More work to get Boost.Polygon to compile

This commit is contained in:
Alessandro Ranellucci 2014-01-09 19:56:12 +01:00
parent bf91f3096a
commit f9642786d3
8 changed files with 360 additions and 36 deletions

View file

@ -4,7 +4,7 @@
namespace Slic3r {
template <class PointClass>
BoundingBoxBase<PointClass>::BoundingBoxBase(const std::vector<PointClass> points)
BoundingBoxBase<PointClass>::BoundingBoxBase(const std::vector<PointClass> &points)
{
typename std::vector<PointClass>::const_iterator it = points.begin();
this->min.x = this->max.x = it->x;
@ -16,10 +16,10 @@ BoundingBoxBase<PointClass>::BoundingBoxBase(const std::vector<PointClass> point
this->max.y = std::max(it->y, this->max.y);
}
}
template BoundingBoxBase<Point>::BoundingBoxBase(const std::vector<Point> points);
template BoundingBoxBase<Point>::BoundingBoxBase(const std::vector<Point> &points);
template <class PointClass>
BoundingBox3Base<PointClass>::BoundingBox3Base(const std::vector<PointClass> points)
BoundingBox3Base<PointClass>::BoundingBox3Base(const std::vector<PointClass> &points)
: BoundingBoxBase<PointClass>(points)
{
typename std::vector<PointClass>::const_iterator it = points.begin();
@ -29,7 +29,17 @@ BoundingBox3Base<PointClass>::BoundingBox3Base(const std::vector<PointClass> poi
this->max.z = std::max(it->z, this->max.z);
}
}
template BoundingBox3Base<Pointf3>::BoundingBox3Base(const std::vector<Pointf3> points);
template BoundingBox3Base<Pointf3>::BoundingBox3Base(const std::vector<Pointf3> &points);
BoundingBox::BoundingBox(const Lines &lines)
{
Points points;
for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) {
points.push_back(line->a);
points.push_back(line->b);
}
*this = BoundingBox(points);
}
void
BoundingBox::polygon(Polygon* polygon) const

View file

@ -20,7 +20,7 @@ class BoundingBoxBase
PointClass max;
BoundingBoxBase() {};
BoundingBoxBase(const std::vector<PointClass> points);
BoundingBoxBase(const std::vector<PointClass> &points);
void merge(const PointClass &point);
void merge(const BoundingBoxBase<PointClass> &bb);
void scale(double factor);
@ -34,7 +34,7 @@ class BoundingBox3Base : public BoundingBoxBase<PointClass>
{
public:
BoundingBox3Base() {};
BoundingBox3Base(const std::vector<PointClass> points);
BoundingBox3Base(const std::vector<PointClass> &points);
void merge(const PointClass &point);
void merge(const BoundingBox3Base<PointClass> &bb);
PointClass size() const;
@ -48,7 +48,8 @@ class BoundingBox : public BoundingBoxBase<Point>
void polygon(Polygon* polygon) const;
BoundingBox() {};
BoundingBox(const Points points) : BoundingBoxBase<Point>(points) {};
BoundingBox(const Points &points) : BoundingBoxBase<Point>(points) {};
BoundingBox(const Lines &lines);
};
/*
@ -59,7 +60,7 @@ class BoundingBox3 : public BoundingBox3Base<Point3> {};
class BoundingBoxf3 : public BoundingBox3Base<Pointf3> {
public:
BoundingBoxf3() {};
BoundingBoxf3(const std::vector<Pointf3> points) : BoundingBox3Base<Pointf3>(points) {};
BoundingBoxf3(const std::vector<Pointf3> &points) : BoundingBox3Base<Pointf3>(points) {};
};
}

