add mesh simplification.

SPE-1072 
Working but flipped normals with the interior.
Testing on treefrog passed
Oversampling for hollowed mesh should not be less than 3x
Flip back normals after simplify and remove redundant test code.
This commit is contained in:
tamasmeszaros 2020-01-23 10:57:51 +01:00
parent 63b0eec5a9
commit f8a5796ca5
11 changed files with 875 additions and 44 deletions

View file

@ -183,6 +183,9 @@ add_library(libslic3r STATIC
MinAreaBoundingBox.cpp
miniz_extension.hpp
miniz_extension.cpp
SimplifyMesh.hpp
SimplifyMeshImpl.hpp
SimplifyMesh.cpp
${OpenVDBUtils_SOURCES}
SLA/Common.hpp
SLA/Common.cpp

View file

@ -84,9 +84,9 @@ openvdb::FloatGrid::Ptr mesh_to_grid(const sla::Contour3D &mesh,
template<class Grid>
sla::Contour3D _volumeToMesh(const Grid &grid,
double isovalue,
double adaptivity,
bool relaxDisorientedTriangles)
double isovalue,
double adaptivity,
bool relaxDisorientedTriangles)
{
openvdb::initialize();
@ -110,9 +110,9 @@ sla::Contour3D _volumeToMesh(const Grid &grid,
}
TriangleMesh grid_to_mesh(const openvdb::FloatGrid &grid,
double isovalue,
double adaptivity,
bool relaxDisorientedTriangles)
double isovalue,
double adaptivity,
bool relaxDisorientedTriangles)
{
return to_triangle_mesh(
_volumeToMesh(grid, isovalue, adaptivity, relaxDisorientedTriangles));

View file

@ -7,6 +7,7 @@
#include <libslic3r/SLA/EigenMesh3D.hpp>
#include <libslic3r/SLA/SupportTreeBuilder.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <libslic3r/SimplifyMesh.hpp>
#include <boost/log/trivial.hpp>
@ -24,41 +25,15 @@ template<class S, class = FloatingOnly<S>>
inline void _scale(S s, TriangleMesh &m) { m.scale(float(s)); }
template<class S, class = FloatingOnly<S>>
inline void _scale(S s, Contour3D &m)
{
for (auto &p : m.points) p *= s;
}
inline void _scale(S s, Contour3D &m) { for (auto &p : m.points) p *= s; }
template<class Mesh>
remove_cvref_t<Mesh> _grid_to_mesh(const openvdb::FloatGrid &grid,
double isosurf,
double adapt);
template<>
TriangleMesh _grid_to_mesh<TriangleMesh>(const openvdb::FloatGrid &grid,
double isosurf,
double adapt)
static TriangleMesh _generate_interior(const TriangleMesh &mesh,
const JobController &ctl,
double min_thickness,
double voxel_scale,
double closing_dist)
{
return grid_to_mesh(grid, isosurf, adapt);
}
template<>
Contour3D _grid_to_mesh<Contour3D>(const openvdb::FloatGrid &grid,
double isosurf,
double adapt)
{
return grid_to_contour3d(grid, isosurf, adapt);
}
template<class Mesh>
remove_cvref_t<Mesh> _generate_interior(Mesh &&mesh,
const JobController &ctl,
double min_thickness,
double voxel_scale,
double closing_dist)
{
using MMesh = remove_cvref_t<Mesh>;
MMesh imesh{std::forward<Mesh>(mesh)};
TriangleMesh imesh{mesh};
_scale(voxel_scale, imesh);
@ -76,7 +51,7 @@ remove_cvref_t<Mesh> _generate_interior(Mesh &&mesh,
if (!gridptr) {
BOOST_LOG_TRIVIAL(error) << "Returned OpenVDB grid is NULL";
return MMesh{};
return {};
}
if (ctl.stopcondition()) return {};
@ -93,7 +68,7 @@ remove_cvref_t<Mesh> _generate_interior(Mesh &&mesh,
double iso_surface = D;
double adaptivity = 0.;
auto omesh = _grid_to_mesh<MMesh>(*gridptr, iso_surface, adaptivity);
auto omesh = grid_to_mesh(*gridptr, iso_surface, adaptivity);
_scale(1. / voxel_scale, omesh);
@ -107,7 +82,8 @@ std::unique_ptr<TriangleMesh> generate_interior(const TriangleMesh & mesh,
const HollowingConfig &hc,
const JobController & ctl)
{
static const double MAX_OVERSAMPL = 7.;
static const double MIN_OVERSAMPL = 3.;
static const double MAX_OVERSAMPL = 8.;
// I can't figure out how to increase the grid resolution through openvdb
// API so the model will be scaled up before conversion and the result
@ -116,10 +92,27 @@ std::unique_ptr<TriangleMesh> generate_interior(const TriangleMesh & mesh,
// voxels.
//
// max 8x upscale, min is native voxel size
auto voxel_scale = (1.0 + MAX_OVERSAMPL * hc.quality);
return std::make_unique<TriangleMesh>(
auto voxel_scale = MIN_OVERSAMPL + (MAX_OVERSAMPL - MIN_OVERSAMPL) * hc.quality;
auto meshptr = std::make_unique<TriangleMesh>(
_generate_interior(mesh, ctl, hc.min_thickness, voxel_scale,
hc.closing_distance));
if (meshptr) {
// This flips the normals to be outward facing...
meshptr->require_shared_vertices();
indexed_triangle_set its = std::move(meshptr->its);
Slic3r::simplify_mesh(its);
// flip normals back...
for (stl_triangle_vertex_indices &ind : its.indices)
std::swap(ind(0), ind(2));
*meshptr = Slic3r::TriangleMesh{its};
}
return meshptr;
}
Contour3D DrainHole::to_mesh() const

