Merge branch 'master' of https://github.com/prusa3d/PrusaSlicer into et_layout
This commit is contained in:
commit
f6b5c64642
18 changed files with 754 additions and 345 deletions
|
@ -53,7 +53,7 @@ void BridgeDetector::initialize()
|
|||
this->_edges = intersection_pl(to_polylines(grown), contours);
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf(" bridge has " PRINTF_ZU " support(s)\n", this->_edges.size());
|
||||
printf(" bridge has %zu support(s)\n", this->_edges.size());
|
||||
#endif
|
||||
|
||||
// detect anchors as intersection between our bridge expolygon and the lower slices
|
||||
|
|
|
@ -1586,12 +1586,17 @@ std::vector<std::pair<EdgeGrid::Grid::ContourEdge, EdgeGrid::Grid::ContourEdge>>
|
|||
++ cnt;
|
||||
}
|
||||
}
|
||||
len /= double(cnt);
|
||||
bbox.offset(20);
|
||||
EdgeGrid::Grid grid;
|
||||
grid.set_bbox(bbox);
|
||||
grid.create(polygons, len);
|
||||
return grid.intersecting_edges();
|
||||
|
||||
std::vector<std::pair<EdgeGrid::Grid::ContourEdge, EdgeGrid::Grid::ContourEdge>> out;
|
||||
if (cnt > 0) {
|
||||
len /= double(cnt);
|
||||
bbox.offset(20);
|
||||
EdgeGrid::Grid grid;
|
||||
grid.set_bbox(bbox);
|
||||
grid.create(polygons, len);
|
||||
out = grid.intersecting_edges();
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
// Find all pairs of intersectiong edges from the set of polygons, highlight them in an SVG.
|
||||
|
|
|
@ -404,7 +404,7 @@ void ExPolygon::triangulate_pp(Polygons* polygons) const
|
|||
{
|
||||
TPPLPoly p;
|
||||
p.Init(int(ex->contour.points.size()));
|
||||
//printf(PRINTF_ZU "\n0\n", ex->contour.points.size());
|
||||
//printf("%zu\n0\n", ex->contour.points.size());
|
||||
for (const Point &point : ex->contour.points) {
|
||||
size_t i = &point - &ex->contour.points.front();
|
||||
p[i].x = point(0);
|
||||
|
@ -419,7 +419,7 @@ void ExPolygon::triangulate_pp(Polygons* polygons) const
|
|||
for (Polygons::const_iterator hole = ex->holes.begin(); hole != ex->holes.end(); ++hole) {
|
||||
TPPLPoly p;
|
||||
p.Init(hole->points.size());
|
||||
//printf(PRINTF_ZU "\n1\n", hole->points.size());
|
||||
//printf("%zu\n1\n", hole->points.size());
|
||||
for (const Point &point : hole->points) {
|
||||
size_t i = &point - &hole->points.front();
|
||||
p[i].x = point(0);
|
||||
|
|
|
@ -1218,7 +1218,7 @@ bool store_amf(const char* path, Model* model, const DynamicPrintConfig* config,
|
|||
for (ModelInstance *instance : object->instances) {
|
||||
char buf[512];
|
||||
sprintf(buf,
|
||||
" <instance objectid=\"" PRINTF_ZU "\">\n"
|
||||
" <instance objectid=\"%zu\">\n"
|
||||
" <deltax>%lf</deltax>\n"
|
||||
" <deltay>%lf</deltay>\n"
|
||||
" <deltaz>%lf</deltaz>\n"
|
||||
|
|
|
@ -393,7 +393,7 @@ GCodeSender::on_read(const boost::system::error_code& error,
|
|||
}
|
||||
this->send();
|
||||
} else {
|
||||
printf("Cannot resend " PRINTF_ZU " (oldest we have is " PRINTF_ZU ")\n", toresend, this->sent - this->last_sent.size());
|
||||
printf("Cannot resend %zu (oldest we have is %zu)\n", toresend, this->sent - this->last_sent.size());
|
||||
}
|
||||
} else if (boost::starts_with(line, "wait")) {
|
||||
// ignore
|
||||
|
|
|
@ -471,7 +471,7 @@ Pointfs arrange(size_t num_parts, const Vec2d &part_size, coordf_t gap, const Bo
|
|||
size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0)));
|
||||
size_t cellh = size_t(floor((bed_bbox.size()(1) + gap) / cell_size(1)));
|
||||
if (num_parts > cellw * cellh)
|
||||
throw std::invalid_argument(PRINTF_ZU " parts won't fit in your print area!\n", num_parts);
|
||||
throw std::invalid_argument("%zu parts won't fit in your print area!\n", num_parts);
|
||||
|
||||
// Get a bounding box of cellw x cellh cells, centered at the center of the bed.
|
||||
Vec2d cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap);
|
||||
|
|
|
@ -115,32 +115,94 @@ inline bool segment_segment_intersection(const Vec2d &p1, const Vec2d &v1, const
|
|||
return true;
|
||||
}
|
||||
|
||||
|
||||
inline int segments_could_intersect(
|
||||
const Slic3r::Point &ip1, const Slic3r::Point &ip2,
|
||||
const Slic3r::Point &jp1, const Slic3r::Point &jp2)
|
||||
{
|
||||
Vec2i64 iv = (ip2 - ip1).cast<int64_t>();
|
||||
Vec2i64 vij1 = (jp1 - ip1).cast<int64_t>();
|
||||
Vec2i64 vij2 = (jp2 - ip1).cast<int64_t>();
|
||||
int64_t tij1 = cross2(iv, vij1);
|
||||
int64_t tij2 = cross2(iv, vij2);
|
||||
int sij1 = (tij1 > 0) ? 1 : ((tij1 < 0) ? -1 : 0); // signum
|
||||
int sij2 = (tij2 > 0) ? 1 : ((tij2 < 0) ? -1 : 0);
|
||||
return sij1 * sij2;
|
||||
}
|
||||
|
||||
inline bool segments_intersect(
|
||||
const Slic3r::Point &ip1, const Slic3r::Point &ip2,
|
||||
const Slic3r::Point &jp1, const Slic3r::Point &jp2)
|
||||
{
|
||||
assert(ip1 != ip2);
|
||||
assert(jp1 != jp2);
|
||||
|
||||
auto segments_could_intersect = [](
|
||||
const Slic3r::Point &ip1, const Slic3r::Point &ip2,
|
||||
const Slic3r::Point &jp1, const Slic3r::Point &jp2) -> std::pair<int, int>
|
||||
{
|
||||
Vec2i64 iv = (ip2 - ip1).cast<int64_t>();
|
||||
Vec2i64 vij1 = (jp1 - ip1).cast<int64_t>();
|
||||
Vec2i64 vij2 = (jp2 - ip1).cast<int64_t>();
|
||||
int64_t tij1 = cross2(iv, vij1);
|
||||
int64_t tij2 = cross2(iv, vij2);
|
||||
return std::make_pair(
|
||||
// signum
|
||||
(tij1 > 0) ? 1 : ((tij1 < 0) ? -1 : 0),
|
||||
(tij2 > 0) ? 1 : ((tij2 < 0) ? -1 : 0));
|
||||
};
|
||||
|
||||
std::pair<int, int> sign1 = segments_could_intersect(ip1, ip2, jp1, jp2);
|
||||
std::pair<int, int> sign2 = segments_could_intersect(jp1, jp2, ip1, ip2);
|
||||
int test1 = sign1.first * sign1.second;
|
||||
int test2 = sign2.first * sign2.second;
|
||||
if (test1 <= 0 && test2 <= 0) {
|
||||
// The segments possibly intersect. They may also be collinear, but not intersect.
|
||||
if (test1 != 0 || test2 != 0)
|
||||
// Certainly not collinear, then the segments intersect.
|
||||
return true;
|
||||
// If the first segment is collinear with the other, the other is collinear with the first segment.
|
||||
assert((sign1.first == 0 && sign1.second == 0) == (sign2.first == 0 && sign2.second == 0));
|
||||
if (sign1.first == 0 && sign1.second == 0) {
|
||||
// The segments are certainly collinear. Now verify whether they overlap.
|
||||
Slic3r::Point vi = ip2 - ip1;
|
||||
// Project both on the longer coordinate of vi.
|
||||
int axis = std::abs(vi.x()) > std::abs(vi.y()) ? 0 : 1;
|
||||
coord_t i = ip1(axis);
|
||||
coord_t j = ip2(axis);
|
||||
coord_t k = jp1(axis);
|
||||
coord_t l = jp2(axis);
|
||||
if (i > j)
|
||||
std::swap(i, j);
|
||||
if (k > l)
|
||||
std::swap(k, l);
|
||||
return (k >= i && k <= j) || (i >= k && i <= l);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
template<typename T> inline T foot_pt(const T &line_pt, const T &line_dir, const T &pt)
|
||||
{
|
||||
return segments_could_intersect(ip1, ip2, jp1, jp2) <= 0 &&
|
||||
segments_could_intersect(jp1, jp2, ip1, ip2) <= 0;
|
||||
T v = pt - line_pt;
|
||||
auto l2 = line_dir.squaredNorm();
|
||||
auto t = (l2 == 0) ? 0 : v.dot(line_dir) / l2;
|
||||
return line_pt + line_dir * t;
|
||||
}
|
||||
|
||||
inline Vec2d foot_pt(const Line &iline, const Point &ipt)
|
||||
{
|
||||
return foot_pt<Vec2d>(iline.a.cast<double>(), (iline.b - iline.a).cast<double>(), ipt.cast<double>());
|
||||
}
|
||||
|
||||
template<typename T> inline auto ray_point_distance_squared(const T &ray_pt, const T &ray_dir, const T &pt)
|
||||
{
|
||||
return (foot_pt(ray_pt, ray_dir, pt) - pt).squaredNorm();
|
||||
}
|
||||
|
||||
template<typename T> inline auto ray_point_distance(const T &ray_pt, const T &ray_dir, const T &pt)
|
||||
{
|
||||
return (foot_pt(ray_pt, ray_dir, pt) - pt).norm();
|
||||
}
|
||||
|
||||
inline double ray_point_distance_squared(const Line &iline, const Point &ipt)
|
||||
{
|
||||
return (foot_pt(iline, ipt) - ipt.cast<double>()).squaredNorm();
|
||||
}
|
||||
|
||||
inline double ray_point_distance(const Line &iline, const Point &ipt)
|
||||
{
|
||||
return (foot_pt(iline, ipt) - ipt.cast<double>()).norm();
|
||||
}
|
||||
|
||||
// Based on Liang-Barsky function by Daniel White @ http://www.skytopia.com/project/articles/compsci/clipping.html
|
||||
template<typename T>
|
||||
bool liang_barsky_line_clipping(
|
||||
inline bool liang_barsky_line_clipping(
|
||||
// Start and end points of the source line, result will be stored there as well.