View file

@ -1,11 +1,8 @@
#include "ExPolygon.hpp"
#include "Geometry.hpp"
#include "Polygon.hpp"
#include "Line.hpp"
#include "ClipperUtils.hpp"
#include "boost/polygon/voronoi.hpp"
using boost::polygon::voronoi_builder;
using boost::polygon::voronoi_diagram;
namespace Slic3r {
@ -138,34 +135,16 @@ ExPolygon::simplify(double tolerance, ExPolygons &expolygons) const
void
ExPolygon::medial_axis(Polylines* polylines) const
{
// init helper object
Slic3r::Geometry::MedialAxis ma;
// populate list of segments for the Voronoi diagram
Lines lines;
this->contour.lines(&lines);
this->contour.lines(&ma.lines);
for (Polygons::const_iterator hole = this->holes.begin(); hole != this->holes.end(); ++hole)
hole->lines(&lines);
hole->lines(&ma.lines);
// compute the Voronoi diagram
voronoi_diagram<double> vd;
construct_voronoi(lines.begin(), lines.end(), &vd);
// iterate through the diagram
int result = 0;
for (voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it) {
if (it->is_primary()) ++result;
Polyline p;
if (!it->is_finite()) {
clip_infinite_edge(*it, &p.points);
} else {
p.points.push_back(Point( it->vertex0()->x(), it->vertex0()->y() ));
p.points.push_back(Point( it->vertex1()->x(), it->vertex1()->y() ));
if (it->is_curved()) {
sample_curved_edge(*it, &p.points);
}
}
polylines->push_back(p);
}
printf("medial axis result = %d\n", result);
ma.build(polylines);
// clip segments to our expolygon area
intersection(*polylines, *this, *polylines);

View file

@ -3,6 +3,9 @@
#include <algorithm>
#include <map>
#include <vector>
#include "voronoi_visual_utils.hpp"
using namespace boost::polygon; // provides also high() and low()
namespace Slic3r { namespace Geometry {
@ -82,4 +85,123 @@ chained_path_items(Points &points, T &items, T &retval)
}
template void chained_path_items(Points &points, ClipperLib::PolyNodes &items, ClipperLib::PolyNodes &retval);
void
MedialAxis::build(Polylines* polylines)
{
// build bounding box (we use it for clipping infinite segments)
this->bb = BoundingBox(this->lines);
construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd);
// iterate through the diagram
int result = 0;
for (voronoi_diagram<double>::const_edge_iterator it = this->vd.edges().begin(); it != this->vd.edges().end(); ++it) {
if (it->is_primary()) ++result;
Polyline p;
if (!it->is_finite()) {
this->clip_infinite_edge(*it, &p.points);
} else {
p.points.push_back(Point( it->vertex0()->x(), it->vertex0()->y() ));
p.points.push_back(Point( it->vertex1()->x(), it->vertex1()->y() ));
if (it->is_curved()) {
this->sample_curved_edge(*it, &p.points);
}
}
polylines->push_back(p);
}
printf("medial axis result = %d\n", result);
}
void
MedialAxis::clip_infinite_edge(const voronoi_diagram<double>::edge_type& edge, Points* clipped_edge)
{
const voronoi_diagram<double>::cell_type& cell1 = *edge.cell();
const voronoi_diagram<double>::cell_type& cell2 = *edge.twin()->cell();
Point origin, direction;
// Infinite edges could not be created by two segment sites.
if (cell1.contains_point() && cell2.contains_point()) {
Point p1 = retrieve_point(cell1);
Point p2 = retrieve_point(cell2);
origin.x = (p1.x + p2.x) * 0.5;
origin.y = (p1.y + p2.y) * 0.5;
direction.x = p1.y - p2.y;
direction.y = p2.x - p1.x;
} else {
origin = cell1.contains_segment()
? retrieve_point(cell2)
: retrieve_point(cell1);
Line segment = cell1.contains_segment()
? retrieve_segment(cell1)
: retrieve_segment(cell2);
coord_t dx = high(segment).x - low(segment).x;
coord_t dy = high(segment).y - low(segment).y;
if ((low(segment) == origin) ^ cell1.contains_point()) {
direction.x = dy;
direction.y = -dx;
} else {
direction.x = -dy;
direction.y = dx;
}
}
coord_t side = this->bb.size().x;
coord_t koef = side / (std::max)(fabs(direction.x), fabs(direction.y));
if (edge.vertex0() == NULL) {
clipped_edge->push_back(Point(
origin.x - direction.x * koef,
origin.y - direction.y * koef
));
} else {
clipped_edge->push_back(
Point(edge.vertex0()->x(), edge.vertex0()->y()));
}
if (edge.vertex1() == NULL) {
clipped_edge->push_back(Point(
origin.x + direction.x * koef,
origin.y + direction.y * koef
));
} else {
clipped_edge->push_back(
Point(edge.vertex1()->x(), edge.vertex1()->y()));
}
}
void
MedialAxis::sample_curved_edge(const voronoi_diagram<double>::edge_type& edge, Points* sampled_edge)
{
Point point = edge.cell()->contains_point()
? retrieve_point(*edge.cell())
: retrieve_point(*edge.twin()->cell());
Line segment = edge.cell()->contains_point()
? retrieve_segment(*edge.twin()->cell())
: retrieve_segment(*edge.cell());
coord_t max_dist = 1E-3 * this->bb.size().x;
voronoi_visual_utils<coord_t>::discretize(point, segment, max_dist, sampled_edge);
}
Point
MedialAxis::retrieve_point(const voronoi_diagram<double>::cell_type& cell)
{
voronoi_diagram<double>::cell_type::source_index_type index = cell.source_index();
voronoi_diagram<double>::cell_type::source_category_type category = cell.source_category();
if (category == SOURCE_CATEGORY_SINGLE_POINT) {
return this->points[index];
}
index -= this->points.size();
if (category == SOURCE_CATEGORY_SEGMENT_START_POINT) {
return low(this->lines[index]);
} else {
return high(this->lines[index]);
}
}
Line
MedialAxis::retrieve_segment(const voronoi_diagram<double>::cell_type& cell)
{
voronoi_diagram<double>::cell_type::source_index_type index = cell.source_index() - this->points.size();
return this->lines[index];
}
} }