View file

@ -0,0 +1,66 @@
#include "SimplifyMesh.hpp"
#include "SimplifyMeshImpl.hpp"
namespace SimplifyMesh {
template<> struct vertex_traits<stl_vertex> {
using coord_type = float;
using compute_type = double;
static inline float x(const stl_vertex &v) { return v.x(); }
static inline float& x(stl_vertex &v) { return v.x(); }
static inline float y(const stl_vertex &v) { return v.y(); }
static inline float& y(stl_vertex &v) { return v.y(); }
static inline float z(const stl_vertex &v) { return v.z(); }
static inline float& z(stl_vertex &v) { return v.z(); }
};
template<> struct mesh_traits<indexed_triangle_set> {
using vertex_t = stl_vertex;
static size_t face_count(const indexed_triangle_set &m)
{
return m.indices.size();
}
static size_t vertex_count(const indexed_triangle_set &m)
{
return m.vertices.size();
}
static vertex_t vertex(const indexed_triangle_set &m, size_t idx)
{
return m.vertices[idx];
}
static void vertex(indexed_triangle_set &m, size_t idx, const vertex_t &v)
{
m.vertices[idx] = v;
}
static Index3 triangle(const indexed_triangle_set &m, size_t idx)
{
std::array<size_t, 3> t;
for (size_t i = 0; i < 3; ++i) t[i] = size_t(m.indices[idx](int(i)));
return t;
}
static void triangle(indexed_triangle_set &m, size_t fidx, const Index3 &t)
{
auto &face = m.indices[fidx];
face(0) = int(t[0]); face(1) = int(t[1]); face(2) = int(t[2]);
}
static void update(indexed_triangle_set &m, size_t vc, size_t fc)
{
m.vertices.resize(vc);
m.indices.resize(fc);
}
};
} // namespace SimplifyMesh
namespace Slic3r {
void simplify_mesh(indexed_triangle_set &m)
{
SimplifyMesh::implementation::SimplifiableMesh sm{&m};
sm.simplify_mesh_lossless();
}
}

View file

@ -0,0 +1,25 @@
#ifndef MESHSIMPLIFY_HPP
#define MESHSIMPLIFY_HPP
#include <vector>
#include <libslic3r/TriangleMesh.hpp>
namespace Slic3r {
void simplify_mesh(indexed_triangle_set &);
// TODO: (but this can be done with IGL as well)
// void simplify_mesh(indexed_triangle_set &, int face_count, float agressiveness = 0.5f);
template<class...Args> void simplify_mesh(TriangleMesh &m, Args &&...a)
{
m.require_shared_vertices();
simplify_mesh(m.its, std::forward<Args>(a)...);
m = TriangleMesh{m.its};
m.require_shared_vertices();
}
} // namespace Slic3r
#endif // MESHSIMPLIFY_H

