset_distance);
double sin_threshold = sin(angle_step) + EPSILON;
double cos_threshold = cos(angle_step);
for (size_t seed_edge_idx = 0; seed_edge_idx < vd.num_edges(); ++ seed_edge_idx)
if (edge_candidate[seed_edge_idx] == 3) {
if (edge_state[seed_edge_idx] == EdgeState::Active) {
const VD::edge_type *start_edge = &vd.edges()[seed_edge_idx];
const VD::edge_type *edge = start_edge;
Polygon poly;
do {
// find the next edge
const VD::edge_type *next_edge = next_offset_edge(edge);
const VD::edge_type *next_edge = next_offset_edge(edge);
#ifdef VORONOI_DEBUG_OUT
if (next_edge == nullptr) {
Lines helper_lines;
dump_voronoi_to_svg(debug_out_path("voronoi-offset-open-loop-%d.svg", irun).c_str(), vd, Points(), lines, Polygons(), to_lines(poly));
}
#endif // VORONOI_DEBUG_OUT
assert(next_edge);
//std::cout << "offset-output: "; print_edge(edge); std::cout << " to "; print_edge(next_edge); std::cout << "\n";
// Interpolate a circular segment or insert a linear segment between edge and next_edge.
const VD::cell_type *cell = edge->cell();
edge_candidate[next_edge - front_edge] = 0;
edge_state[next_edge - front_edge] = EdgeState::Inactive;
Vec2d p1 = edge_offset_point[edge - front_edge];
Vec2d p2 = edge_offset_point[next_edge - front_edge];
#ifndef NDEBUG
{
double err = dist_to_site(*cell, p1) - offset_distance;
assert(std::abs(err) < SCALED_EPSILON);
err = dist_to_site(*cell, p2) - offset_distance;
double err = dist_to_site(*cell, p1) - offset_distance;
double err2 = dist_to_site(*cell, p2) - offset_distance;
#ifdef VORONOI_DEBUG_OUT
if (std::max(err, err2) >= SCALED_EPSILON) {
Lines helper_lines;
dump_voronoi_to_svg(debug_out_path("voronoi-offset-incorrect_pt-%d.svg", irun).c_str(), vd, Points(), lines, Polygons(), to_lines(poly));
}
#endif // VORONOI_DEBUG_OUT
assert(std::abs(err) < SCALED_EPSILON);
assert(std::abs(err2) < SCALED_EPSILON);
}
#endif /* NDEBUG */
if (cell->contains_point()) {
// Discretize an arc from p1 to p2 with radius = offset_distance and discretization_error.
// The arc should cover angle < PI.
//FIXME we should be able to produce correctly oriented output curves based on the first edge taken!
// The extracted contour is CCW oriented, extracted holes are CW oriented.
// The extracted arc will have the same orientation. As the Voronoi regions are convex, the angle covered by the arc will be convex as well.
const Line &line0 = lines[cell->source_index()];
const Vec2d &center = ((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b).cast<double>();
const Vec2d v1 = p1 - center;
const Vec2d v2 = p2 - center;
double orient = cross2(v1, v2);
double orient_norm = v1.norm() * v2.norm();
bool ccw = orient > 0;
bool obtuse = v1.dot(v2) < 0.;
if (! ccw)
orient = - orient;
assert(orient != 0.);
if (obtuse || orient > orient_norm * sin_threshold) {
bool ccw = cross2(v1, v2) > 0;
double cos_a = v1.dot(v2);
double norm = v1.norm() * v2.norm();
assert(norm > 0.);
if (cos_a < cos_threshold * norm) {
// Angle is bigger than the threshold, therefore the arc will be discretized.
double angle = asin(orient / orient_norm);
if (obtuse)
angle = M_PI - angle;
cos_a /= norm;
assert(cos_a > -1. - EPSILON && cos_a < 1. + EPSILON);
double angle = acos(std::max(-1., std::min(1., cos_a)));
size_t n_steps = size_t(ceil(angle / angle_step));
double astep = angle / n_steps;
if (! ccw)
@ -670,9 +837,13 @@ Polygons voronoi_offset(
Vec2d p = center + Vec2d(c * v1.x() - s * v1.y(), s * v1.x() + c * v1.y());
poly.points.emplace_back(Point(coord_t(p.x()), coord_t(p.y())));
}
}
}
}
poly.points.emplace_back(Point(coord_t(p2.x()), coord_t(p2.y())));
{
Point pt_last(coord_t(p2.x()), coord_t(p2.y()));
if (poly.empty() || poly.points.back() != pt_last)
poly.points.emplace_back(pt_last);
}
edge = next_edge;
} while (edge != start_edge);
out.emplace_back(std::move(poly));

