Place on bed improvements

- works with large meshes
- area discrimination takes into account scaling of the object
- planes are recalculated when some volume's type is changed (e.g. from a part to modifier mesh)
This commit is contained in:
Lukas Matena 2019-01-04 15:34:07 +01:00
parent 94becf120b
commit f7726b99a7
2 changed files with 63 additions and 47 deletions

View file

@ -1519,13 +1519,14 @@ void GLGizmoFlatten::update_planes()
}
ch = ch.convex_hull_3d();
const Vec3d& bb_size = ch.bounding_box().size();
double min_bb_face_area = std::min(bb_size(0) * bb_size(1), std::min(bb_size(0) * bb_size(2), bb_size(1) * bb_size(2)));
m_planes.clear();
// Now we'll go through all the facets and append Points of facets sharing the same normal:
// Following constants are used for discarding too small polygons.
const float minimal_area = 20.f; // in square mm (world coordinates)
const float minimal_side = 1.f; // mm
// Now we'll go through all the facets and append Points of facets sharing the same normal.
// This part is still performed in mesh coordinate system.
const int num_of_facets = ch.stl.stats.number_of_facets;
std::vector<int> facet_queue(num_of_facets, 0);
std::vector<bool> facet_visited(num_of_facets, false);
@ -1548,7 +1549,7 @@ void GLGizmoFlatten::update_planes()
while (facet_queue_cnt > 0) {
int facet_idx = facet_queue[-- facet_queue_cnt];
const stl_normal& this_normal = ch.stl.facet_start[facet_idx].normal;
if (std::abs(this_normal(0) - (*normal_ptr)(0)) < 0.001 && std::abs(this_normal(1) - (*normal_ptr)(1)) < 0.001 && std::abs(this_normal(2) - (*normal_ptr)(2)) < 0.001) {
if (this_normal.isApprox(*normal_ptr)) {
stl_vertex* first_vertex = ch.stl.facet_start[facet_idx].vertex;
for (int j=0; j<3; ++j)
m_planes.back().vertices.emplace_back((double)first_vertex[j](0), (double)first_vertex[j](1), (double)first_vertex[j](2));
@ -1563,16 +1564,18 @@ void GLGizmoFlatten::update_planes()
}
m_planes.back().normal = Vec3d((double)(*normal_ptr)(0), (double)(*normal_ptr)(1), (double)(*normal_ptr)(2));
// if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected anyway):
// Now we'll transform all the points into world coordinates, so that the areas, angles and distances
// make real sense.
m_planes.back().vertices = transform(m_planes.back().vertices, m_model_object->instances.front()->get_matrix());
// if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected later anyway):
if (m_planes.back().vertices.size() == 3 &&
((m_planes.back().vertices[0] - m_planes.back().vertices[1]).norm() < 1.0
|| (m_planes.back().vertices[0] - m_planes.back().vertices[2]).norm() < 1.0
|| (m_planes.back().vertices[1] - m_planes.back().vertices[2]).norm() < 1.0))
((m_planes.back().vertices[0] - m_planes.back().vertices[1]).norm() < minimal_side
|| (m_planes.back().vertices[0] - m_planes.back().vertices[2]).norm() < minimal_side
|| (m_planes.back().vertices[1] - m_planes.back().vertices[2]).norm() < minimal_side))
m_planes.pop_back();
}
const float minimal_area = 0.01f * (float)min_bb_face_area;
// Now we'll go through all the polygons, transform the points into xy plane to process them:
for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) {
Pointf3s& polygon = m_planes[polygon_id].vertices;
@ -1584,40 +1587,43 @@ void GLGizmoFlatten::update_planes()
m.matrix().block(0, 0, 3, 3) = q.setFromTwoVectors(normal, Vec3d::UnitZ()).toRotationMatrix();
polygon = transform(polygon, m);
polygon = Slic3r::Geometry::convex_hull(polygon); // To remove the inner points
// Now to remove the inner points. We'll misuse Geometry::convex_hull for that, but since
// it works in fixed point representation, we will rescale the polygon to avoid overflows.
// And yes, it is a nasty thing to do. Whoever has time is free to refactor.
Vec3d bb_size = BoundingBoxf3(polygon).size();
float sf = std::min(1./bb_size(0), 1./bb_size(1));
Transform3d tr = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), Vec3d(sf, sf, 1.f));
polygon = transform(polygon, tr);
polygon = Slic3r::Geometry::convex_hull(polygon);
polygon = transform(polygon, tr.inverse());
// We will calculate area of the polygons and discard ones that are too small
// The limit is more forgiving in case the normal is in the direction of the coordinate axes
float area_threshold = (std::abs(normal(0)) > 0.999f || std::abs(normal(1)) > 0.999f || std::abs(normal(2)) > 0.999f) ? minimal_area : 10.0f * minimal_area;
// Calculate area of the polygons and discard ones that are too small
float& area = m_planes[polygon_id].area;
area = 0.f;
for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula
area += polygon[i](0)*polygon[i + 1 < polygon.size() ? i + 1 : 0](1) - polygon[i + 1 < polygon.size() ? i + 1 : 0](0)*polygon[i](1);
area = 0.5f * std::abs(area);