|
||||
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x0,
|
||||
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x1,
|
||||
|
|
|
@ -264,7 +264,7 @@ void LayerRegion::process_external_surfaces(const Layer *lower_layer, const Poly
|
|||
this->flow(frInfill, true).scaled_width()
|
||||
);
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf("Processing bridge at layer " PRINTF_ZU ":\n", this->layer()->id());
|
||||
printf("Processing bridge at layer %zu:\n", this->layer()->id());
|
||||
#endif
|
||||
double custom_angle = Geometry::deg2rad(this->region()->config().bridge_angle.value);
|
||||
if (bd.detect_angle(custom_angle)) {
|
||||
|
|
|
@ -153,9 +153,11 @@ inline Lines to_lines(const Polygon &poly)
|
|||
{
|
||||
Lines lines;
|
||||
lines.reserve(poly.points.size());
|
||||
for (Points::const_iterator it = poly.points.begin(); it != poly.points.end()-1; ++it)
|
||||
lines.push_back(Line(*it, *(it + 1)));
|
||||
lines.push_back(Line(poly.points.back(), poly.points.front()));
|
||||
if (poly.points.size() > 2) {
|
||||
for (Points::const_iterator it = poly.points.begin(); it != poly.points.end()-1; ++it)
|
||||
lines.push_back(Line(*it, *(it + 1)));
|
||||
lines.push_back(Line(poly.points.back(), poly.points.front()));
|
||||
}
|
||||
return lines;
|
||||
}
|
||||
|
||||
|
|
|
@ -1431,7 +1431,7 @@ void PrintObject::bridge_over_infill()
|
|||
}
|
||||
|
||||
#ifdef SLIC3R_DEBUG
|
||||
printf("Bridging " PRINTF_ZU " internal areas at layer " PRINTF_ZU "\n", to_bridge.size(), layer->id());
|
||||
printf("Bridging %zu internal areas at layer %zu\n", to_bridge.size(), layer->id());
|
||||
#endif
|
||||
|
||||
// compute the remaning internal solid surfaces as difference
|
||||
|
|
|
@ -21,6 +21,7 @@ bool SVG::open(const char* afilename)
|
|||
" <polyline fill=\"darkblue\" points=\"0,0 10,5 0,10 1,5\" />\n"
|
||||
" </marker>\n"
|
||||
);
|
||||
fprintf(this->f, "<rect fill='white' stroke='none' x='0' y='0' width='%f' height='%f'/>\n", 2000.f, 2000.f);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -42,6 +43,7 @@ bool SVG::open(const char* afilename, const BoundingBox &bbox, const coord_t bbo
|
|||
" <polyline fill=\"darkblue\" points=\"0,0 10,5 0,10 1,5\" />\n"
|
||||
" </marker>\n",
|
||||
h, w);
|
||||
fprintf(this->f, "<rect fill='white' stroke='none' x='0' y='0' width='%f' height='%f'/>\n", w, h);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
|
@ -952,7 +952,7 @@ void TriangleMeshSlicer::slice(const std::vector<float> &z, SlicingMode mode, co
|
|||
[&layers_p, mode, closing_radius, layers, throw_on_cancel, this](const tbb::blocked_range<size_t>& range) {
|
||||
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
|
||||
#ifdef SLIC3R_TRIANGLEMESH_DEBUG
|
||||
printf("Layer " PRINTF_ZU " (slice_z = %.2f):\n", layer_id, z[layer_id]);
|
||||
printf("Layer %zu (slice_z = %.2f):\n", layer_id, z[layer_id]);
|
||||
#endif
|
||||
throw_on_cancel();
|
||||
ExPolygons &expolygons = (*layers)[layer_id];
|
||||
|
@ -1779,7 +1779,7 @@ void TriangleMeshSlicer::make_expolygons(const Polygons &loops, const float clos
|
|||
size_t holes_count = 0;
|
||||
for (ExPolygons::const_iterator e = ex_slices.begin(); e != ex_slices.end(); ++ e)
|
||||
holes_count += e->holes.size();
|
||||
printf(PRINTF_ZU " surface(s) having " PRINTF_ZU " holes detected from " PRINTF_ZU " polylines\n",
|
||||
printf("%zu surface(s) having %zu holes detected from %zu polylines\n",
|
||||
ex_slices.size(), holes_count, loops.size());
|
||||
#endif
|
||||
|
||||
|
|
|
@ -15,7 +15,8 @@ namespace Slic3r {
|
|||
using VD = Geometry::VoronoiDiagram;
|
||||
|
||||
namespace detail {
|
||||
// Intersect a circle with a ray, return the two parameters
|
||||
// Intersect a circle with a ray, return the two parameters.
|
||||
// Currently used for unbounded Voronoi edges only.
|
||||
double first_circle_segment_intersection_parameter(
|
||||
const Vec2d ¢er, const double r, const Vec2d &pt, const Vec2d &v)
|
||||
{
|
||||
|
@ -61,70 +62,109 @@ namespace detail {
|
|||
// Return maximum two points, that are at distance "d" from both points
|
||||
Intersections point_point_equal_distance_points(const Point &pt1, const Point &pt2, const double d)
|
||||
{
|
||||
// input points
|
||||
const auto cx = double(pt1.x());
|
||||
const auto cy = double(pt1.y());
|
||||
const auto qx = double(pt2.x());
|
||||
const auto qy = double(pt2.y());
|
||||
|
||||
// Calculating determinant.
|
||||
auto x0 = 2. * qy;
|
||||
auto cx2 = cx * cx;
|
||||
auto cy2 = cy * cy;
|
||||
auto x5 = 2 * cx * qx;
|
||||
auto x6 = cy * x0;
|
||||
auto qx2 = qx * qx;
|
||||
auto qy2 = qy * qy;
|
||||
auto x9 = qx2 + qy2;
|
||||
auto x10 = cx2 + cy2 - x5 - x6 + x9;
|
||||
auto x11 = - cx2 - cy2;
|
||||
auto discr = x10 * (4. * d + x11 + x5 + x6 - qx2 - qy2);
|
||||
if (discr < 0.)
|
||||
// Calculate the two intersection points.
|
||||
// With the help of Python package sympy:
|
||||
// res = solve([(x - cx)**2 + (y - cy)**2 - d**2, x**2 + y**2 - d**2], [x, y])
|
||||
// ccode(cse((res[0][0], res[0][1], res[1][0], res[1][1])))
|
||||
// where cx, cy is the center of pt1 relative to pt2,
|
||||
// d is distance from the line and the point (0, 0).
|
||||
// The result is then shifted to pt2.
|
||||
auto cx = double(pt1.x() - pt2.x());
|
||||
auto cy = double(pt1.y() - pt2.y());
|
||||
double cl = cx * cx + cy * cy;
|
||||
double discr = 4. * d * d - cl;
|
||||
if (discr < 0.) {
|
||||
// No intersection point found, the two circles are too far away.
|
||||
return Intersections { 0, { Vec2d(), Vec2d() } };
|
||||
}
|
||||
// Avoid division by zero if a gets too small.
|
||||
bool xy_swapped = std::abs(cx) < std::abs(cy);
|
||||
if (xy_swapped)
|
||||
std::swap(cx, cy);
|
||||
double u;
|
||||
int cnt;
|
||||
if (discr == 0.) {
|
||||
cnt = 1;
|
||||
u = 0;
|
||||
} else {
|
||||
cnt = 2;
|
||||
u = 0.5 * cx * sqrt(cl * discr) / cl;
|
||||
}
|
||||
double v = 0.5 * cy - u;
|
||||
double w = 2. * cy;
|
||||
double e = 0.5 / cx;
|
||||
double f = 0.5 * cy + u;
|
||||
Intersections out { cnt, { Vec2d(-e * (v * w - cl), v),
|
||||
Vec2d(-e * (w * f - cl), f) } };
|
||||
if (xy_swapped) {
|
||||
std::swap(out.pts[0].x(), out.pts[0].y());
|
||||
std::swap(out.pts[1].x(), out.pts[1].y());
|
||||
}
|
||||
out.pts[0] += pt2.cast<double>();
|
||||
out.pts[1] += pt2.cast<double>();
|
||||
|
||||
// Some intersections are found.
|
||||
int npoints = (discr > 0) ? 2 : 1;
|
||||
auto x1 = 2. * cy - x0;
|
||||
auto x2 = cx - qx;
|
||||
auto x12 = 0.5 * x2 * sqrt(discr) / x10;
|
||||
auto x13 = 0.5 * (cy + qy);
|
||||
auto x14 = - x12 + x13;
|
||||
auto x15 = x11 + x9;
|
||||
auto x16 = 0.5 / x2;
|
||||
auto x17 = x12 + x13;
|
||||
return Intersections { npoints, { Vec2d(- x16 * (x1 * x14 + x15), x14),
|
||||
Vec2d(- x16 * (x1 * x17 + x15), x17) } };
|
||||
assert(std::abs((out.pts[0] - pt1.cast<double>()).norm() - d) < SCALED_EPSILON);
|
||||
assert(std::abs((out.pts[1] - pt1.cast<double>()).norm() - d) < SCALED_EPSILON);
|
||||
assert(std::abs((out.pts[0] - pt2.cast<double>()).norm() - d) < SCALED_EPSILON);
|
||||
assert(std::abs((out.pts[1] - pt2.cast<double>()).norm() - d) < SCALED_EPSILON);
|
||||
return out;
|
||||
}
|
||||
|
||||
// Return maximum two points, that are at distance "d" from both the line and point.
|
||||
Intersections line_point_equal_distance_points(const Line &line, const Point &pt, const double d)
|
||||
Intersections line_point_equal_distance_points(const Line &line, const Point &ipt, const double d)
|
||||
{
|
||||
assert(line.a != pt && line.b != pt);
|
||||
assert(line.a != ipt && line.b != ipt);
|
||||
// Calculating two points of distance "d" to a ray and a point.
|
||||
// Point.
|
||||
auto x0 = double(pt.x());
|
||||
auto y0 = double(pt.y());
|
||||
// Ray equation. Vector (a, b) is perpendicular to line.
|
||||
auto a = double(line.a.y() - line.b.y());
|
||||
auto b = double(line.b.x() - line.a.x());
|
||||
// pt shall not lie on line.
|
||||
assert(std::abs((x0 - line.a.x()) * a + (y0 - line.a.y()) * b) < SCALED_EPSILON);
|
||||
// Orient line so that the vector (a, b) points towards pt.
|
||||
if (a * (x0 - line.a.x()) + b * (y0 - line.a.y()) < 0.)
|
||||
std::swap(x0, y0);
|
||||
double c = - a * double(line.a.x()) - b * double(line.a.y());
|
||||
// Calculate the two points.