View file

@ -305,44 +305,52 @@ static inline void dump_voronoi_to_svg(
const Lines &lines,
const Polygons &offset_curves = Polygons(),
const Lines &helper_lines = Lines(),
const double scale = 0.7) // 0.2?
double scale = 0)
{
const std::string inputSegmentPointColor = "lightseagreen";
const coord_t inputSegmentPointRadius = coord_t(0.09 * scale / SCALING_FACTOR);
const std::string inputSegmentColor = "lightseagreen";
const coord_t inputSegmentLineWidth = coord_t(0.03 * scale / SCALING_FACTOR);
const std::string voronoiPointColor = "black";
const coord_t voronoiPointRadius = coord_t(0.06 * scale / SCALING_FACTOR);
const std::string voronoiLineColorPrimary = "black";
const std::string voronoiLineColorSecondary = "green";
const std::string voronoiArcColor = "red";
const coord_t voronoiLineWidth = coord_t(0.02 * scale / SCALING_FACTOR);
const std::string offsetCurveColor = "magenta";
const coord_t offsetCurveLineWidth = coord_t(0.09 * scale / SCALING_FACTOR);
const std::string helperLineColor = "orange";
const coord_t helperLineWidth = coord_t(0.09 * scale / SCALING_FACTOR);
const bool internalEdgesOnly = false;
const bool primaryEdgesOnly = false;
BoundingBox bbox;
bbox.merge(get_extents(points));
bbox.merge(get_extents(lines));
bbox.merge(get_extents(offset_curves));
bbox.merge(get_extents(helper_lines));
bbox.min -= (0.01 * bbox.size().cast<double>()).cast<coord_t>();
bbox.max += (0.01 * bbox.size().cast<double>()).cast<coord_t>();
if (scale == 0)
scale =
// 0.1
0.01
* std::min(bbox.size().x(), bbox.size().y());
else
scale /= SCALING_FACTOR;
const std::string inputSegmentPointColor = "lightseagreen";
const coord_t inputSegmentPointRadius = coord_t(0.09 * scale);
const std::string inputSegmentColor = "lightseagreen";
const coord_t inputSegmentLineWidth = coord_t(0.03 * scale);
const std::string voronoiPointColor = "black";
const coord_t voronoiPointRadius = coord_t(0.06 * scale);
const std::string voronoiLineColorPrimary = "black";
const std::string voronoiLineColorSecondary = "green";
const std::string voronoiArcColor = "red";
const coord_t voronoiLineWidth = coord_t(0.02 * scale);
const std::string offsetCurveColor = "magenta";
const coord_t offsetCurveLineWidth = coord_t(0.02 * scale);
const std::string helperLineColor = "orange";
const coord_t helperLineWidth = coord_t(0.04 * scale);
const bool internalEdgesOnly = false;
const bool primaryEdgesOnly = false;
::Slic3r::SVG svg(path, bbox);
// bbox.scale(1.2);
// For clipping of half-lines to some reasonable value.
// The line will then be clipped by the SVG viewer anyway.
const double bbox_dim_max = double(std::max(bbox.size().x(), bbox.size().y()));
// For the discretization of the Voronoi parabolic segments.
const double discretization_step = 0.05 * bbox_dim_max;
const double discretization_step = 0.0002 * bbox_dim_max;
// Make a copy of the input segments with the double type.
std::vector<Voronoi::Internal::segment_type> segments;

View file

@ -26,7 +26,7 @@
// Saves around 32% RAM after slicing step, 6.7% after G-code export (tested on PrusaSlicer 2.2.0 final).
using coord_t = int32_t;
#else
//FIXME At least FillRectilinear2 requires coord_t to be 32bit.
//FIXME At least FillRectilinear2 and std::boost Voronoi require coord_t to be 32bit.
typedef int64_t coord_t;
#endif
@ -73,13 +73,6 @@ inline std::string debug_out_path(const char *name, ...)
return std::string(SLIC3R_DEBUG_OUT_PATH_PREFIX) + std::string(buffer);
}
#ifdef _MSC_VER
// Visual Studio older than 2015 does not support the prinf type specifier %zu. Use %Iu instead.
#define PRINTF_ZU "%Iu"
#else
#define PRINTF_ZU "%zu"
#endif
#ifndef UNUSED
#define UNUSED(x) (void)(x)
#endif /* UNUSED */

View file

@ -448,6 +448,7 @@ void SupportsClipper::render_cut() const
// Get transformation of supports
Geometry::Transformation supports_trafo = trafo;
supports_trafo.set_scaling_factor(Vec3d::Ones());
supports_trafo.set_offset(Vec3d(trafo.get_offset()(0), trafo.get_offset()(1), sel_info->get_sla_shift()));
supports_trafo.set_rotation(Vec3d(0., 0., trafo.get_rotation()(2)));
// I don't know why, but following seems to be correct.