View file

@ -0,0 +1,699 @@
// ///////////////////////////////////////////
//
// Mesh Simplification Tutorial
//
// (C) by Sven Forstmann in 2014
//
// License : MIT
// http://opensource.org/licenses/MIT
//
// https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification
//
// 5/2016: Chris Rorden created minimal version for OSX/Linux/Windows compile
// https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification/
//
// libslic3r refactor by tamasmeszaros
#ifndef SIMPLIFYMESHIMPL_HPP
#define SIMPLIFYMESHIMPL_HPP
#include <vector>
#include <array>
#include <type_traits>
#include <algorithm>
#ifndef NDEBUG
#include <iostream>
#endif
namespace SimplifyMesh {
using Bary = std::array<double, 3>;
using Index3 = std::array<size_t, 3>;
template<class Vertex> struct vertex_traits {
using coord_type = typename Vertex::coord_type;
using compute_type = coord_type;
static coord_type x(const Vertex &v);
static coord_type& x(Vertex &v);
static coord_type y(const Vertex &v);
static coord_type& y(Vertex &v);
static coord_type z(const Vertex &v);
static coord_type& z(Vertex &v);
};
template<class Mesh> struct mesh_traits {
using vertex_t = typename Mesh::vertex_t;
static size_t face_count(const Mesh &m);
static size_t vertex_count(const Mesh &m);
static vertex_t vertex(const Mesh &m, size_t vertex_idx);
static void vertex(Mesh &m, size_t vertex_idx, const vertex_t &v);
static Index3 triangle(const Mesh &m, size_t face_idx);
static void triangle(Mesh &m, size_t face_idx, const Index3 &t);
static void update(Mesh &m, size_t vertex_count, size_t face_count);
};
namespace implementation {
// A shorter C++14 style form of the enable_if metafunction
template<bool B, class T>
using enable_if_t = typename std::enable_if<B, T>::type;
// Meta predicates for floating, 'scaled coord' and generic arithmetic types
template<class T, class O = T>
using FloatingOnly = enable_if_t<std::is_floating_point<T>::value, O>;
template<class T, class O = T>
using IntegerOnly = enable_if_t<std::is_integral<T>::value, O>;
template<class T, class O = T>
using ArithmeticOnly = enable_if_t<std::is_arithmetic<T>::value, O>;
template< class T >
struct remove_cvref {
using type = typename std::remove_cv<
typename std::remove_reference<T>::type>::type;
};
template< class T >
using remove_cvref_t = typename remove_cvref<T>::type;
struct DOut {
#ifndef NDEBUG
std::ostream& out = std::cout;
#endif
};
template<class T>
inline DOut&& operator<<( DOut&& out, T&& d) {
#ifndef NDEBUG
out.out << d;
#endif
return std::move(out);
}
inline DOut dout() { return DOut(); }
template<class T> FloatingOnly<T, bool> is_approx(T val, T ref) { return std::abs(val - ref) < 1e-8; }
template<class T> IntegerOnly <T, bool> is_approx(T val, T ref) { val == ref; }
template<class T, size_t N = 10> class SymetricMatrix {
public:
explicit SymetricMatrix(ArithmeticOnly<T> c = T()) { std::fill(m, m + N, c); }
SymetricMatrix(T m11, T m12, T m13, T m14,
T m22, T m23, T m24,
T m33, T m34,
T m44)
{
m[0] = m11; m[1] = m12; m[2] = m13; m[3] = m14;
m[4] = m22; m[5] = m23; m[6] = m24;
m[7] = m33; m[8] = m34;
m[9] = m44;
}
// Make plane
SymetricMatrix(T a, T b, T c, T d)
{
m[0] = a * a; m[1] = a * b; m[2] = a * c; m[3] = a * d;
m[4] = b * b; m[5] = b * c; m[6] = b * d;
m[7] = c * c; m[8] = c * d;
m[9] = d * d;
}
T operator[](int c) const { return m[c]; }
// Determinant
T det(int a11, int a12, int a13,
int a21, int a22, int a23,
int a31, int a32, int a33)