View file

@ -1,8 +1,13 @@
#ifndef slic3r_Geometry_hpp_
#define slic3r_Geometry_hpp_
#include "BoundingBox.hpp"
#include "Polygon.hpp"
#include "boost/polygon/voronoi.hpp"
using boost::polygon::voronoi_builder;
using boost::polygon::voronoi_diagram;
namespace Slic3r { namespace Geometry {
void convex_hull(Points &points, Polygon* hull);
@ -10,6 +15,21 @@ void chained_path(Points &points, std::vector<Points::size_type> &retval, Point
void chained_path(Points &points, std::vector<Points::size_type> &retval);
template<class T> void chained_path_items(Points &points, T &items, T &retval);
class MedialAxis {
public:
Points points;
Lines lines;
void build(Polylines* polylines);
void clip_infinite_edge(const voronoi_diagram<double>::edge_type& edge, Points* clipped_edge);
void sample_curved_edge(const voronoi_diagram<double>::edge_type& edge, Points* sampled_edge);
Point retrieve_point(const voronoi_diagram<double>::cell_type& cell);
Line retrieve_segment(const voronoi_diagram<double>::cell_type& cell);
private:
voronoi_diagram<double> vd;
BoundingBox bb;
};
} }
#endif

View file

@ -4,6 +4,11 @@
namespace Slic3r {
inline bool
Point::operator==(const Point& rhs) const {
return this->coincides_with(rhs);
}
void
Point::scale(double factor)
{

View file

@ -21,6 +21,7 @@ class Point
coord_t x;
coord_t y;
explicit Point(coord_t _x = 0, coord_t _y = 0): x(_x), y(_y) {};
bool operator==(const Point& rhs) const;
void scale(double factor);
void translate(double x, double y);
void rotate(double angle, Point* center);