|
||||
double a2 = a * a;
|
||||
double b2 = b * b;
|
||||
double a2b2 = a2 + b2;
|
||||
double d2 = d * d;
|
||||
double s = a2*d2 - a2*sqr(x0) - 2*a*b*x0*y0 - 2*a*c*x0 + 2*a*d*x0 + b2*d2 - b2*sqr(y0) - 2*b*c*y0 + 2*b*d*y0 - sqr(c) + 2*c*d - d2;
|
||||
Vec2d pt = ipt.cast<double>();
|
||||
Vec2d lv = (line.b - line.a).cast<double>();
|
||||
double l2 = lv.squaredNorm();
|
||||
Vec2d lpv = (line.a - ipt).cast<double>();
|
||||
double c = cross2(lpv, lv);
|
||||
if (c < 0) {
|
||||
lv = - lv;
|
||||
c = - c;
|
||||
}
|
||||
|
||||
// Line equation (ax + by + c - d * sqrt(l2)).
|
||||
auto a = - lv.y();
|
||||
auto b = lv.x();
|
||||
// Line point shifted by -ipt is on the line.
|
||||
assert(std::abs(lpv.x() * a + lpv.y() * b + c) < SCALED_EPSILON);
|
||||
// Line vector (a, b) points towards ipt.
|
||||
assert(a * lpv.x() + b * lpv.y() < - SCALED_EPSILON);
|
||||
|
||||
#ifndef NDEBUG
|
||||
{
|
||||
// Foot point of ipt on line.
|
||||
Vec2d ft = Geometry::foot_pt(line, ipt);
|
||||
// Center point between ipt and line, its distance to both line and ipt is equal.
|
||||
Vec2d centerpt = 0.5 * (ft + pt) - pt;
|
||||
double dcenter = 0.5 * (ft - pt).norm();
|
||||
// Verify that the center point
|
||||
assert(std::abs(centerpt.x() * a + centerpt.y() * b + c - dcenter * sqrt(l2)) < SCALED_EPSILON * sqrt(l2));
|
||||
}
|
||||
#endif // NDEBUG
|
||||
|
||||
// Calculate the two intersection points.
|
||||
// With the help of Python package sympy:
|
||||
// res = solve([a * x + b * y + c - d * sqrt(a**2 + b**2), x**2 + y**2 - d**2], [x, y])
|
||||
// ccode(cse((res[0][0], res[0][1], res[1][0], res[1][1])))
|
||||
// where (a, b, c, d) is the line equation, not normalized (vector a,b is not normalized),
|
||||
// d is distance from the line and the point (0, 0).
|
||||
// The result is then shifted to ipt.
|
||||
|
||||
double dscaled = d * sqrt(l2);
|
||||
double s = c * (2. * dscaled - c);
|
||||
if (s < 0.)
|
||||
// Distance of pt from line is bigger than 2 * d.
|
||||
return Intersections { 0 };
|
||||
double u;
|
||||
int cnt;
|
||||
// Avoid division by zero if a gets too small.
|
||||
bool xy_swapped = std::abs(a) < std::abs(b);
|
||||
if (xy_swapped)
|
||||
std::swap(a, b);
|
||||
if (s == 0.) {
|
||||
// Distance of pt from line is 2 * d.
|
||||
cnt = 1;
|
||||
|
@ -132,110 +172,34 @@ namespace detail {
|
|||
} else {
|
||||
// Distance of pt from line is smaller than 2 * d.
|
||||
cnt = 2;
|
||||
u = a*sqrt(s)/a2b2;
|
||||
u = a * sqrt(s) / l2;
|
||||
}
|
||||
double v = (-a2*y0 + a*b*x0 + b*c - b*d)/a2b2;
|
||||
return Intersections { cnt, { Vec2d((b * ( u + v) - c + d) / a, - u - v),
|
||||
Vec2d((b * (- u + v) - c + d) / a, u - v) } };
|
||||
double e = dscaled - c;
|
||||
double f = b * e / l2;
|
||||
double g = f - u;
|
||||
double h = f + u;
|
||||
Intersections out { cnt, { Vec2d((- b * g + e) / a, g),
|
||||
Vec2d((- b * h + e) / a, h) } };
|
||||
if (xy_swapped) {
|
||||
std::swap(out.pts[0].x(), out.pts[0].y());
|
||||
std::swap(out.pts[1].x(), out.pts[1].y());
|
||||
}
|
||||
out.pts[0] += pt;
|
||||
out.pts[1] += pt;
|
||||
|
||||
assert(std::abs(Geometry::ray_point_distance<Vec2d>(line.a.cast<double>(), (line.b - line.a).cast<double>(), out.pts[0]) - d) < SCALED_EPSILON);
|
||||
assert(std::abs(Geometry::ray_point_distance<Vec2d>(line.a.cast<double>(), (line.b - line.a).cast<double>(), out.pts[1]) - d) < SCALED_EPSILON);
|
||||
assert(std::abs((out.pts[0] - ipt.cast<double>()).norm() - d) < SCALED_EPSILON);
|
||||
assert(std::abs((out.pts[1] - ipt.cast<double>()).norm() - d) < SCALED_EPSILON);
|
||||
return out;
|
||||
}
|
||||
|
||||
Vec2d voronoi_edge_offset_point(
|
||||
const VD &vd,
|
||||
const Lines &lines,
|
||||
// Distance of a VD vertex to the closest site (input polygon edge or vertex).
|
||||
const std::vector<double> &vertex_dist,
|
||||
// Minium distance of a VD edge to the closest site (input polygon edge or vertex).
|
||||
// For a parabolic segment the distance may be smaller than the distance of the two end points.
|
||||
const std::vector<double> &edge_dist,
|
||||
// Edge for which to calculate the offset point. If the distance towards the input polygon
|
||||
// is not monotonical, pick the offset point closer to edge.vertex0().
|
||||
const VD::edge_type &edge,
|
||||
// Distance from the input polygon along the edge.
|
||||
const double offset_distance)
|
||||
{
|
||||
const VD::vertex_type *v0 = edge.vertex0();
|
||||
const VD::vertex_type *v1 = edge.vertex1();
|
||||
const VD::cell_type *cell = edge.cell();
|
||||
const VD::cell_type *cell2 = edge.twin()->cell();
|
||||
const Line &line0 = lines[cell->source_index()];
|
||||
const Line &line1 = lines[cell2->source_index()];
|
||||
if (v0 == nullptr || v1 == nullptr) {
|
||||
assert(edge.is_infinite());
|
||||
assert(v0 != nullptr || v1 != nullptr);
|
||||
// Offsetting on an unconstrained edge.
|
||||
assert(offset_distance > vertex_dist[(v0 ? v0 : v1) - &vd.vertices().front()] - EPSILON);
|
||||
Vec2d pt, dir;
|
||||
double t;
|
||||
if (cell->contains_point() && cell2->contains_point()) {
|
||||
const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
|
||||
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
|
||||
// Direction vector of this unconstrained Voronoi edge.
|
||||
dir = Vec2d(double(pt0.y() - pt1.y()), double(pt1.x() - pt0.x()));
|
||||
if (v0 == nullptr) {
|
||||
v0 = v1;
|
||||
dir = - dir;
|
||||
}
|
||||
pt = Vec2d(v0->x(), v0->y());
|
||||
t = detail::first_circle_segment_intersection_parameter(Vec2d(pt0.x(), pt0.y()), offset_distance, pt, dir);
|
||||
} else {
|
||||
// Infinite edges could not be created by two segment sites.
|
||||
assert(cell->contains_point() != cell2->contains_point());
|
||||
// Linear edge goes through the endpoint of a segment.
|
||||
assert(edge.is_linear());
|
||||
assert(edge.is_secondary());
|
||||
const Line &line = cell->contains_segment() ? line0 : line1;
|
||||
const Point &ipt = cell->contains_segment() ?
|
||||
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b) :
|
||||
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b);
|
||||
assert(line.a == ipt || line.b == ipt);
|
||||
pt = Vec2d(ipt.x(), ipt.y());
|
||||
dir = Vec2d(line.a.y() - line.b.y(), line.b.x() - line.a.x());
|
||||
assert(dir.norm() > 0.);
|
||||
t = offset_distance / dir.norm();
|
||||
if (((line.a == ipt) == cell->contains_point()) == (v0 == nullptr))
|
||||
t = - t;
|
||||
}
|
||||
return pt + t * dir;
|
||||
} else {
|
||||
// Constrained edge.
|
||||
Vec2d p0(v0->x(), v0->y());
|
||||
Vec2d p1(v1->x(), v1->y());
|
||||
double d0 = vertex_dist[v0 - &vd.vertices().front()];
|
||||
double d1 = vertex_dist[v1 - &vd.vertices().front()];
|
||||
if (cell->contains_segment() && cell2->contains_segment()) {
|
||||
// This edge is a bisector of two line segments. Distance to the input polygon increases/decreases monotonically.
|
||||
double ddif = d1 - d0;
|
||||
assert(offset_distance > std::min(d0, d1) - EPSILON && offset_distance < std::max(d0, d1) + EPSILON);
|
||||
double t = (ddif == 0) ? 0. : clamp(0., 1., (offset_distance - d0) / ddif);
|
||||
return Slic3r::lerp(p0, p1, t);
|
||||
} else {
|
||||
// One cell contains a point, the other contains an edge or a point.
|
||||
assert(cell->contains_point() || cell2->contains_point());
|
||||
const Point &ipt = cell->contains_point() ?
|
||||
((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b) :
|
||||
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b);
|
||||
double t = detail::first_circle_segment_intersection_parameter(
|
||||
Vec2d(ipt.x(), ipt.y()), offset_distance, p0, p1 - p0);
|
||||
return Slic3r::lerp(p0, p1, t);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
static Vec2d foot_pt(const Line &iline, const Point &ipt)
|
||||
{
|
||||
Vec2d pt = iline.a.cast<double>();
|
||||
Vec2d dir = (iline.b - iline.a).cast<double>();
|
||||
Vec2d v = ipt.cast<double>() - pt;
|
||||
double l2 = dir.squaredNorm();
|
||||
double t = (l2 == 0.) ? 0. : v.dot(dir) / l2;
|
||||
return pt + dir * t;
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
Polygons voronoi_offset(
|
||||
const Geometry::VoronoiDiagram &vd,
|
||||
const Lines &lines,
|
||||
double offset_distance,
|
||||
const Geometry::VoronoiDiagram &vd,
|
||||
const Lines &lines,
|
||||
double offset_distance,
|
||||
double discretization_error)
|
||||
{
|
||||
#ifndef NDEBUG
|
||||
|
@ -259,20 +223,94 @@ Polygons voronoi_offset(
|
|||
}
|
||||
#endif // NDEBUG
|
||||
|
||||
enum class EdgeState : unsigned char {
|
||||
// Initial state, don't know.