View file

@ -8,6 +8,8 @@
#include <libslic3r/VoronoiOffset.hpp>
#include <numeric>
// #define VORONOI_DEBUG_OUT
#ifdef VORONOI_DEBUG_OUT
@ -1198,6 +1200,12 @@ TEST_CASE("Voronoi NaN coordinates 12139", "[Voronoi][!hide][!mayfail]")
#endif
}
struct OffsetTest {
double distance;
size_t num_outer;
size_t num_inner;
};
TEST_CASE("Voronoi offset", "[VoronoiOffset]")
{
Polygons poly_with_hole = { Polygon {
@ -1210,23 +1218,180 @@ TEST_CASE("Voronoi offset", "[VoronoiOffset]")
}
};
double area = std::accumulate(poly_with_hole.begin(), poly_with_hole.end(), 0., [](double a, auto &poly){ return a + poly.area(); });
REQUIRE(area > 0.);
VD vd;
Lines lines = to_lines(poly_with_hole);
construct_voronoi(lines.begin(), lines.end(), &vd);
Polygons offsetted_polygons_out = voronoi_offset(vd, lines, scale_(0.2), scale_(0.005));
REQUIRE(offsetted_polygons_out.size() == 1);
for (const OffsetTest &ot : {
OffsetTest { scale_(0.2), 1, 1 },
OffsetTest { scale_(0.4), 1, 1 },
OffsetTest { scale_(0.5), 1, 1 },
OffsetTest { scale_(0.505), 1, 2 },
OffsetTest { scale_(0.51), 1, 2 },
OffsetTest { scale_(0.52), 1, 1 },
OffsetTest { scale_(0.53), 1, 1 },
OffsetTest { scale_(0.54), 1, 1 },
OffsetTest { scale_(0.55), 1, 0 }
}) {
Polygons offsetted_polygons_out = voronoi_offset(vd, lines, ot.distance, scale_(0.005));
REQUIRE(offsetted_polygons_out.size() == ot.num_outer);
#ifdef VORONOI_DEBUG_OUT
dump_voronoi_to_svg(debug_out_path("voronoi-offset-out.svg").c_str(),
vd, Points(), lines, offsetted_polygons_out);
dump_voronoi_to_svg(debug_out_path("voronoi-offset-out-%lf.svg", ot.distance).c_str(),
vd, Points(), lines, offsetted_polygons_out);
#endif
Polygons offsetted_polygons_in = voronoi_offset(vd, lines, - scale_(0.2), scale_(0.005));
REQUIRE(offsetted_polygons_in.size() == 1);
Polygons offsetted_polygons_in = voronoi_offset(vd, lines, - ot.distance, scale_(0.005));
REQUIRE(offsetted_polygons_in.size() == ot.num_inner);
#ifdef VORONOI_DEBUG_OUT
dump_voronoi_to_svg(debug_out_path("voronoi-offset-in.svg").c_str(),
vd, Points(), lines, offsetted_polygons_in);
dump_voronoi_to_svg(debug_out_path("voronoi-offset-in-%lf.svg", ot.distance).c_str(),
vd, Points(), lines, offsetted_polygons_in);
#endif
}
}
TEST_CASE("Voronoi offset 2", "[VoronoiOffset]")
{
coord_t mm = coord_t(scale_(1.));
Polygons poly = {
Polygon {
{ 0, 0 },
{ 1, 0 },
{ 1, 1 },
{ 2, 1 },
{ 2, 0 },
{ 3, 0 },
{ 3, 2 },
{ 0, 2 }
},
Polygon {
{ 0, - 1 - 2 },
{ 3, - 1 - 2 },
{ 3, - 1 - 0 },
{ 2, - 1 - 0 },
{ 2, - 1 - 1 },
{ 1, - 1 - 1 },
{ 1, - 1 - 0 },
{ 0, - 1 - 0 }
},
};
for (Polygon &p : poly)
for (Point &pt : p.points)
pt *= mm;
double area = std::accumulate(poly.begin(), poly.end(), 0., [](double a, auto &poly){ return a + poly.area(); });
REQUIRE(area > 0.);
VD vd;
Lines lines = to_lines(poly);
construct_voronoi(lines.begin(), lines.end(), &vd);
for (const OffsetTest &ot : {
OffsetTest { scale_(0.2), 2, 2 },
OffsetTest { scale_(0.4), 2, 2 },
OffsetTest { scale_(0.45), 2, 2 },
OffsetTest { scale_(0.48), 2, 2 },
