extend extrusion with points on boundaries

This commit is contained in:
PavelMikus 2022-11-29 14:32:23 +01:00 committed by Pavel Mikuš
parent eb2e72f5dd
commit f823da9f38
2 changed files with 97 additions and 86 deletions

View File

@ -2916,11 +2916,10 @@ std::string GCode::_extrude(const ExtrusionPath &path, const std::string_view de
}
bool variable_speed = false;
double last_set_speed = 0.0;
std::vector<float> points_quality{};
std::vector<ProcessedPoint> new_points{};
if (!this->on_first_layer() && is_perimeter(path.role())) {
points_quality = m_extrusion_quality_estimator.estimate_extrusion_quality(path);
variable_speed = std::any_of(points_quality.begin(), points_quality.end(), [](float q) { return q != 1.0; });
new_points = m_extrusion_quality_estimator.estimate_extrusion_quality(path);
variable_speed = std::any_of(new_points.begin(), new_points.end(), [](const ProcessedPoint &p) { return p.speed_factor != 1.0; });
}
double F = speed * 60; // convert mm/sec to mm/min
@ -2984,12 +2983,10 @@ std::string GCode::_extrude(const ExtrusionPath &path, const std::string_view de
comment += ";_EXTERNAL_PERIMETER";
}
if (!variable_speed) {
// F is mm per minute.
if (!variable_speed){
gcode += m_writer.set_speed(F, "", comment);
}
{
double path_length = 0.;
std::string comment;
if (m_config.gcode_comments) {
comment = description;
@ -2998,23 +2995,36 @@ std::string GCode::_extrude(const ExtrusionPath &path, const std::string_view de
Vec2d prev = this->point_to_gcode_quantized(path.polyline.points.front());
auto it = path.polyline.points.begin();
auto end = path.polyline.points.end();
int i = 0;
for (++ it; it != end; ++ it) {
if (variable_speed) {
double new_speed = std::max(5.0, points_quality[i] * speed);
if (last_set_speed != new_speed) {
last_set_speed = new_speed;
gcode += m_writer.set_speed(new_speed * 60.0, "", comment);
}
}
for (++it; it != end; ++it) {
Vec2d p = this->point_to_gcode_quantized(*it);
const double line_length = (p - prev).norm();
path_length += line_length;
gcode += m_writer.extrude_to_xy(p, e_per_mm * line_length, comment);
prev = p;
}
} else {
std::string comment;
if (m_config.gcode_comments) {
comment = description;
comment += description_bridge;
}
double last_set_speed = std::max(5.0, new_points[0].speed_factor * speed) * 60.0;
gcode += m_writer.set_speed(last_set_speed, "", comment);
Vec2d prev = this->point_to_gcode_quantized(new_points[0].p);
for (size_t i = 1; i < new_points.size(); i++) {
const ProcessedPoint& procesed_point = new_points[i];
Vec2d p = this->point_to_gcode_quantized(procesed_point.p);
const double line_length = (p - prev).norm();
gcode += m_writer.extrude_to_xy(p, e_per_mm * line_length, comment);
prev = p;
i++;
double new_speed = std::max(5.0, procesed_point.speed_factor * speed) * 60.0;
if (last_set_speed != new_speed) {
gcode += m_writer.set_speed(new_speed, "", comment);
last_set_speed = new_speed;
}
}
}
if (m_enable_cooling_markers)
gcode += is_bridge(path.role()) ? ";_BRIDGE_FAN_END\n" : ";_EXTRUDE_END\n";