|
||||
Unknown,
|
||||
// This edge will certainly not be intersected by the offset curve.
|
||||
Inactive,
|
||||
// This edge will certainly be intersected by the offset curve.
|
||||
Active,
|
||||
// This edge will possibly be intersected by the offset curve.
|
||||
Possible
|
||||
};
|
||||
|
||||
enum class CellState : unsigned char {
|
||||
// Initial state, don't know.
|
||||
Unknown,
|
||||
// Inactive cell is inside for outside curves and outside for inside curves.
|
||||
Inactive,
|
||||
// Active cell is outside for outside curves and inside for inside curves.
|
||||
Active,
|
||||
// Boundary cell is intersected by the input segment, part of it is active.
|
||||
Boundary
|
||||
};
|
||||
|
||||
// Mark edges with outward vertex pointing outside the polygons, thus there is a chance
|
||||
// that such an edge will have an intersection with our desired offset curve.
|
||||
bool outside = offset_distance > 0.;
|
||||
std::vector<char> edge_candidate(vd.num_edges(), 2); // unknown state
|
||||
const VD::edge_type *front_edge = &vd.edges().front();
|
||||
bool outside = offset_distance > 0.;
|
||||
std::vector<EdgeState> edge_state(vd.num_edges(), EdgeState::Unknown);
|
||||
std::vector<CellState> cell_state(vd.num_cells(), CellState::Unknown);
|
||||
const VD::edge_type *front_edge = &vd.edges().front();
|
||||
const VD::cell_type *front_cell = &vd.cells().front();
|
||||
auto set_edge_state_initial = [&edge_state, front_edge](const VD::edge_type *edge, EdgeState new_edge_type) {
|
||||
EdgeState &edge_type = edge_state[edge - front_edge];
|
||||
assert(edge_type == EdgeState::Unknown || edge_type == new_edge_type);
|
||||
assert(new_edge_type == EdgeState::Possible || new_edge_type == EdgeState::Inactive);
|
||||
edge_type = new_edge_type;
|
||||
};
|
||||
auto set_edge_state_final = [&edge_state, front_edge](const size_t edge_id, EdgeState new_edge_type) {
|
||||
EdgeState &edge_type = edge_state[edge_id];
|
||||
assert(edge_type == EdgeState::Possible || edge_type == new_edge_type);
|
||||
assert(new_edge_type == EdgeState::Active || new_edge_type == EdgeState::Inactive);
|
||||
edge_type = new_edge_type;
|
||||
};
|
||||
auto set_cell_state = [&cell_state, front_cell](const VD::cell_type *cell, CellState new_cell_type) -> bool {
|
||||
CellState &cell_type = cell_state[cell - front_cell];
|
||||
assert(cell_type == CellState::Active || cell_type == CellState::Inactive || cell_type == CellState::Boundary || cell_type == CellState::Unknown);
|
||||
assert(new_cell_type == CellState::Active || new_cell_type == CellState::Inactive || new_cell_type == CellState::Boundary);
|
||||
switch (cell_type) {
|
||||
case CellState::Unknown:
|
||||
break;
|
||||
case CellState::Active:
|
||||
if (new_cell_type == CellState::Inactive)
|
||||
new_cell_type = CellState::Boundary;
|
||||
break;
|
||||
case CellState::Inactive:
|
||||
if (new_cell_type == CellState::Active)
|
||||
new_cell_type = CellState::Boundary;
|
||||
break;
|
||||
case CellState::Boundary:
|
||||
return false;
|
||||
}
|
||||
if (cell_type != new_cell_type) {
|
||||
cell_type = new_cell_type;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
||||
for (const VD::edge_type &edge : vd.edges())
|
||||
if (edge.vertex1() == nullptr) {
|
||||
// Infinite Voronoi edge separating two Point sites.
|
||||
// Infinite Voronoi edge separating two Point sites or a Point site and a Segment site.
|
||||
// Infinite edge is always outside and it has at least one valid vertex.
|
||||
assert(edge.vertex0() != nullptr);
|
||||
edge_candidate[&edge - front_edge] = outside;
|
||||
set_edge_state_initial(&edge, outside ? EdgeState::Possible : EdgeState::Inactive);
|
||||
// Opposite edge of an infinite edge is certainly not active.
|
||||
edge_candidate[edge.twin() - front_edge] = 0;
|
||||
} else if (edge.vertex1() != nullptr) {
|
||||
set_edge_state_initial(edge.twin(), EdgeState::Inactive);
|
||||
if (edge.is_secondary()) {
|
||||
// edge.vertex0() must lie on source contour.
|
||||
const VD::cell_type *cell = edge.cell();
|
||||
const VD::cell_type *cell2 = edge.twin()->cell();
|
||||
if (cell->contains_segment())
|
||||
std::swap(cell, cell2);
|
||||
// State of a cell containing a boundary point is known.
|
||||
assert(cell->contains_point());
|
||||
set_cell_state(cell, outside ? CellState::Active : CellState::Inactive);
|
||||
// State of a cell containing a boundary edge is Boundary.
|
||||
assert(cell2->contains_segment());
|
||||
set_cell_state(cell2, CellState::Boundary);
|
||||
}
|
||||
} else if (edge.vertex0() != nullptr) {
|
||||
// Finite edge.
|
||||
const VD::cell_type *cell = edge.cell();
|
||||
const Line *line = cell->contains_segment() ? &lines[cell->source_index()] : nullptr;
|
||||
|
@ -281,38 +319,114 @@ Polygons voronoi_offset(
|
|||
line = cell->contains_segment() ? &lines[cell->source_index()] : nullptr;
|
||||
}
|
||||
if (line) {
|
||||
const VD::vertex_type *v1 = edge.vertex1();
|
||||
const VD::vertex_type *v1 = edge.vertex1();
|
||||
const VD::cell_type *cell2 = (cell == edge.cell()) ? edge.twin()->cell() : edge.cell();
|
||||
assert(v1);
|
||||
const Point *pt_on_contour = nullptr;
|
||||
if (cell == edge.cell() && edge.twin()->cell()->contains_segment()) {
|
||||
// Constrained bisector of two segments.
|
||||
// If the two segments share a point, then one end of the current Voronoi edge shares this point as well.
|
||||
// Find pt_on_contour if it exists.
|
||||
const Line &line2 = lines[cell2->source_index()];
|
||||
if (line->a == line2.b)
|
||||
pt_on_contour = &line->a;
|
||||
else if (line->b == line2.a)
|
||||
pt_on_contour = &line->b;
|
||||
} else if (edge.is_secondary()) {
|
||||
assert(edge.is_linear());
|
||||
// One end of the current Voronoi edge shares a point of a contour.
|
||||
assert(edge.cell()->contains_point() != edge.twin()->cell()->contains_point());
|
||||
const Line &line2 = lines[cell2->source_index()];
|
||||
pt_on_contour = &((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line2.a : line2.b);
|
||||
}
|
||||
if (pt_on_contour) {
|
||||
// One end of the current Voronoi edge shares a point of a contour.
|
||||
// Find out which one it is.
|
||||
const VD::vertex_type *v0 = edge.vertex0();
|
||||
Vec2d vec0(v0->x() - pt_on_contour->x(), v0->y() - pt_on_contour->y());
|
||||
Vec2d vec1(v1->x() - pt_on_contour->x(), v1->y() - pt_on_contour->y());
|
||||
double d0 = vec0.squaredNorm();
|
||||
double d1 = vec1.squaredNorm();
|
||||
assert(std::min(d0, d1) < SCALED_EPSILON * SCALED_EPSILON);
|
||||
if (d0 < d1) {
|
||||
// v0 is equal to pt.
|
||||
} else {
|
||||
// Skip secondary edge pointing to a contour point.
|
||||
set_edge_state_initial(&edge, EdgeState::Inactive);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
Vec2d l0(line->a.cast<double>());
|
||||
Vec2d lv((line->b - line->a).cast<double>());
|
||||
double side = cross2(lv, Vec2d(v1->x(), v1->y()) - l0);
|
||||
edge_candidate[&edge - front_edge] = outside ? (side < 0.) : (side > 0.);
|
||||
bool edge_active = outside ? (side < 0.) : (side > 0.);
|
||||
set_edge_state_initial(&edge, edge_active ? EdgeState::Possible : EdgeState::Inactive);
|
||||
assert(cell->contains_segment());
|
||||
set_cell_state(cell,
|
||||
pt_on_contour ? CellState::Boundary :
|
||||
edge_active ? CellState::Active : CellState::Inactive);
|
||||
set_cell_state(cell2,
|
||||
(pt_on_contour && cell2->contains_segment()) ?
|
||||
CellState::Boundary :
|
||||
edge_active ? CellState::Active : CellState::Inactive);
|
||||
}
|
||||
}
|
||||
for (const VD::edge_type &edge : vd.edges())
|
||||
if (edge_candidate[&edge - front_edge] == 2) {
|
||||
assert(edge.cell()->contains_point() && edge.twin()->cell()->contains_point());
|
||||
// Edge separating two point sources, not yet classified as inside / outside.
|
||||
const VD::edge_type *e = &edge;
|
||||
char state;
|
||||
do {
|
||||
state = edge_candidate[e - front_edge];
|
||||
if (state != 2)
|
||||
break;
|
||||
e = e->next();
|
||||
} while (e != &edge);
|
||||
e = &edge;
|
||||
do {
|
||||
char &s = edge_candidate[e - front_edge];
|
||||
if (s == 2) {
|
||||
assert(e->cell()->contains_point() && e->twin()->cell()->contains_point());
|
||||
assert(edge_candidate[e->twin() - front_edge] == 2);
|
||||
s = state;
|
||||
edge_candidate[e->twin() - front_edge] = state;
|
||||
{
|
||||
// Perform one round of expansion marking Voronoi edges and cells next to boundary cells as active / inactive.
|
||||
std::vector<const VD::cell_type*> cell_queue;
|
||||
for (const VD::edge_type &edge : vd.edges())
|
||||
if (edge_state[&edge - front_edge] == EdgeState::Unknown) {
|
||||
assert(edge.cell()->contains_point() && edge.twin()->cell()->contains_point());
|
||||
// Edge separating two point sources, not yet classified as inside / outside.