{
T det = m[a11] * m[a22] * m[a33] + m[a13] * m[a21] * m[a32] +
m[a12] * m[a23] * m[a31] - m[a13] * m[a22] * m[a31] -
m[a11] * m[a23] * m[a32] - m[a12] * m[a21] * m[a33];
return det;
}
const SymetricMatrix operator+(const SymetricMatrix& n) const
{
return SymetricMatrix(m[0] + n[0], m[1] + n[1], m[2] + n[2], m[3]+n[3],
m[4] + n[4], m[5] + n[5], m[6] + n[6],
m[7] + n[7], m[8] + n[8],
m[9] + n[9]);
}
SymetricMatrix& operator+=(const SymetricMatrix& n)
{
m[0]+=n[0]; m[1]+=n[1]; m[2]+=n[2]; m[3]+=n[3];
m[4]+=n[4]; m[5]+=n[5]; m[6]+=n[6]; m[7]+=n[7];
m[8]+=n[8]; m[9]+=n[9];
return *this;
}
T m[N];
};
template<class V> using TCoord = typename vertex_traits<remove_cvref_t<V>>::coord_type;
template<class V> using TCompute = typename vertex_traits<remove_cvref_t<V>>::compute_type;
template<class V> inline TCoord<V> x(const V &v) { return vertex_traits<remove_cvref_t<V>>::x(v); }
template<class V> inline TCoord<V> y(const V &v) { return vertex_traits<remove_cvref_t<V>>::y(v); }
template<class V> inline TCoord<V> z(const V &v) { return vertex_traits<remove_cvref_t<V>>::z(v); }
template<class V> inline TCoord<V>& x(V &v) { return vertex_traits<remove_cvref_t<V>>::x(v); }
template<class V> inline TCoord<V>& y(V &v) { return vertex_traits<remove_cvref_t<V>>::y(v); }
template<class V> inline TCoord<V>& z(V &v) { return vertex_traits<remove_cvref_t<V>>::z(v); }
template<class M> using TVertex = typename mesh_traits<remove_cvref_t<M>>::vertex_t;
template<class Mesh> using TMeshCoord = TCoord<TVertex<Mesh>>;
template<class Vertex> TCompute<Vertex> dot(const Vertex &v1, const Vertex &v2)
{
return TCompute<Vertex>(x(v1)) * x(v2) +
TCompute<Vertex>(y(v1)) * y(v2) +
TCompute<Vertex>(z(v1)) * z(v2);
}
template<class Vertex> Vertex cross(const Vertex &a, const Vertex &b)
{
return Vertex{y(a) * z(b) - z(a) * y(b),
z(a) * x(b) - x(a) * z(b),
x(a) * y(b) - y(a) * x(b)};
}
template<class Vertex> TCompute<Vertex> lengthsq(const Vertex &v)
{
return TCompute<Vertex>(x(v)) * x(v) + TCompute<Vertex>(y(v)) * y(v) +
TCompute<Vertex>(z(v)) * z(v);
}
template<class Vertex> void normalize(Vertex &v)
{
double square = std::sqrt(lengthsq(v));
x(v) /= square; y(v) /= square; z(v) /= square;
}
using Bary = std::array<double, 3>;
template<class Vertex>
Bary barycentric(const Vertex &p, const Vertex &a, const Vertex &b, const Vertex &c)
{
Vertex v0 = (b - a);
Vertex v1 = (c - a);
Vertex v2 = (p - a);
double d00 = dot(v0, v0);
double d01 = dot(v0, v1);
double d11 = dot(v1, v1);
double d20 = dot(v2, v0);
double d21 = dot(v2, v1);
double denom = d00 * d11 - d01 * d01;
double v = (d11 * d20 - d01 * d21) / denom;
double w = (d00 * d21 - d01 * d20) / denom;
double u = 1.0 - v - w;
return {u, v, w};
}
template<class Mesh> class SimplifiableMesh {
Mesh *m_mesh;
using Vertex = TVertex<Mesh>;
using Coord = TMeshCoord<Mesh>;
using HiPrecison = TCompute<TVertex<Mesh>>;
using SymMat = SymetricMatrix<HiPrecison>;
struct FaceInfo {
size_t idx;
double err[4] = {0.};
bool deleted = false, dirty = false;
Vertex n;
explicit FaceInfo(size_t id): idx(id) {}
};
struct VertexInfo {
size_t idx;
size_t tstart = 0, tcount = 0;
bool border = false;
SymMat q;
explicit VertexInfo(size_t id): idx(id) {}
};
struct Ref { size_t face; size_t vertex; };
std::vector<Ref> m_refs;
std::vector<FaceInfo> m_faceinfo;
std::vector<VertexInfo> m_vertexinfo;
void compact_faces();
void compact();
size_t mesh_vcount() const { return mesh_traits<Mesh>::vertex_count(*m_mesh); }