View File

@ -86,9 +86,10 @@ public:
}
};
struct ProcessedPoint{
struct ProcessedPoint
{
Point p;
float speed_factor;
float speed_factor = 1.0f;
};
class ExtrusionQualityEstimator
@ -123,7 +124,7 @@ public:
inside.insert(inside.end(), in.begin(), in.end());
}
::Slic3r::SVG svg(debug_out_path(("path_jps" + std::to_string(rand() % 1000)).c_str()).c_str(), bb);
::Slic3r::SVG svg(debug_out_path(("processing" + std::to_string(rand() % 1000)).c_str()).c_str(), bb);
svg.draw(scaled_lines, "black", scale_(0.10));
for (Point p : inside) {
auto [distance, line_idx, nearest_point] = next_layer_boundary.signed_distance_from_lines_extra(unscaled(p));
@ -133,96 +134,96 @@ public:
auto li = next_layer_boundary.get_line(line_idx);
Line ls{Point::new_scale(li.a), Point::new_scale(li.b)};
svg.draw(ls, "yellow", scale_(0.2));
}
}
if (inside.size() > 0) {
Line line{inside[0], inside[inside.size() * 0.5]};
auto inters = next_layer_boundary.intersections_with_line<true>({unscaled(line.a), unscaled(line.b)});
svg.draw(line, "purple", scale_(0.15));
for (auto inter : inters) {
svg.draw(Point::new_scale(inter), "red", scale_(0.2));
}
}
#endif
}
std::vector<ProcessedPoint> estimate_extrusion_quality(const ExtrusionPath &path)
{
struct ExtendedPoint{
Vec2f position;
float distance;
struct ExtendedPoint
{
ExtendedPoint(const Vec2d &pos, float dist, float quality) : position(pos), distance(dist), quality(quality) {}
Vec2d position;
float distance; // in multiples of flow_width
float quality;
};
float flow_width = path.width;
float min_malformation_dist = 0.0 * flow_width;
float max_malformation_dist = 1.1 * flow_width;
float worst_malformation_dist = 0.7 * flow_width;
float min_malformation_dist = 0.2;
const Points& original_points = path.polyline.points;
const Points &original_points = path.polyline.points;
std::vector<ExtendedPoint> points;
float distance = prev_layer_boundary.signed_distance_from_lines(unscaled(original_points[0]));
points.push_back({unscaled(original_points[0]).cast<float>(),distance});
float distance = prev_layer_boundary.signed_distance_from_lines(unscaled(original_points[0])) / flow_width + flow_width * 0.5f;
points.push_back({unscaled(original_points[0]), distance, 1.0f});
for (size_t i = 1; i < original_points.size(); i++) {
Vec2f next_point_pos = unscaled(original_points[i]).cast<float>();
float distance_of_next = prev_layer_boundary.signed_distance_from_lines(next_point_pos);
if ((points[i-1].distance > min_malformation_dist ) != (distance_of_next > min_malformation_dist)) { //not same sign, so one is grounded, one not
auto intersections = prev_layer_boundary.intersections_with_line<true>({points[i-1].position, next_point_pos});
for (const auto& intersection : intersections) {
points.push_back({intersection.cast<float>(), 0.0f});
Vec2d next_point_pos = unscaled(original_points[i]);
float distance_of_next = prev_layer_boundary.signed_distance_from_lines(next_point_pos) / flow_width + flow_width * 0.5f;
if ((points.back().distance > min_malformation_dist) !=
(distance_of_next > min_malformation_dist)) { // not same sign, so one is grounded, one not
auto intersections = prev_layer_boundary.intersections_with_line<true>({points.back().position, next_point_pos});
for (const auto &intersection : intersections) { points.push_back({intersection, 0.0f, 1.0}); }
}
}
points.push_back({next_point_pos, distance_of_next});
points.push_back({next_point_pos, distance_of_next, 1.0});
}
for (int point_idx = 0; point_idx < int(points.size()); ++point_idx) {
const ExtendedPoint p = points[point_idx];
double dist_from_prev_layer = prev_layer_boundary.signed_distance_from_lines(p.cast<double>()) + flow_width * 0.5f;
float default_dist_quality = 0.3f;
float distance_quality = 1.0f;
if (dist_from_prev_layer < min_malformation_dist) {
distance_quality = 1.0f;
for (int point_idx = 0; point_idx < int(points.size()) - 1; ++point_idx) {
ExtendedPoint &a = points[point_idx];
ExtendedPoint &b = points[point_idx+1];
if (a.distance < min_malformation_dist && b.distance < min_malformation_dist) {
a.quality = 1.0;
cestim.reset();
continue;
} else if (dist_from_prev_layer < worst_malformation_dist) {
distance_quality = (worst_malformation_dist - dist_from_prev_layer) / (worst_malformation_dist - min_malformation_dist);
} else if (dist_from_prev_layer < max_malformation_dist) {
distance_quality = default_dist_quality * (1.0f - (max_malformation_dist - dist_from_prev_layer) /
(max_malformation_dist - worst_malformation_dist));
} else { // completely in the air. use the default value in that case
distance_quality = default_dist_quality;
}
int prev_point_idx = point_idx;
while (prev_point_idx > 0) {
prev_point_idx--;
if ((p - points[prev_point_idx]).squaredNorm() > EPSILON) { break; }
float distance = fmax(a.distance, b.distance);
float distance_quality = 1.0f - fmin(1.0f, distance - min_malformation_dist);
// int prev_point_idx = point_idx;
// while (prev_point_idx > 0) {
// prev_point_idx--;
// if ((b.position - points[prev_point_idx].position).squaredNorm() > EPSILON) { break; }
// }
// int next_point_index = point_idx;
// while (next_point_index < int(points.size()) - 1) {
// next_point_index++;
// if ((b.position - points[next_point_index].position).squaredNorm() > EPSILON) { break; }
// }
// float curvature_penalty = 0.0f;
// if (prev_point_idx != point_idx && next_point_index != point_idx) {
// float distance = (b.position - a.position).norm();
// float alfa = angle(b.position - points[prev_point_idx].position, points[next_point_index].position - b.position);
// cestim.add_point(distance, alfa);
// float curvature = std::abs(cestim.get_curvature());
// if (curvature > 1.0f) {
// curvature_penalty = 1.0f;
// } else if (curvature > 0.1f) {
// curvature_penalty = fmin(1.0, distance - min_malformation_dist) * curvature;
// }
// }
a.quality = std::clamp(distance_quality, 0.0f, 1.0f);
}
int next_point_index = point_idx;
while (next_point_index < int(points.size()) - 1) {
next_point_index++;
if ((p - points[next_point_index]).squaredNorm() > EPSILON) { break; }
}
std::vector<ProcessedPoint> result;
result.reserve(points.size());
for (const ExtendedPoint &p : points) { result.push_back({Point::new_scale(p.position), p.quality}); }
float curvature_penalty = 0.0f;
if (prev_point_idx != point_idx && next_point_index != point_idx) {
float distance = (p - points[prev_point_idx]).norm();
float alfa = angle(p - points[prev_point_idx], points[next_point_index] - p);
cestim.add_point(distance, alfa);
float curvature = std::abs(cestim.get_curvature());
if (curvature > 1.0f) {
curvature_penalty = 1.0f;
} else if (curvature > 0.1f) {
curvature_penalty = std::min(1.0, dist_from_prev_layer - min_malformation_dist) * curvature;
}
}
point_qualities[point_idx] = std::clamp(distance_quality - curvature_penalty, 0.0f, 1.0f);
}
for (size_t point_idx = 1; point_idx < points.size(); ++point_idx) {
point_qualities[point_idx - 1] = std::max(point_qualities[point_idx - 1], point_qualities[point_idx]);
}
return point_qualities;
return result;
}
};