|
||||
CellState cs = cell_state[edge.cell() - front_cell];
|
||||
CellState cs2 = cell_state[edge.twin()->cell() - front_cell];
|
||||
if (cs != CellState::Unknown || cs2 != CellState::Unknown) {
|
||||
if (cs == CellState::Unknown) {
|
||||
cs = cs2;
|
||||
if (set_cell_state(edge.cell(), cs))
|
||||
cell_queue.emplace_back(edge.cell());
|
||||
} else if (set_cell_state(edge.twin()->cell(), cs))
|
||||
cell_queue.emplace_back(edge.twin()->cell());
|
||||
EdgeState es = (cs == CellState::Active) ? EdgeState::Possible : EdgeState::Inactive;
|
||||
set_edge_state_initial(&edge, es);
|
||||
set_edge_state_initial(edge.twin(), es);
|
||||
} else {
|
||||
const VD::edge_type *e = edge.twin()->rot_prev();
|
||||
do {
|
||||
EdgeState es = edge_state[e->twin() - front_edge];
|
||||
if (es != EdgeState::Unknown) {
|
||||
assert(es == EdgeState::Possible || es == EdgeState::Inactive);
|
||||
set_edge_state_initial(&edge, es);
|
||||
CellState cs = (es == EdgeState::Possible) ? CellState::Active : CellState::Inactive;
|
||||
if (set_cell_state(edge.cell(), cs))
|
||||
cell_queue.emplace_back(edge.cell());
|
||||
if (set_cell_state(edge.twin()->cell(), cs))
|
||||
cell_queue.emplace_back(edge.twin()->cell());
|
||||
break;
|
||||
}
|
||||
e = e->rot_prev();
|
||||
} while (e != edge.twin());
|
||||
}
|
||||
e = e->next();
|
||||
} while (e != &edge);
|
||||
}
|
||||
// Do a final seed fill over Voronoi cells and unmarked Voronoi edges.
|
||||
while (! cell_queue.empty()) {
|
||||
const VD::cell_type *cell = cell_queue.back();
|
||||
const CellState cs = cell_state[cell - front_cell];
|
||||
cell_queue.pop_back();
|
||||
const VD::edge_type *first_edge = cell->incident_edge();
|
||||
const VD::edge_type *edge = cell->incident_edge();
|
||||
EdgeState es = (cs == CellState::Active) ? EdgeState::Possible : EdgeState::Inactive;
|
||||
do {
|
||||
if (set_cell_state(edge->twin()->cell(), cs)) {
|
||||
set_edge_state_initial(edge, es);
|
||||
set_edge_state_initial(edge->twin(), es);
|
||||
cell_queue.emplace_back(edge->twin()->cell());
|
||||
}
|
||||
edge = edge->next();
|
||||
} while (edge != first_edge);
|
||||
}
|
||||
}
|
||||
|
||||
if (! outside)
|
||||
offset_distance = - offset_distance;
|
||||
|
||||
|
@ -323,10 +437,12 @@ Polygons voronoi_offset(
|
|||
bbox.min -= (0.01 * bbox.size().cast<double>()).cast<coord_t>();
|
||||
bbox.max += (0.01 * bbox.size().cast<double>()).cast<coord_t>();
|
||||
}
|
||||
static int irun = 0;
|
||||
++ irun;
|
||||
{
|
||||
Lines helper_lines;
|
||||
for (const VD::edge_type &edge : vd.edges())
|
||||
if (edge_candidate[&edge - front_edge]) {
|
||||
if (edge_state[&edge - front_edge] == EdgeState::Possible) {
|
||||
const VD::vertex_type *v0 = edge.vertex0();
|
||||
const VD::vertex_type *v1 = edge.vertex1();
|
||||
assert(v0 != nullptr);
|
||||
|
@ -370,16 +486,16 @@ Polygons voronoi_offset(
|
|||
}
|
||||
helper_lines.emplace_back(Line(Point(pt1.cast<coord_t>()), Point(((pt1 + pt2) * 0.5).cast<coord_t>())));
|
||||
}
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-offset-candidates1.svg").c_str(), vd, Points(), lines, Polygons(), helper_lines);
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-offset-candidates1-%d.svg", irun).c_str(), vd, Points(), lines, Polygons(), helper_lines);
|
||||
}
|
||||
#endif // VORONOI_DEBUG_OUT
|
||||
|
||||
std::vector<Vec2d> edge_offset_point(vd.num_edges(), Vec2d());
|
||||
const double offset_distance2 = offset_distance * offset_distance;
|
||||
for (const VD::edge_type &edge : vd.edges()) {
|
||||
assert(edge_candidate[&edge - front_edge] != 2);
|
||||
assert(edge_state[&edge - front_edge] != EdgeState::Unknown);
|
||||
size_t edge_idx = &edge - front_edge;
|
||||
if (edge_candidate[edge_idx] == 1) {
|
||||
if (edge_state[edge_idx] == EdgeState::Possible) {
|
||||
// Edge candidate, intersection points were not calculated yet.
|
||||
const VD::vertex_type *v0 = edge.vertex0();
|
||||
const VD::vertex_type *v1 = edge.vertex1();
|
||||
|
@ -391,11 +507,14 @@ Polygons voronoi_offset(
|
|||
size_t edge_idx2 = edge.twin() - front_edge;
|
||||
if (v1 == nullptr) {
|
||||
assert(edge.is_infinite());
|
||||
assert(edge_candidate[edge_idx2] == 0);
|
||||
assert(edge.is_linear());
|
||||
assert(edge_state[edge_idx2] == EdgeState::Inactive);
|
||||
if (cell->contains_point() && cell2->contains_point()) {
|
||||
assert(! edge.is_secondary());
|
||||
const Point &pt0 = (cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b;
|
||||
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
|
||||
double dmin2 = (Vec2d(v0->x(), v0->y()) - pt0.cast<double>()).squaredNorm();
|
||||
assert(dmin2 >= SCALED_EPSILON * SCALED_EPSILON);
|
||||
if (dmin2 <= offset_distance2) {
|
||||
// There shall be an intersection of this unconstrained edge with the offset curve.
|
||||
// Direction vector of this unconstrained Voronoi edge.
|
||||
|
@ -403,14 +522,13 @@ Polygons voronoi_offset(
|
|||
Vec2d pt(v0->x(), v0->y());
|
||||
double t = detail::first_circle_segment_intersection_parameter(Vec2d(pt0.x(), pt0.y()), offset_distance, pt, dir);
|
||||
edge_offset_point[edge_idx] = pt + t * dir;
|
||||
edge_candidate[edge_idx] = 3;
|
||||
set_edge_state_final(edge_idx, EdgeState::Active);
|
||||
} else
|
||||
edge_candidate[edge_idx] = 0;
|
||||
set_edge_state_final(edge_idx, EdgeState::Inactive);
|
||||
} else {
|
||||
// Infinite edges could not be created by two segment sites.
|
||||
assert(cell->contains_point() != cell2->contains_point());
|
||||
// Linear edge goes through the endpoint of a segment.
|
||||
assert(edge.is_linear());
|
||||
assert(edge.is_secondary());
|
||||
const Point &ipt = cell->contains_segment() ?
|
||||
((cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b) :
|
||||
|
@ -428,20 +546,15 @@ Polygons voronoi_offset(
|
|||
assert((Vec2d(v0->x(), v0->y()) - ipt.cast<double>()).norm() < SCALED_EPSILON);
|
||||
#endif /* NDEBUG */
|
||||
// Infinite edge starts at an input contour, therefore there is always an intersection with an offset curve.
|
||||
const Line &line = cell->contains_segment() ? line0 : line1;
|
||||
const Line &line = cell->contains_segment() ? line0 : line1;
|
||||
assert(line.a == ipt || line.b == ipt);
|
||||
Vec2d pt = ipt.cast<double>();
|
||||
Vec2d dir(line.a.y() - line.b.y(), line.b.x() - line.a.x());
|
||||
assert(dir.norm() > 0.);
|
||||
double t = offset_distance / dir.norm();
|
||||
if (((line.a == ipt) == cell->contains_point()) == (v0 == nullptr))
|
||||
t = - t;
|
||||
edge_offset_point[edge_idx] = pt + t * dir;
|
||||
edge_candidate[edge_idx] = 3;
|
||||
edge_offset_point[edge_idx] = ipt.cast<double>() + offset_distance * Vec2d(line.b.y() - line.a.y(), line.a.x() - line.b.x()).normalized();
|
||||
set_edge_state_final(edge_idx, EdgeState::Active);
|
||||
}
|
||||
// The other edge of an unconstrained edge starting with null vertex shall never be intersected.
|
||||
edge_candidate[edge_idx2] = 0;
|
||||
set_edge_state_final(edge_idx2, EdgeState::Inactive);
|
||||
} else if (edge.is_secondary()) {
|
||||
assert(edge.is_linear());
|
||||
assert(cell->contains_point() != cell2->contains_point());
|
||||
const Line &line0 = lines[edge.cell()->source_index()];
|
||||
const Line &line1 = lines[edge.twin()->cell()->source_index()];
|
||||
|
@ -455,11 +568,11 @@ Polygons voronoi_offset(
|
|||
double l2 = dir.squaredNorm();
|
||||
if (offset_distance2 <= l2) {
|
||||
edge_offset_point[edge_idx] = pt.cast<double>() + (offset_distance / sqrt(l2)) * dir;
|
||||
edge_candidate[edge_idx] = 3;
|
||||
set_edge_state_final(edge_idx, EdgeState::Active);
|
||||
} else {
|
||||
edge_candidate[edge_idx] = 0;
|
||||
set_edge_state_final(edge_idx, EdgeState::Inactive);
|
||||
}
|
||||
edge_candidate[edge_idx2] = 0;
|
||||
set_edge_state_final(edge_idx2, EdgeState::Inactive);
|
||||
} else {
|
||||
// Finite edge has valid points at both sides.
|
||||
bool done = false;
|
||||
|
@ -492,8 +605,8 @@ Polygons voronoi_offset(
|
|||
}
|
||||
double t = clamp(0., 1., (offset_distance - dmin) / ddif);
|
||||
edge_offset_point[edge_idx] = Vec2d(lerp(v0->x(), v1->x(), t), lerp(v0->y(), v1->y(), t));
|
||||
edge_candidate[edge_idx] = 3;
|
||||
edge_candidate[edge_idx2] = 0;
|
||||
set_edge_state_final(edge_idx, EdgeState::Active);
|
||||
set_edge_state_final(edge_idx2, EdgeState::Inactive);
|
||||
done = true;
|
||||
}
|
||||
}
|
||||
|
@ -512,23 +625,44 @@ Polygons voronoi_offset(
|
|||
double dmin = std::min(d0, d1);
|
||||
double dmax = std::max(d0, d1);
|
||||
bool has_intersection = false;
|
||||
bool possibly_two_points = false;
|
||||
if (offset_distance2 <= dmax) {
|
||||
if (offset_distance2 >= dmin) {
|
||||
has_intersection = true;
|
||||
} else {
|
||||
double dmin_new;
|
||||
double dmin_new = dmin;
|
||||
if (point_vs_segment) {
|
||||
Vec2d ft = foot_pt(cell->contains_segment() ? line0 : line1, pt0);
|
||||
dmin_new = (ft - px).squaredNorm() * 0.25;
|
||||
// Project on the source segment.