size_t mesh_facecount() const { return mesh_traits<Mesh>::face_count(*m_mesh); }
size_t vcount() const { return m_vertexinfo.size(); }
inline Vertex read_vertex(size_t vi) const
{
return mesh_traits<Mesh>::vertex(*m_mesh, vi);
}
inline Vertex read_vertex(const VertexInfo &vinf) const
{
return read_vertex(vinf.idx);
}
inline void write_vertex(size_t idx, const Vertex &v) const
{
mesh_traits<Mesh>::vertex(*m_mesh, idx, v);
}
inline void write_vertex(const VertexInfo &vinf, const Vertex &v) const
{
write_vertex(vinf.idx, v);
}
inline Index3 read_triangle(size_t fi) const
{
return mesh_traits<Mesh>::triangle(*m_mesh, fi);
}
inline Index3 read_triangle(const FaceInfo &finf) const
{
return read_triangle(finf.idx);
}
inline void write_triangle(size_t idx, const Index3 &t)
{
return mesh_traits<Mesh>::triangle(*m_mesh, idx, t);
}
inline void write_triangle(const FaceInfo &finf, const Index3 &t)
{
return write_triangle(finf.idx, t);
}
inline std::array<Vertex, 3> triangle_vertices(const Index3 &f) const
{
std::array<Vertex, 3> p;
for (size_t i = 0; i < 3; ++i) p[i] = read_vertex(f[i]);
return p;
}
// Error between vertex and Quadric
static double vertex_error(const SymMat &q, const Vertex &v)
{
Coord _x = x(v) , _y = y(v), _z = z(v);
return q[0] * _x * _x + 2 * q[1] * _x * _y + 2 * q[2] * _x * _z +
2 * q[3] * _x + q[4] * _y * _y + 2 * q[5] * _y * _z +
2 * q[6] * _y + q[7] * _z * _z + 2 * q[8] * _z + q[9];
}
// Error for one edge
double calculate_error(size_t id_v1, size_t id_v2, Vertex &p_result);
void calculate_error(FaceInfo &fi)
{
Vertex p;
Index3 t = read_triangle(fi);
for (size_t j = 0; j < 3; ++j)
fi.err[j] = calculate_error(t[j], t[(j + 1) % 3], p);
fi.err[3] = std::min(fi.err[0], std::min(fi.err[1], fi.err[2]));
}
void update_mesh(int iteration);
// Update triangle connections and edge error after a edge is collapsed
void update_triangles(size_t i, VertexInfo &vi, std::vector<bool> &deleted, int &deleted_triangles);
// Check if a triangle flips when this edge is removed
bool flipped(const Vertex &p, size_t i0, size_t i1, VertexInfo &v0, VertexInfo &v1, std::vector<bool> &deleted);
public:
explicit SimplifiableMesh(Mesh *m) : m_mesh{m}
{
static_assert(
std::is_arithmetic<Coord>::value,
"Coordinate type of mesh has to be an arithmetic type!");
m_faceinfo.reserve(mesh_traits<Mesh>::face_count(*m));
m_vertexinfo.reserve(mesh_traits<Mesh>::vertex_count(*m));
for (size_t i = 0; i < mesh_facecount(); ++i) m_faceinfo.emplace_back(i);
for (size_t i = 0; i < mesh_vcount(); ++i) m_vertexinfo.emplace_back(i);
}
void simplify_mesh_lossless();
};
template<class Mesh> void SimplifiableMesh<Mesh>::compact_faces()
{
auto it = std::remove_if(m_faceinfo.begin(), m_faceinfo.end(),
[](const FaceInfo &inf) { return inf.deleted; });
m_faceinfo.erase(it, m_faceinfo.end());
}
template<class M> void SimplifiableMesh<M>::compact()
{
for (auto &vi : m_vertexinfo) vi.tcount = 0;
compact_faces();
for (FaceInfo &fi : m_faceinfo)
for (size_t vidx : read_triangle(fi)) m_vertexinfo[vidx].tcount = 1;
size_t dst = 0;
for (VertexInfo &vi : m_vertexinfo) {
if (vi.tcount) {
vi.tstart = dst;
write_vertex(dst++, read_vertex(vi));
}
}
size_t vertex_count = dst;
dst = 0;
for (const FaceInfo &fi : m_faceinfo) {
Index3 t = read_triangle(fi);
for (size_t &idx : t) idx = m_vertexinfo[idx].tstart;
write_triangle(dst++, t);
}
mesh_traits<M>::update(*m_mesh, vertex_count, m_faceinfo.size());
}
template<class Mesh>