if (area < area_threshold) {
m_planes.erase(m_planes.begin()+(polygon_id--));
continue;
}
// We check the inner angles and discard polygons with angles smaller than the following threshold
const double angle_threshold = ::cos(10.0 * (double)PI / 180.0);
bool discard = false;
if (area < minimal_area)
discard = true;
else {
// We also check the inner angles and discard polygons with angles smaller than the following threshold
const double angle_threshold = ::cos(10.0 * (double)PI / 180.0);
for (unsigned int i = 0; i < polygon.size(); ++i)
{
const Vec3d& prec = polygon[(i == 0) ? polygon.size() - 1 : i - 1];
const Vec3d& curr = polygon[i];
const Vec3d& next = polygon[(i == polygon.size() - 1) ? 0 : i + 1];
for (unsigned int i = 0; i < polygon.size(); ++i) {
const Vec3d& prec = polygon[(i == 0) ? polygon.size() - 1 : i - 1];
const Vec3d& curr = polygon[i];
const Vec3d& next = polygon[(i == polygon.size() - 1) ? 0 : i + 1];
if ((prec - curr).normalized().dot((next - curr).normalized()) > angle_threshold)
{
discard = true;
break;
if ((prec - curr).normalized().dot((next - curr).normalized()) > angle_threshold) {
discard = true;
break;
}
}
}
if (discard)
{
if (discard) {
m_planes.erase(m_planes.begin() + (polygon_id--));
continue;
}
@ -1667,13 +1673,13 @@ void GLGizmoFlatten::update_planes()
polygon = points_out; // replace the coarse polygon with the smooth one that we just created
}
// Transform back to 3D;
for (auto& b : polygon) {
b(2) += 0.1f; // raise a bit above the object surface to avoid flickering
}
m = m.inverse();
polygon = transform(polygon, m);
// Raise a bit above the object surface to avoid flickering:
for (auto& b : polygon)
b(2) += 0.1f;
// Transform back to 3D (and also back to mesh coordinates)
polygon = transform(polygon, m_model_object->instances.front()->get_matrix().inverse() * m.inverse());
}
// We'll sort the planes by area and only keep the 254 largest ones (because of the picking pass limitations):
@ -1682,12 +1688,15 @@ void GLGizmoFlatten::update_planes()
// Planes are finished - let's save what we calculated it from:
m_volumes_matrices.clear();
for (const ModelVolume* vol : m_model_object->volumes)
m_volumes_types.clear();
for (const ModelVolume* vol : m_model_object->volumes) {
m_volumes_matrices.push_back(vol->get_matrix());
m_volumes_types.push_back(vol->type());
}
m_first_instance_scale = m_model_object->instances.front()->get_scaling_factor();
}
// Check if the bounding boxes of each volume's convex hull is the same as before
// and that scaling and rotation has not changed. In that case we don't have to recalculate it.
bool GLGizmoFlatten::is_plane_update_necessary() const
{
if (m_state != On || !m_model_object || m_model_object->instances.empty())
@ -1696,8 +1705,13 @@ bool GLGizmoFlatten::is_plane_update_necessary() const
if (m_model_object->volumes.size() != m_volumes_matrices.size())
return true;
// We want to recalculate when the scale changes - some planes could (dis)appear.
if (! m_model_object->instances.front()->get_scaling_factor().isApprox(m_first_instance_scale))
return true;
for (unsigned int i=0; i < m_model_object->volumes.size(); ++i)
if (! m_model_object->volumes[i]->get_matrix().isApprox(m_volumes_matrices[i]))
if (! m_model_object->volumes[i]->get_matrix().isApprox(m_volumes_matrices[i])
|| m_model_object->volumes[i]->type() != m_volumes_types[i])
return true;
return false;
@ -1723,7 +1737,7 @@ GLGizmoSlaSupports::GLGizmoSlaSupports(GLCanvas3D& parent)
if (m_quadric != nullptr)
// using GLU_FILL does not work when the instance's transformation
// contains mirroring (normals are reverted)
::gluQuadricDrawStyle(m_quadric, GLU_SILHOUETTE);
::gluQuadricDrawStyle(m_quadric, GLU_FILL);
#endif // ENABLE_SLA_SUPPORT_GIZMO_MOD
}
@ -1895,8 +1909,8 @@ void GLGizmoSlaSupports::render_grabbers(const GLCanvas3D::Selection& selection,
::glPushMatrix();
::glLoadIdentity();
::glTranslated(grabber_world_position(0), grabber_world_position(1), grabber_world_position(2) + z_shift);
::gluQuadricDrawStyle(m_quadric, GLU_SILHOUETTE);
::gluSphere(m_quadric, 0.75, 64, 36);
const float diameter = 0.8f;
::gluSphere(m_quadric, diameter/2.f, 64, 36);
::glPopMatrix();
}
@ -1945,7 +1959,7 @@ void GLGizmoSlaSupports::render_grabbers(bool picking) const
GLUquadricObj *quadric;
quadric = ::gluNewQuadric();
::gluQuadricDrawStyle(quadric, GLU_FILL );
::gluSphere( quadric , 0.75f, 64 , 32 );
::gluSphere( quadric , 0.4, 64 , 32 );
::gluDeleteQuadric(quadric);
::glPopMatrix();
if (!picking)

View file

@ -403,6 +403,8 @@ private:
// This holds information to decide whether recalculation is necessary:
std::vector<Transform3d> m_volumes_matrices;
std::vector<ModelVolume::Type> m_volumes_types;
Vec3d m_first_instance_scale;
std::vector<PlaneData> m_planes;
mutable Vec3d m_starting_center;