|
||||
const Line &line = cell->contains_segment() ? line0 : line1;
|
||||
const Vec2d pt_line = line.a.cast<double>();
|
||||
const Vec2d v_line = (line.b - line.a).cast<double>();
|
||||
double t0 = (p0 - pt_line).dot(v_line);
|
||||
double t1 = (p1 - pt_line).dot(v_line);
|
||||
double tx = (px - pt_line).dot(v_line);
|
||||
if ((tx >= t0 && tx <= t1) || (tx >= t1 && tx <= t0)) {
|
||||
// Projection of the Point site falls between the projections of the Voronoi edge end points
|
||||
// onto the Line site.
|
||||
Vec2d ft = pt_line + (tx / v_line.squaredNorm()) * v_line;
|
||||
dmin_new = (ft - px).squaredNorm() * 0.25;
|
||||
}
|
||||
} else {
|
||||
// point vs. point
|
||||
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
|
||||
dmin_new = (pt1.cast<double>() - px).squaredNorm() * 0.25;
|
||||
// Point-Point Voronoi sites. Project point site onto the current Voronoi edge.
|
||||
Vec2d v = p1 - p0;
|
||||
auto l2 = v.squaredNorm();
|
||||
assert(l2 > 0);
|
||||
auto t = v.dot(px - p0);
|
||||
if (t >= 0. && t <= l2) {
|
||||
// Projection falls onto the Voronoi edge. Calculate foot point and distance.
|
||||
Vec2d ft = p0 + (t / l2) * v;
|
||||
dmin_new = (ft - px).squaredNorm();
|
||||
}
|
||||
}
|
||||
assert(dmin_new < dmax + SCALED_EPSILON);
|
||||
assert(dmin_new < dmin + SCALED_EPSILON);
|
||||
dmin = dmin_new;
|
||||
has_intersection = offset_distance2 >= dmin;
|
||||
if (dmin_new < dmin) {
|
||||
dmin = dmin_new;
|
||||
has_intersection = possibly_two_points = offset_distance2 >= dmin;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (has_intersection) {
|
||||
|
@ -540,67 +674,90 @@ Polygons voronoi_offset(
|
|||
const Point &pt1 = (cell2->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line1.a : line1.b;
|
||||
intersections = detail::point_point_equal_distance_points(pt0, pt1, offset_distance);
|
||||
}
|
||||
// If the span of distances of start / end point / foot point to the point site indicate an intersection,
|
||||
// we should find one.
|
||||
assert(intersections.count > 0);
|
||||
if (intersections.count == 2) {
|
||||
// Now decide which points fall on this Voronoi edge.
|
||||
// Tangential points (single intersection) are ignored.
|
||||
Vec2d v = p1 - p0;
|
||||
double l2 = v.squaredNorm();
|
||||
double t0 = v.dot(intersections.pts[0] - p0);
|
||||
double t1 = v.dot(intersections.pts[1] - p0);
|
||||
if (t0 > t1) {
|
||||
std::swap(t0, t1);
|
||||
std::swap(intersections.pts[0], intersections.pts[1]);
|
||||
}
|
||||
// Remove points outside of the line range.
|
||||
if (t0 < 0. || t0 > l2) {
|
||||
if (t1 < 0. || t1 > l2)
|
||||
intersections.count = 0;
|
||||
else {
|
||||
-- intersections.count;
|
||||
t0 = t1;
|
||||
intersections.pts[0] = intersections.pts[1];
|
||||
if (possibly_two_points) {
|
||||
Vec2d v = p1 - p0;
|
||||
double l2 = v.squaredNorm();
|
||||
double t0 = v.dot(intersections.pts[0] - p0);
|
||||
double t1 = v.dot(intersections.pts[1] - p0);
|
||||
if (t0 > t1) {
|
||||
std::swap(t0, t1);
|
||||
std::swap(intersections.pts[0], intersections.pts[1]);
|
||||
}
|
||||
} else if (t1 < 0. || t1 > l2)
|
||||
// Remove points outside of the line range.
|
||||
if (t0 < 0. || t0 > l2) {
|
||||
if (t1 < 0. || t1 > l2)
|
||||
intersections.count = 0;
|
||||
else {
|
||||
-- intersections.count;
|
||||
t0 = t1;
|
||||
intersections.pts[0] = intersections.pts[1];
|
||||
}
|
||||
} else if (t1 < 0. || t1 > l2)
|
||||
-- intersections.count;
|
||||
} else {
|
||||
// Take the point furthest from the end points of the Voronoi edge or a Voronoi parabolic arc.
|
||||
double d0 = std::max((intersections.pts[0] - p0).squaredNorm(), (intersections.pts[0] - p1).squaredNorm());
|
||||
double d1 = std::max((intersections.pts[1] - p0).squaredNorm(), (intersections.pts[1] - p1).squaredNorm());
|
||||
if (d0 > d1)
|
||||
intersections.pts[0] = intersections.pts[1];
|
||||
-- intersections.count;
|
||||
}
|
||||
assert(intersections.count > 0);
|
||||
if (intersections.count == 2) {
|
||||
edge_candidate[edge_idx] = edge_candidate[edge_idx2] = 3;
|
||||
edge_offset_point[edge_idx] = intersections.pts[0];
|
||||
edge_offset_point[edge_idx2] = intersections.pts[1];
|
||||
set_edge_state_final(edge_idx, EdgeState::Active);
|
||||
set_edge_state_final(edge_idx2, EdgeState::Active);
|
||||
edge_offset_point[edge_idx] = intersections.pts[1];
|
||||
edge_offset_point[edge_idx2] = intersections.pts[0];
|
||||
done = true;
|
||||
} else if (intersections.count == 1) {
|
||||
if (d1 > d0) {
|
||||
if (d1 < d0)
|
||||
std::swap(edge_idx, edge_idx2);
|
||||
edge_candidate[edge_idx] = 3;
|
||||
edge_candidate[edge_idx2] = 0;
|
||||
edge_offset_point[edge_idx] = intersections.pts[0];
|
||||
}
|
||||
set_edge_state_final(edge_idx, EdgeState::Active);
|
||||
set_edge_state_final(edge_idx2, EdgeState::Inactive);
|
||||
edge_offset_point[edge_idx] = intersections.pts[0];
|
||||
done = true;
|
||||
}
|
||||
}
|
||||
if (! done)
|
||||
edge_candidate[edge_idx] = edge_candidate[edge_idx2] = 0;
|
||||
}
|
||||
}
|
||||
if (! done) {
|
||||
set_edge_state_final(edge_idx, EdgeState::Inactive);
|
||||
set_edge_state_final(edge_idx2, EdgeState::Inactive);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
for (const VD::edge_type &edge : vd.edges()) {
|
||||
assert(edge_state[&edge - front_edge] == EdgeState::Inactive || edge_state[&edge - front_edge] == EdgeState::Active);
|
||||
// None of a new edge candidate may start with null vertex.
|
||||
assert(edge_state[&edge - front_edge] == EdgeState::Inactive || edge.vertex0() != nullptr);
|
||||
assert(edge_state[edge.twin() - front_edge] == EdgeState::Inactive || edge.twin()->vertex0() != nullptr);
|
||||
}
|
||||
#endif // NDEBUG
|
||||
|
||||
#ifdef VORONOI_DEBUG_OUT
|
||||
{
|
||||
Lines helper_lines;
|
||||
for (const VD::edge_type &edge : vd.edges())
|
||||
if (edge_candidate[&edge - front_edge] == 3)
|
||||
if (edge_state[&edge - front_edge] == EdgeState::Active)
|
||||
helper_lines.emplace_back(Line(Point(edge.vertex0()->x(), edge.vertex0()->y()), Point(edge_offset_point[&edge - front_edge].cast<coord_t>())));
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-offset-candidates2.svg").c_str(), vd, Points(), lines, Polygons(), helper_lines);
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-offset-candidates2-%d.svg", irun).c_str(), vd, Points(), lines, Polygons(), helper_lines);
|
||||
}
|
||||
#endif // VORONOI_DEBUG_OUT
|
||||
|
||||
auto next_offset_edge = [&edge_candidate, front_edge](const VD::edge_type *start_edge) -> const VD::edge_type* {
|
||||
auto next_offset_edge = [&edge_state, front_edge](const VD::edge_type *start_edge) -> const VD::edge_type* {
|
||||
for (const VD::edge_type *edge = start_edge->next(); edge != start_edge; edge = edge->next())
|
||||
if (edge_candidate[edge->twin() - front_edge] == 3)
|
||||
if (edge_state[edge->twin() - front_edge] == EdgeState::Active)
|
||||
return edge->twin();
|
||||
assert(false);
|
||||
// assert(false);
|
||||
return nullptr;
|
||||
};
|
||||
|
||||
|
@ -609,56 +766,66 @@ Polygons voronoi_offset(
|
|||
const Line &line = lines[cell.source_index()];
|
||||
return cell.contains_point() ?
|
||||
(((cell.source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line.a : line.b).cast<double>() - point).norm() :
|
||||
line.distance_to(point.cast<coord_t>());
|
||||
(Geometry::foot_pt<Vec2d>(line.a.cast<double>(), (line.b - line.a).cast<double>(), point) - point).norm();
|
||||
};
|
||||
#endif /* NDEBUG */
|
||||
|
||||
// Track the offset curves.
|
||||
Polygons out;
|
||||
double angle_step = 2. * acos((offset_distance - discretization_error) / offset_distance);
|
||||
double sin_threshold = sin(angle_step) + EPSILON;
|
||||
double cos_threshold = cos(angle_step);
|
||||
for (size_t seed_edge_idx = 0; seed_edge_idx < vd.num_edges(); ++ seed_edge_idx)
|
||||
if (edge_candidate[seed_edge_idx] == 3) {
|
||||
if (edge_state[seed_edge_idx] == EdgeState::Active) {
|
||||
const VD::edge_type *start_edge = &vd.edges()[seed_edge_idx];
|
||||
const VD::edge_type *edge = start_edge;
|
||||
Polygon poly;
|
||||
do {
|
||||
// find the next edge
|
||||
const VD::edge_type *next_edge = next_offset_edge(edge);
|
||||
const VD::edge_type *next_edge = next_offset_edge(edge);
|
||||
#ifdef VORONOI_DEBUG_OUT
|
||||
if (next_edge == nullptr) {
|
||||
Lines helper_lines;
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-offset-open-loop-%d.svg", irun).c_str(), vd, Points(), lines, Polygons(), to_lines(poly));
|
||||
}
|
||||
#endif // VORONOI_DEBUG_OUT
|
||||
assert(next_edge);
|
||||
//std::cout << "offset-output: "; print_edge(edge); std::cout << " to "; print_edge(next_edge); std::cout << "\n";
|
||||
// Interpolate a circular segment or insert a linear segment between edge and next_edge.