View file

@ -0,0 +1,186 @@
// Boost.Polygon library voronoi_graphic_utils.hpp header file
// Copyright Andrii Sydorchuk 2010-2012.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for updates, documentation, and revision history.
#ifndef BOOST_POLYGON_VORONOI_VISUAL_UTILS
#define BOOST_POLYGON_VORONOI_VISUAL_UTILS
#include <stack>
#include <vector>
#include <boost/polygon/isotropy.hpp>
#include <boost/polygon/point_concept.hpp>
#include <boost/polygon/segment_concept.hpp>
#include <boost/polygon/rectangle_concept.hpp>
namespace boost {
namespace polygon {
// Utilities class, that contains set of routines handful for visualization.
template <typename CT>
class voronoi_visual_utils {
public:
// Discretize parabolic Voronoi edge.
// Parabolic Voronoi edges are always formed by one point and one segment
// from the initial input set.
//
// Args:
// point: input point.
// segment: input segment.
// max_dist: maximum discretization distance.
// discretization: point discretization of the given Voronoi edge.
//
// Template arguments:
// InCT: coordinate type of the input geometries (usually integer).
// Point: point type, should model point concept.
// Segment: segment type, should model segment concept.
//
// Important:
// discretization should contain both edge endpoints initially.
template <class InCT1, class InCT2,
template<class> class Point,
template<class> class Segment>
static
typename enable_if<
typename gtl_and<
typename gtl_if<
typename is_point_concept<
typename geometry_concept< Point<InCT1> >::type
>::type
>::type,
typename gtl_if<
typename is_segment_concept<
typename geometry_concept< Segment<InCT2> >::type
>::type
>::type
>::type,
void
>::type discretize(
const Point<InCT1>& point,
const Segment<InCT2>& segment,
const CT max_dist,
std::vector< Point<CT> >* discretization) {
// Apply the linear transformation to move start point of the segment to
// the point with coordinates (0, 0) and the direction of the segment to
// coincide the positive direction of the x-axis.
CT segm_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
CT segm_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
CT sqr_segment_length = segm_vec_x * segm_vec_x + segm_vec_y * segm_vec_y;
// Compute x-coordinates of the endpoints of the edge
// in the transformed space.
CT projection_start = sqr_segment_length *
get_point_projection((*discretization)[0], segment);
CT projection_end = sqr_segment_length *
get_point_projection((*discretization)[1], segment);
// Compute parabola parameters in the transformed space.
// Parabola has next representation:
// f(x) = ((x-rot_x)^2 + rot_y^2) / (2.0*rot_y).
CT point_vec_x = cast(x(point)) - cast(x(low(segment)));
CT point_vec_y = cast(y(point)) - cast(y(low(segment)));
CT rot_x = segm_vec_x * point_vec_x + segm_vec_y * point_vec_y;
CT rot_y = segm_vec_x * point_vec_y - segm_vec_y * point_vec_x;
// Save the last point.
Point<CT> last_point = (*discretization)[1];
discretization->pop_back();
// Use stack to avoid recursion.
std::stack<CT> point_stack;
point_stack.push(projection_end);
CT cur_x = projection_start;
CT cur_y = parabola_y(cur_x, rot_x, rot_y);
// Adjust max_dist parameter in the transformed space.
const CT max_dist_transformed = max_dist * max_dist * sqr_segment_length;
while (!point_stack.empty()) {
CT new_x = point_stack.top();
CT new_y = parabola_y(new_x, rot_x, rot_y);
// Compute coordinates of the point of the parabola that is
// furthest from the current line segment.
CT mid_x = (new_y - cur_y) / (new_x - cur_x) * rot_y + rot_x;
CT mid_y = parabola_y(mid_x, rot_x, rot_y);
// Compute maximum distance between the given parabolic arc
// and line segment that discretize it.
CT dist = (new_y - cur_y) * (mid_x - cur_x) -
(new_x - cur_x) * (mid_y - cur_y);
dist = dist * dist / ((new_y - cur_y) * (new_y - cur_y) +
(new_x - cur_x) * (new_x - cur_x));
if (dist <= max_dist_transformed) {
// Distance between parabola and line segment is less than max_dist.
point_stack.pop();
CT inter_x = (segm_vec_x * new_x - segm_vec_y * new_y) /
sqr_segment_length + cast(x(low(segment)));
CT inter_y = (segm_vec_x * new_y + segm_vec_y * new_x) /
sqr_segment_length + cast(y(low(segment)));
discretization->push_back(Point<CT>(inter_x, inter_y));
cur_x = new_x;
cur_y = new_y;
} else {
point_stack.push(mid_x);
}
}
// Update last point.
discretization->back() = last_point;
}
private:
// Compute y(x) = ((x - a) * (x - a) + b * b) / (2 * b).
static CT parabola_y(CT x, CT a, CT b) {
return ((x - a) * (x - a) + b * b) / (b + b);
}
// Get normalized length of the distance between:
// 1) point projection onto the segment
// 2) start point of the segment
// Return this length divided by the segment length. This is made to avoid
// sqrt computation during transformation from the initial space to the
// transformed one and vice versa. The assumption is made that projection of
// the point lies between the start-point and endpoint of the segment.
template <class InCT,
template<class> class Point,
template<class> class Segment>
static
typename enable_if<
typename gtl_and<
typename gtl_if<
typename is_point_concept<
typename geometry_concept< Point<int> >::type
>::type
>::type,
typename gtl_if<
typename is_segment_concept<
typename geometry_concept< Segment<long> >::type
>::type
>::type
>::type,
CT
>::type get_point_projection(
const Point<CT>& point, const Segment<InCT>& segment) {
CT segment_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
CT segment_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
CT point_vec_x = x(point) - cast(x(low(segment)));
CT point_vec_y = y(point) - cast(y(low(segment)));
CT sqr_segment_length =
segment_vec_x * segment_vec_x + segment_vec_y * segment_vec_y;
CT vec_dot = segment_vec_x * point_vec_x + segment_vec_y * point_vec_y;
return vec_dot / sqr_segment_length;
}
template <typename InCT>
static CT cast(const InCT& value) {
return static_cast<CT>(value);
}
};
}
}
#endif // BOOST_POLYGON_VORONOI_VISUAL_UTILS