double SimplifiableMesh<Mesh>::calculate_error(size_t id_v1, size_t id_v2, Vertex &p_result)
{
// compute interpolated vertex
SymMat q = m_vertexinfo[id_v1].q + m_vertexinfo[id_v2].q;
bool border = m_vertexinfo[id_v1].border & m_vertexinfo[id_v2].border;
double error = 0;
HiPrecison det = q.det(0, 1, 2, 1, 4, 5, 2, 5, 7);
if (!is_approx(det, HiPrecison(0)) && !border)
{
// q_delta is invertible
x(p_result) = Coord(-1) / det * q.det(1, 2, 3, 4, 5, 6, 5, 7, 8); // vx = A41/det(q_delta)
y(p_result) = Coord( 1) / det * q.det(0, 2, 3, 1, 5, 6, 2, 7, 8); // vy = A42/det(q_delta)
z(p_result) = Coord(-1) / det * q.det(0, 1, 3, 1, 4, 6, 2, 5, 8); // vz = A43/det(q_delta)
error = vertex_error(q, p_result);
} else {
// det = 0 -> try to find best result
Vertex p1 = read_vertex(id_v1);
Vertex p2 = read_vertex(id_v2);
Vertex p3 = (p1 + p2) / 2;
double error1 = vertex_error(q, p1);
double error2 = vertex_error(q, p2);
double error3 = vertex_error(q, p3);
error = std::min(error1, std::min(error2, error3));
if (is_approx(error1, error)) p_result = p1;
if (is_approx(error2, error)) p_result = p2;
if (is_approx(error3, error)) p_result = p3;
}
return error;
}
template<class Mesh> void SimplifiableMesh<Mesh>::update_mesh(int iteration)
{
if (iteration > 0) compact_faces();
assert(mesh_vcount() == m_vertexinfo.size());
//
// Init Quadrics by Plane & Edge Errors
//
// required at the beginning ( iteration == 0 )
// recomputing during the simplification is not required,
// but mostly improves the result for closed meshes
//
if (iteration == 0) {
for (VertexInfo &vinf : m_vertexinfo) vinf.q = SymMat{};
for (FaceInfo &finf : m_faceinfo) {
Index3 t = read_triangle(finf);
std::array<Vertex, 3> p = triangle_vertices(t);
Vertex n = cross(Vertex(p[1] - p[0]), Vertex(p[2] - p[0]));
normalize(n);
finf.n = n;
for (size_t fi : t)
m_vertexinfo[fi].q += SymMat(x(n), y(n), z(n), -dot(n, p[0]));
calculate_error(finf);
}
}
// Init Reference ID list
for (VertexInfo &vi : m_vertexinfo) { vi.tstart = 0; vi.tcount = 0; }
for (FaceInfo &fi : m_faceinfo)
for (size_t vidx : read_triangle(fi))
m_vertexinfo[vidx].tcount++;
size_t tstart = 0;
for (VertexInfo &vi : m_vertexinfo) {
vi.tstart = tstart;
tstart += vi.tcount;
vi.tcount = 0;
}
// Write References
m_refs.resize(m_faceinfo.size() * 3);
for (size_t i = 0; i < m_faceinfo.size(); ++i) {
const FaceInfo &fi = m_faceinfo[i];
Index3 t = read_triangle(fi);
for (size_t j = 0; j < 3; ++j) {
VertexInfo &vi = m_vertexinfo[t[j]];
assert(vi.tstart + vi.tcount < m_refs.size());
Ref &ref = m_refs[vi.tstart + vi.tcount];
ref.face = i;
ref.vertex = j;
vi.tcount++;
}
}
// Identify boundary : vertices[].border=0,1
if (iteration == 0) {
for (VertexInfo &vi: m_vertexinfo) vi.border = false;
std::vector<size_t> vcount, vids;
for (VertexInfo &vi: m_vertexinfo) {
vcount.clear();
vids.clear();
for(size_t j = 0; j < vi.tcount; ++j) {
assert(vi.tstart + j < m_refs.size());
FaceInfo &fi = m_faceinfo[m_refs[vi.tstart + j].face];
Index3 t = read_triangle(fi);
for (size_t fid : t) {
size_t ofs=0;
while (ofs < vcount.size())
{
if (vids[ofs] == fid) break;
ofs++;
}
if (ofs == vcount.size())
{
vcount.emplace_back(1);
vids.emplace_back(fid);
}
else
vcount[ofs]++;
}
}
for (size_t j = 0; j < vcount.size(); ++j)
if(vcount[j] == 1) m_vertexinfo[vids[j]].border = true;
}
}
}
template<class Mesh>
void SimplifiableMesh<Mesh>::update_triangles(size_t i0,
VertexInfo & vi,
std::vector<bool> &deleted,