//FIXME Exact intersections of an Offset curve with any Voronoi vertex are not handled correctly yet.
// OffsetTest { scale_(0.5), 2, 2 },
OffsetTest { scale_(0.505), 2, 4 },
OffsetTest { scale_(0.7), 2, 0 },
OffsetTest { scale_(0.8), 1, 0 }
}) {
Polygons offsetted_polygons_out = voronoi_offset(vd, lines, ot.distance, scale_(0.005));
#ifdef VORONOI_DEBUG_OUT
dump_voronoi_to_svg(debug_out_path("voronoi-offset2-out-%lf.svg", ot.distance).c_str(),
vd, Points(), lines, offsetted_polygons_out);
#endif
REQUIRE(offsetted_polygons_out.size() == ot.num_outer);
Polygons offsetted_polygons_in = voronoi_offset(vd, lines, - ot.distance, scale_(0.005));
#ifdef VORONOI_DEBUG_OUT
dump_voronoi_to_svg(debug_out_path("voronoi-offset2-in-%lf.svg", ot.distance).c_str(),
vd, Points(), lines, offsetted_polygons_in);
#endif
REQUIRE(offsetted_polygons_in.size() == ot.num_inner);
}
}
TEST_CASE("Voronoi offset 3", "[VoronoiOffset]")
{
coord_t mm = coord_t(scale_(1.));
Polygons poly = {
Polygon {
{ 0, 0 },
{ 2, 0 },
{ 2, 1 },
{ 3, 1 },
{ 3, 0 },
{ 5, 0 },
{ 5, 2 },
{ 4, 2 },
{ 4, 3 },
{ 1, 3 },
{ 1, 2 },
{ 0, 2 }
},
Polygon {
{ 0, -1 - 2 },
{ 1, -1 - 2 },
{ 1, -1 - 3 },
{ 4, -1 - 3 },
{ 4, -1 - 2 },
{ 5, -1 - 2 },
{ 5, -1 - 0 },
{ 3, -1 - 0 },
{ 3, -1 - 1 },
{ 2, -1 - 1 },
{ 2, -1 - 0 },
{ 0, -1 - 0 }
},
};
for (Polygon &p : poly) {
REQUIRE(p.area() > 0.);
for (Point &pt : p.points)
pt *= mm;
}
VD vd;
Lines lines = to_lines(poly);
construct_voronoi(lines.begin(), lines.end(), &vd);
for (const OffsetTest &ot : {
OffsetTest { scale_(0.2), 2, 2 },
OffsetTest { scale_(0.4), 2, 2 },
OffsetTest { scale_(0.49), 2, 2 },
//FIXME this fails
// OffsetTest { scale_(0.5), 2, 2 },
OffsetTest { scale_(0.51), 2, 2 },
OffsetTest { scale_(0.56), 2, 2 },
OffsetTest { scale_(0.6), 2, 2 },
OffsetTest { scale_(0.7), 2, 2 },
OffsetTest { scale_(0.8), 1, 6 },
OffsetTest { scale_(0.9), 1, 6 },
OffsetTest { scale_(0.99), 1, 6 },
//FIXME this fails
// OffsetTest { scale_(1.0), 1, 6 },
OffsetTest { scale_(1.01), 1, 0 },
}) {
Polygons offsetted_polygons_out = voronoi_offset(vd, lines, ot.distance, scale_(0.005));
#ifdef VORONOI_DEBUG_OUT
dump_voronoi_to_svg(debug_out_path("voronoi-offset2-out-%lf.svg", ot.distance).c_str(),
vd, Points(), lines, offsetted_polygons_out);
#endif
REQUIRE(offsetted_polygons_out.size() == ot.num_outer);
Polygons offsetted_polygons_in = voronoi_offset(vd, lines, - ot.distance, scale_(0.005));
#ifdef VORONOI_DEBUG_OUT
dump_voronoi_to_svg(debug_out_path("voronoi-offset2-in-%lf.svg", ot.distance).c_str(),
vd, Points(), lines, offsetted_polygons_in);
#endif
REQUIRE(offsetted_polygons_in.size() == ot.num_inner);
}
}

View file

@ -13,7 +13,7 @@ Pointfs arrange(size_t total_parts, Vec2d* part, coordf_t dist, BoundingBoxf* bb
%code{%
Pointfs points;
if (! Slic3r::Geometry::arrange(total_parts, *part, dist, bb, points))
CONFESS(PRINTF_ZU " parts won't fit in your print area!\n", total_parts);
CONFESS("%zu parts won't fit in your print area!\n", total_parts);
RETVAL = points;
%};