|
||||
const VD::cell_type *cell = edge->cell();
|
||||
edge_candidate[next_edge - front_edge] = 0;
|
||||
edge_state[next_edge - front_edge] = EdgeState::Inactive;
|
||||
Vec2d p1 = edge_offset_point[edge - front_edge];
|
||||
Vec2d p2 = edge_offset_point[next_edge - front_edge];
|
||||
#ifndef NDEBUG
|
||||
{
|
||||
double err = dist_to_site(*cell, p1) - offset_distance;
|
||||
assert(std::abs(err) < SCALED_EPSILON);
|
||||
err = dist_to_site(*cell, p2) - offset_distance;
|
||||
double err = dist_to_site(*cell, p1) - offset_distance;
|
||||
double err2 = dist_to_site(*cell, p2) - offset_distance;
|
||||
#ifdef VORONOI_DEBUG_OUT
|
||||
if (std::max(err, err2) >= SCALED_EPSILON) {
|
||||
Lines helper_lines;
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-offset-incorrect_pt-%d.svg", irun).c_str(), vd, Points(), lines, Polygons(), to_lines(poly));
|
||||
}
|
||||
#endif // VORONOI_DEBUG_OUT
|
||||
assert(std::abs(err) < SCALED_EPSILON);
|
||||
assert(std::abs(err2) < SCALED_EPSILON);
|
||||
}
|
||||
#endif /* NDEBUG */
|
||||
if (cell->contains_point()) {
|
||||
// Discretize an arc from p1 to p2 with radius = offset_distance and discretization_error.
|
||||
// The arc should cover angle < PI.
|
||||
//FIXME we should be able to produce correctly oriented output curves based on the first edge taken!
|
||||
// The extracted contour is CCW oriented, extracted holes are CW oriented.
|
||||
// The extracted arc will have the same orientation. As the Voronoi regions are convex, the angle covered by the arc will be convex as well.
|
||||
const Line &line0 = lines[cell->source_index()];
|
||||
const Vec2d ¢er = ((cell->source_category() == boost::polygon::SOURCE_CATEGORY_SEGMENT_START_POINT) ? line0.a : line0.b).cast<double>();
|
||||
const Vec2d v1 = p1 - center;
|
||||
const Vec2d v2 = p2 - center;
|
||||
double orient = cross2(v1, v2);
|
||||
double orient_norm = v1.norm() * v2.norm();
|
||||
bool ccw = orient > 0;
|
||||
bool obtuse = v1.dot(v2) < 0.;
|
||||
if (! ccw)
|
||||
orient = - orient;
|
||||
assert(orient != 0.);
|
||||
if (obtuse || orient > orient_norm * sin_threshold) {
|
||||
bool ccw = cross2(v1, v2) > 0;
|
||||
double cos_a = v1.dot(v2);
|
||||
double norm = v1.norm() * v2.norm();
|
||||
assert(norm > 0.);
|
||||
if (cos_a < cos_threshold * norm) {
|
||||
// Angle is bigger than the threshold, therefore the arc will be discretized.
|
||||
double angle = asin(orient / orient_norm);
|
||||
if (obtuse)
|
||||
angle = M_PI - angle;
|
||||
cos_a /= norm;
|
||||
assert(cos_a > -1. - EPSILON && cos_a < 1. + EPSILON);
|
||||
double angle = acos(std::max(-1., std::min(1., cos_a)));
|
||||
size_t n_steps = size_t(ceil(angle / angle_step));
|
||||
double astep = angle / n_steps;
|
||||
if (! ccw)
|
||||
|
@ -670,9 +837,13 @@ Polygons voronoi_offset(
|
|||
Vec2d p = center + Vec2d(c * v1.x() - s * v1.y(), s * v1.x() + c * v1.y());
|
||||
poly.points.emplace_back(Point(coord_t(p.x()), coord_t(p.y())));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
poly.points.emplace_back(Point(coord_t(p2.x()), coord_t(p2.y())));
|
||||
{
|
||||
Point pt_last(coord_t(p2.x()), coord_t(p2.y()));
|
||||
if (poly.empty() || poly.points.back() != pt_last)
|
||||
poly.points.emplace_back(pt_last);
|
||||
}
|
||||
edge = next_edge;
|
||||
} while (edge != start_edge);
|
||||
out.emplace_back(std::move(poly));
|
||||
|
|
|
@ -305,44 +305,52 @@ static inline void dump_voronoi_to_svg(
|
|||
const Lines &lines,
|
||||
const Polygons &offset_curves = Polygons(),
|
||||
const Lines &helper_lines = Lines(),
|
||||
const double scale = 0.7) // 0.2?
|
||||
double scale = 0)
|
||||
{
|
||||
const std::string inputSegmentPointColor = "lightseagreen";
|
||||
const coord_t inputSegmentPointRadius = coord_t(0.09 * scale / SCALING_FACTOR);
|
||||
const std::string inputSegmentColor = "lightseagreen";
|
||||
const coord_t inputSegmentLineWidth = coord_t(0.03 * scale / SCALING_FACTOR);
|
||||
|
||||
const std::string voronoiPointColor = "black";
|
||||
const coord_t voronoiPointRadius = coord_t(0.06 * scale / SCALING_FACTOR);
|
||||
const std::string voronoiLineColorPrimary = "black";
|
||||
const std::string voronoiLineColorSecondary = "green";
|
||||
const std::string voronoiArcColor = "red";
|
||||
const coord_t voronoiLineWidth = coord_t(0.02 * scale / SCALING_FACTOR);
|
||||
|
||||
const std::string offsetCurveColor = "magenta";
|
||||
const coord_t offsetCurveLineWidth = coord_t(0.09 * scale / SCALING_FACTOR);
|
||||
|
||||
const std::string helperLineColor = "orange";
|
||||
const coord_t helperLineWidth = coord_t(0.09 * scale / SCALING_FACTOR);
|
||||
|
||||
const bool internalEdgesOnly = false;
|
||||
const bool primaryEdgesOnly = false;
|
||||
|
||||
BoundingBox bbox;
|
||||
bbox.merge(get_extents(points));
|
||||
bbox.merge(get_extents(lines));
|
||||
bbox.merge(get_extents(offset_curves));
|
||||
bbox.merge(get_extents(helper_lines));
|
||||
bbox.min -= (0.01 * bbox.size().cast<double>()).cast<coord_t>();
|
||||
bbox.max += (0.01 * bbox.size().cast<double>()).cast<coord_t>();
|
||||
|
||||
if (scale == 0)
|
||||
scale =
|
||||
// 0.1
|
||||
0.01
|
||||
* std::min(bbox.size().x(), bbox.size().y());
|
||||
else
|
||||
scale /= SCALING_FACTOR;
|
||||
|
||||
const std::string inputSegmentPointColor = "lightseagreen";
|
||||
const coord_t inputSegmentPointRadius = coord_t(0.09 * scale);
|
||||
const std::string inputSegmentColor = "lightseagreen";
|
||||
const coord_t inputSegmentLineWidth = coord_t(0.03 * scale);
|
||||
|
||||
const std::string voronoiPointColor = "black";
|
||||
const coord_t voronoiPointRadius = coord_t(0.06 * scale);
|
||||
const std::string voronoiLineColorPrimary = "black";
|
||||
const std::string voronoiLineColorSecondary = "green";
|
||||
const std::string voronoiArcColor = "red";
|
||||
const coord_t voronoiLineWidth = coord_t(0.02 * scale);
|
||||
|
||||
const std::string offsetCurveColor = "magenta";
|
||||
const coord_t offsetCurveLineWidth = coord_t(0.02 * scale);
|
||||
|
||||
const std::string helperLineColor = "orange";
|
||||
const coord_t helperLineWidth = coord_t(0.04 * scale);
|
||||
|
||||
const bool internalEdgesOnly = false;
|
||||
const bool primaryEdgesOnly = false;
|
||||
|
||||
::Slic3r::SVG svg(path, bbox);
|
||||
|
||||
// bbox.scale(1.2);
|
||||
// For clipping of half-lines to some reasonable value.
|
||||
// The line will then be clipped by the SVG viewer anyway.
|
||||
const double bbox_dim_max = double(std::max(bbox.size().x(), bbox.size().y()));
|
||||
// For the discretization of the Voronoi parabolic segments.
|
||||
const double discretization_step = 0.05 * bbox_dim_max;
|
||||
const double discretization_step = 0.0002 * bbox_dim_max;
|
||||
|
||||
// Make a copy of the input segments with the double type.
|
||||
std::vector<Voronoi::Internal::segment_type> segments;
|
||||
|
|
|
@ -26,7 +26,7 @@
|
|||
// Saves around 32% RAM after slicing step, 6.7% after G-code export (tested on PrusaSlicer 2.2.0 final).
|
||||
using coord_t = int32_t;
|
||||
#else
|
||||
//FIXME At least FillRectilinear2 requires coord_t to be 32bit.
|
||||
//FIXME At least FillRectilinear2 and std::boost Voronoi require coord_t to be 32bit.
|
||||
typedef int64_t coord_t;
|
||||
#endif
|
||||
|
||||
|
@ -73,13 +73,6 @@ inline std::string debug_out_path(const char *name, ...)
|
|||
return std::string(SLIC3R_DEBUG_OUT_PATH_PREFIX) + std::string(buffer);
|
||||
}
|
||||
|
||||
#ifdef _MSC_VER
|
||||
// Visual Studio older than 2015 does not support the prinf type specifier %zu. Use %Iu instead.
|
||||
#define PRINTF_ZU "%Iu"
|
||||
#else
|
||||
#define PRINTF_ZU "%zu"
|
||||
#endif
|
||||
|
||||
#ifndef UNUSED
|
||||
#define UNUSED(x) (void)(x)
|
||||
#endif /* UNUSED */
|
||||
|
|
|
@ -448,6 +448,7 @@ void SupportsClipper::render_cut() const
|
|||
|
||||
// Get transformation of supports
|
||||
Geometry::Transformation supports_trafo = trafo;
|
||||
supports_trafo.set_scaling_factor(Vec3d::Ones());
|
||||
supports_trafo.set_offset(Vec3d(trafo.get_offset()(0), trafo.get_offset()(1), sel_info->get_sla_shift()));
|
||||
supports_trafo.set_rotation(Vec3d(0., 0., trafo.get_rotation()(2)));
|
||||
// I don't know why, but following seems to be correct.