int &deleted_triangles)
{
Vertex p;
for (size_t k = 0; k < vi.tcount; ++k) {
assert(vi.tstart + k < m_refs.size());
Ref &r = m_refs[vi.tstart + k];
FaceInfo &fi = m_faceinfo[r.face];
if (fi.deleted) continue;
if (deleted[k]) {
fi.deleted = true;
deleted_triangles++;
continue;
}
Index3 t = read_triangle(fi);
t[r.vertex] = i0;
write_triangle(fi, t);
fi.dirty = true;
fi.err[0] = calculate_error(t[0], t[1], p);
fi.err[1] = calculate_error(t[1], t[2], p);
fi.err[2] = calculate_error(t[2], t[0], p);
fi.err[3] = std::min(fi.err[0], std::min(fi.err[1], fi.err[2]));
m_refs.emplace_back(r);
}
}
template<class Mesh>
bool SimplifiableMesh<Mesh>::flipped(const Vertex & p,
size_t /*i0*/,
size_t i1,
VertexInfo & v0,
VertexInfo & /*v1*/,
std::vector<bool> &deleted)
{
for (size_t k = 0; k < v0.tcount; ++k) {
size_t ridx = v0.tstart + k;
assert(ridx < m_refs.size());
FaceInfo &fi = m_faceinfo[m_refs[ridx].face];
if (fi.deleted) continue;
Index3 t = read_triangle(fi);
int s = m_refs[ridx].vertex;
size_t id1 = t[(s+1) % 3];
size_t id2 = t[(s+2) % 3];
if(id1 == i1 || id2 == i1) // delete ?
{
deleted[k] = true;
continue;
}
Vertex d1 = read_vertex(id1) - p;
normalize(d1);
Vertex d2 = read_vertex(id2) - p;
normalize(d2);
if (std::abs(dot(d1, d2)) > 0.999) return true;
Vertex n = cross(d1, d2);
normalize(n);
deleted[k] = false;
if (dot(n, fi.n) < 0.2) return true;
}
return false;
}
template<class Mesh>
void SimplifiableMesh<Mesh>::simplify_mesh_lossless()
{
// init
for (FaceInfo &fi : m_faceinfo) fi.deleted = false;
// main iteration loop
int deleted_triangles=0;
std::vector<bool> deleted0, deleted1;
for (int iteration = 0; iteration < 9999; iteration ++) {
// update mesh constantly
update_mesh(iteration);
// clear dirty flag
for (FaceInfo &fi : m_faceinfo) fi.dirty = false;
//
// All triangles with edges below the threshold will be removed
//
// The following numbers works well for most models.
// If it does not, try to adjust the 3 parameters
//
double threshold = std::numeric_limits<double>::epsilon(); //1.0E-3 EPS; // Really? (tm)
dout() << "lossless iteration " << iteration << "\n";
for (FaceInfo &fi : m_faceinfo) {
if (fi.err[3] > threshold || fi.deleted || fi.dirty) continue;
for (size_t j = 0; j < 3; ++j) {
if (fi.err[j] > threshold) continue;
Index3 t = read_triangle(fi);
size_t i0 = t[j];
VertexInfo &v0 = m_vertexinfo[i0];
size_t i1 = t[(j + 1) % 3];
VertexInfo &v1 = m_vertexinfo[i1];
// Border check
if(v0.border != v1.border) continue;
// Compute vertex to collapse to
Vertex p;
calculate_error(i0, i1, p);
deleted0.resize(v0.tcount); // normals temporarily
deleted1.resize(v1.tcount); // normals temporarily
// don't remove if flipped
if (flipped(p, i0, i1, v0, v1, deleted0)) continue;
if (flipped(p, i1, i0, v1, v0, deleted1)) continue;
// not flipped, so remove edge
write_vertex(v0, p);
v0.q = v1.q + v0.q;
size_t tstart = m_refs.size();
update_triangles(i0, v0, deleted0, deleted_triangles);
update_triangles(i0, v1, deleted1, deleted_triangles);
assert(m_refs.size() >= tstart);
size_t tcount = m_refs.size() - tstart;
if(tcount <= v0.tcount)
{
// save ram
if (tcount) {
auto from = m_refs.begin() + tstart, to = from + tcount;
std::copy(from, to, m_refs.begin() + v0.tstart);
}
}
else
// append
v0.tstart = tstart;
v0.tcount = tcount;
break;
}
}
if (deleted_triangles <= 0) break;
deleted_triangles = 0;
}
compact();
}
} // namespace implementation
} // namespace SimplifyMesh
#endif // SIMPLIFYMESHIMPL_HPP