|
||||
|
|
|
@ -8,6 +8,8 @@
|
|||
|
||||
#include <libslic3r/VoronoiOffset.hpp>
|
||||
|
||||
#include <numeric>
|
||||
|
||||
// #define VORONOI_DEBUG_OUT
|
||||
|
||||
#ifdef VORONOI_DEBUG_OUT
|
||||
|
@ -1198,6 +1200,12 @@ TEST_CASE("Voronoi NaN coordinates 12139", "[Voronoi][!hide][!mayfail]")
|
|||
#endif
|
||||
}
|
||||
|
||||
struct OffsetTest {
|
||||
double distance;
|
||||
size_t num_outer;
|
||||
size_t num_inner;
|
||||
};
|
||||
|
||||
TEST_CASE("Voronoi offset", "[VoronoiOffset]")
|
||||
{
|
||||
Polygons poly_with_hole = { Polygon {
|
||||
|
@ -1210,23 +1218,180 @@ TEST_CASE("Voronoi offset", "[VoronoiOffset]")
|
|||
}
|
||||
};
|
||||
|
||||
double area = std::accumulate(poly_with_hole.begin(), poly_with_hole.end(), 0., [](double a, auto &poly){ return a + poly.area(); });
|
||||
REQUIRE(area > 0.);
|
||||
|
||||
VD vd;
|
||||
Lines lines = to_lines(poly_with_hole);
|
||||
construct_voronoi(lines.begin(), lines.end(), &vd);
|
||||
|
||||
Polygons offsetted_polygons_out = voronoi_offset(vd, lines, scale_(0.2), scale_(0.005));
|
||||
REQUIRE(offsetted_polygons_out.size() == 1);
|
||||
for (const OffsetTest &ot : {
|
||||
OffsetTest { scale_(0.2), 1, 1 },
|
||||
OffsetTest { scale_(0.4), 1, 1 },
|
||||
OffsetTest { scale_(0.5), 1, 1 },
|
||||
OffsetTest { scale_(0.505), 1, 2 },
|
||||
OffsetTest { scale_(0.51), 1, 2 },
|
||||
OffsetTest { scale_(0.52), 1, 1 },
|
||||
OffsetTest { scale_(0.53), 1, 1 },
|
||||
OffsetTest { scale_(0.54), 1, 1 },
|
||||
OffsetTest { scale_(0.55), 1, 0 }
|
||||
}) {
|
||||
|
||||
Polygons offsetted_polygons_out = voronoi_offset(vd, lines, ot.distance, scale_(0.005));
|
||||
REQUIRE(offsetted_polygons_out.size() == ot.num_outer);
|
||||
|
||||
#ifdef VORONOI_DEBUG_OUT
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-offset-out.svg").c_str(),
|
||||
vd, Points(), lines, offsetted_polygons_out);
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-offset-out-%lf.svg", ot.distance).c_str(),
|
||||
vd, Points(), lines, offsetted_polygons_out);
|
||||
#endif
|
||||
|
||||
Polygons offsetted_polygons_in = voronoi_offset(vd, lines, - scale_(0.2), scale_(0.005));
|
||||
REQUIRE(offsetted_polygons_in.size() == 1);
|
||||
Polygons offsetted_polygons_in = voronoi_offset(vd, lines, - ot.distance, scale_(0.005));
|
||||
REQUIRE(offsetted_polygons_in.size() == ot.num_inner);
|
||||
|
||||
#ifdef VORONOI_DEBUG_OUT
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-offset-in.svg").c_str(),
|
||||
vd, Points(), lines, offsetted_polygons_in);
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-offset-in-%lf.svg", ot.distance).c_str(),
|
||||
vd, Points(), lines, offsetted_polygons_in);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Voronoi offset 2", "[VoronoiOffset]")
|
||||
{
|
||||
coord_t mm = coord_t(scale_(1.));
|
||||
Polygons poly = {
|
||||
Polygon {
|
||||
{ 0, 0 },
|
||||
{ 1, 0 },
|
||||
{ 1, 1 },
|
||||
{ 2, 1 },
|
||||
{ 2, 0 },
|
||||
{ 3, 0 },
|
||||
{ 3, 2 },
|
||||
{ 0, 2 }
|
||||
},
|
||||
Polygon {
|
||||
{ 0, - 1 - 2 },
|
||||
{ 3, - 1 - 2 },
|
||||
{ 3, - 1 - 0 },
|
||||
{ 2, - 1 - 0 },
|
||||
{ 2, - 1 - 1 },
|
||||
{ 1, - 1 - 1 },
|
||||
{ 1, - 1 - 0 },
|
||||
{ 0, - 1 - 0 }
|
||||
},
|
||||
};
|
||||
for (Polygon &p : poly)
|
||||
for (Point &pt : p.points)
|
||||
pt *= mm;
|
||||
|
||||
double area = std::accumulate(poly.begin(), poly.end(), 0., [](double a, auto &poly){ return a + poly.area(); });
|
||||
REQUIRE(area > 0.);
|
||||
|
||||
VD vd;
|
||||
Lines lines = to_lines(poly);
|
||||
construct_voronoi(lines.begin(), lines.end(), &vd);
|
||||
|
||||
for (const OffsetTest &ot : {
|
||||
OffsetTest { scale_(0.2), 2, 2 },
|
||||
OffsetTest { scale_(0.4), 2, 2 },
|
||||
OffsetTest { scale_(0.45), 2, 2 },
|
||||
OffsetTest { scale_(0.48), 2, 2 },
|
||||
//FIXME Exact intersections of an Offset curve with any Voronoi vertex are not handled correctly yet.
|
||||
// OffsetTest { scale_(0.5), 2, 2 },
|
||||
OffsetTest { scale_(0.505), 2, 4 },
|
||||
OffsetTest { scale_(0.7), 2, 0 },
|
||||
OffsetTest { scale_(0.8), 1, 0 }
|
||||
}) {
|
||||
|
||||
Polygons offsetted_polygons_out = voronoi_offset(vd, lines, ot.distance, scale_(0.005));
|
||||
#ifdef VORONOI_DEBUG_OUT
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-offset2-out-%lf.svg", ot.distance).c_str(),
|
||||
vd, Points(), lines, offsetted_polygons_out);
|
||||
#endif
|
||||
REQUIRE(offsetted_polygons_out.size() == ot.num_outer);
|
||||
|
||||
Polygons offsetted_polygons_in = voronoi_offset(vd, lines, - ot.distance, scale_(0.005));
|
||||
#ifdef VORONOI_DEBUG_OUT
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-offset2-in-%lf.svg", ot.distance).c_str(),
|
||||
vd, Points(), lines, offsetted_polygons_in);
|
||||
#endif
|
||||
REQUIRE(offsetted_polygons_in.size() == ot.num_inner);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Voronoi offset 3", "[VoronoiOffset]")
|
||||
{
|
||||
coord_t mm = coord_t(scale_(1.));
|
||||
Polygons poly = {
|
||||
Polygon {
|
||||
{ 0, 0 },
|
||||
{ 2, 0 },
|
||||
{ 2, 1 },
|
||||
{ 3, 1 },
|
||||
{ 3, 0 },
|
||||
{ 5, 0 },
|
||||
{ 5, 2 },
|
||||
{ 4, 2 },
|
||||
{ 4, 3 },
|
||||
{ 1, 3 },
|
||||
{ 1, 2 },
|
||||
{ 0, 2 }
|
||||
},
|
||||
Polygon {
|
||||
{ 0, -1 - 2 },
|
||||
{ 1, -1 - 2 },
|
||||
{ 1, -1 - 3 },
|
||||
{ 4, -1 - 3 },
|
||||
{ 4, -1 - 2 },
|
||||
{ 5, -1 - 2 },
|
||||
{ 5, -1 - 0 },
|
||||
{ 3, -1 - 0 },
|
||||
{ 3, -1 - 1 },
|
||||
{ 2, -1 - 1 },
|
||||
{ 2, -1 - 0 },
|
||||
{ 0, -1 - 0 }
|
||||
},
|
||||
};
|
||||
for (Polygon &p : poly) {
|
||||
REQUIRE(p.area() > 0.);
|
||||
for (Point &pt : p.points)
|
||||
pt *= mm;
|
||||
}
|
||||
|
||||
VD vd;
|
||||
Lines lines = to_lines(poly);
|
||||
construct_voronoi(lines.begin(), lines.end(), &vd);
|
||||
|
||||
for (const OffsetTest &ot : {
|
||||
OffsetTest { scale_(0.2), 2, 2 },
|
||||
OffsetTest { scale_(0.4), 2, 2 },
|
||||
OffsetTest { scale_(0.49), 2, 2 },
|
||||
//FIXME this fails
|
||||
// OffsetTest { scale_(0.5), 2, 2 },
|
||||
OffsetTest { scale_(0.51), 2, 2 },
|
||||
OffsetTest { scale_(0.56), 2, 2 },
|
||||
OffsetTest { scale_(0.6), 2, 2 },
|
||||
OffsetTest { scale_(0.7), 2, 2 },
|
||||
OffsetTest { scale_(0.8), 1, 6 },
|
||||
OffsetTest { scale_(0.9), 1, 6 },
|
||||
OffsetTest { scale_(0.99), 1, 6 },
|
||||
//FIXME this fails
|
||||
// OffsetTest { scale_(1.0), 1, 6 },
|
||||
OffsetTest { scale_(1.01), 1, 0 },
|
||||
}) {
|
||||
|
||||
Polygons offsetted_polygons_out = voronoi_offset(vd, lines, ot.distance, scale_(0.005));
|
||||
#ifdef VORONOI_DEBUG_OUT
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-offset2-out-%lf.svg", ot.distance).c_str(),
|
||||
vd, Points(), lines, offsetted_polygons_out);
|
||||
#endif
|
||||
REQUIRE(offsetted_polygons_out.size() == ot.num_outer);
|
||||
|
||||
Polygons offsetted_polygons_in = voronoi_offset(vd, lines, - ot.distance, scale_(0.005));
|
||||
#ifdef VORONOI_DEBUG_OUT
|
||||
dump_voronoi_to_svg(debug_out_path("voronoi-offset2-in-%lf.svg", ot.distance).c_str(),
|
||||
vd, Points(), lines, offsetted_polygons_in);
|
||||
#endif
|
||||
REQUIRE(offsetted_polygons_in.size() == ot.num_inner);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -13,7 +13,7 @@ Pointfs arrange(size_t total_parts, Vec2d* part, coordf_t dist, BoundingBoxf* bb
|
|||
%code{%
|
||||
Pointfs points;
|
||||
if (! Slic3r::Geometry::arrange(total_parts, *part, dist, bb, points))
|
||||
CONFESS(PRINTF_ZU " parts won't fit in your print area!\n", total_parts);
|
||||
CONFESS("%zu parts won't fit in your print area!\n", total_parts);
|
||||
RETVAL = points;
|
||||
%};
|
||||
|
||||
|
|
Loading…
Reference in a new issue