View file

@ -70,6 +70,34 @@ TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Vec3crd>& f
stl_get_size(&stl);
}
TriangleMesh::TriangleMesh(const indexed_triangle_set &M)
{
stl.stats.type = inmemory;
// count facets and allocate memory
stl.stats.number_of_facets = uint32_t(M.indices.size());
stl.stats.original_num_facets = int(stl.stats.number_of_facets);
stl_allocate(&stl);
for (uint32_t i = 0; i < stl.stats.number_of_facets; ++ i) {
stl_facet facet;
facet.vertex[0] = M.vertices[size_t(M.indices[i](0))];
facet.vertex[1] = M.vertices[size_t(M.indices[i](1))];
facet.vertex[2] = M.vertices[size_t(M.indices[i](2))];
facet.extra[0] = 0;
facet.extra[1] = 0;
stl_normal normal;
stl_calculate_normal(normal, &facet);
stl_normalize_vector(normal);
facet.normal = normal;
stl.facet_start[i] = facet;
}
stl_get_size(&stl);
}
// #define SLIC3R_TRACE_REPAIR
void TriangleMesh::repair(bool update_shared_vertices)

View file

@ -23,6 +23,7 @@ class TriangleMesh
public:
TriangleMesh() : repaired(false) {}
TriangleMesh(const Pointf3s &points, const std::vector<Vec3crd> &facets);
explicit TriangleMesh(const indexed_triangle_set &M);
void clear() { this->stl.clear(); this->its.clear(); this->repaired = false; }
bool ReadSTLFile(const char* input_file) { return stl_open(&stl, input_file); }
bool write_ascii(const char* output_file) { return stl_write_ascii(&this->stl, output_file, ""); }

View file

@ -11,6 +11,7 @@ add_executable(${_TEST_NAME}_tests
test_placeholder_parser.cpp
test_polygon.cpp
test_stl.cpp
test_meshsimplify.cpp
)
if (TARGET OpenVDB::openvdb)

View file

@ -9,6 +9,8 @@
#include <libnest2d/tools/benchmark.h>
#include <libslic3r/SimplifyMesh.hpp>
#if defined(WIN32) || defined(_WIN32)
#define PATH_SEPARATOR R"(\)"
#else
@ -23,6 +25,7 @@ static Slic3r::TriangleMesh load_model(const std::string &obj_filename)
return mesh;
}
TEST_CASE("Negative 3D offset should produce smaller object.", "[Hollowing]")
{
Slic3r::TriangleMesh in_mesh = load_model("20mm_cube.obj");
@ -40,3 +43,4 @@ TEST_CASE("Negative 3D offset should produce smaller object.", "[Hollowing]")
in_mesh.require_shared_vertices();
in_mesh.WriteOBJFile("merged_out.obj");
}

View file

@ -0,0 +1,11 @@
#include <catch2/catch.hpp>
#include <test_utils.hpp>
//#include <libslic3r/MeshSimplify.hpp>
//TEST_CASE("Mesh simplification", "[mesh_simplify]") {
// Simplify::load_obj(TEST_DATA_DIR PATH_SEPARATOR "zaba.obj");
// Simplify::simplify_mesh_lossless();
// Simplify::write_obj("zaba_simplified.obj");
//}