Lay flat gizmo improvements - merge adjacent faces, compute and cache convex hull for entire ModelObject, refresh when moved, etc.

This commit is contained in:
Lukas Matena 2018-08-17 15:40:47 +02:00
parent 48b9793d3d
commit f9efcc36b6
5 changed files with 256 additions and 98 deletions

View file

@ -728,6 +728,7 @@ TriangleMesh TriangleMesh::convex_hull_3d() const
TriangleMesh output_mesh(det_vertices, facets);
output_mesh.repair();
output_mesh.require_shared_vertices();
return output_mesh;
}

View file

@ -1409,14 +1409,14 @@ Pointf3 GLCanvas3D::Gizmos::get_flattening_normal() const
return (it != m_gizmos.end()) ? reinterpret_cast<GLGizmoFlatten*>(it->second)->get_flattening_normal() : Pointf3(0.f, 0.f, 0.f);
}
void GLCanvas3D::Gizmos::set_flattening_data(std::vector<Pointf3s> vertices_list)
void GLCanvas3D::Gizmos::set_flattening_data(const ModelObject* model_object)
{
if (!m_enabled)
return;
GizmosMap::const_iterator it = m_gizmos.find(Flatten);
if (it != m_gizmos.end())
reinterpret_cast<GLGizmoFlatten*>(it->second)->set_flattening_data(vertices_list);
reinterpret_cast<GLGizmoFlatten*>(it->second)->set_flattening_data(model_object);
}
void GLCanvas3D::Gizmos::render(const GLCanvas3D& canvas, const BoundingBoxf3& box) const
@ -2202,62 +2202,7 @@ void GLCanvas3D::update_gizmos_data()
{
m_gizmos.set_scale(model_instance->scaling_factor);
m_gizmos.set_angle_z(model_instance->rotation);
/////////////////////////////////////////////////////////////////////////
// Following block provides convex hull data to the Flatten gizmo
// It is temporary, it should be optimized and moved elsewhere later
TriangleMesh ch = model_object->mesh().convex_hull_3d();
stl_facet* facet_ptr = ch.stl.facet_start;
std::vector<Pointf3s> points;
const unsigned int k = 20;
const float ratio = 0.2f;
const unsigned int N = 3; // 3 - triangle
while (facet_ptr < ch.stl.facet_start+ch.stl.stats.number_of_facets) {
Pointf3 a = Pointf3(facet_ptr->vertex[1].x - facet_ptr->vertex[0].x, facet_ptr->vertex[1].y - facet_ptr->vertex[0].y, facet_ptr->vertex[1].z - facet_ptr->vertex[0].z);
Pointf3 b = Pointf3(facet_ptr->vertex[2].x - facet_ptr->vertex[0].x, facet_ptr->vertex[2].y - facet_ptr->vertex[0].y, facet_ptr->vertex[2].z - facet_ptr->vertex[0].z);
if (0.5 * sqrt(dot(cross(a, b), cross(a,b))) > 50.f) {
points.emplace_back(Pointf3s(2*k*N));
std::vector<std::pair<unsigned int, unsigned int>> neighbours;
if (k != 0) {
for (unsigned int j=0; j<N; ++j) {
points.back()[j*2*k] = Pointf3(facet_ptr->vertex[j].x, facet_ptr->vertex[j].y, facet_ptr->vertex[j].z);
neighbours.push_back(std::make_pair((int)(j*2*k-k) < 0 ? (N-1)*2*k+k : j*2*k-k, j*2*k+k));
}
for (unsigned int i=0; i<k; ++i) {
// Calculate middle of each edge so that neighbours points to something useful:
for (unsigned int j=0; j<N; ++j)
if (i==0)
points.back()[j*2*k+k] = 0.5f * (points.back()[j*2*k] + points.back()[j==N-1 ? 0 : (j+1)*2*k]);
else {
float r = 0.2+0.3/(k-1)*i;
points.back()[neighbours[j].first] = r*points.back()[j*2*k] + (1-r) * points.back()[neighbours[j].first-1];
points.back()[neighbours[j].second] = r*points.back()[j*2*k] + (1-r) * points.back()[neighbours[j].second+1];
}
// Now we have a triangle and valid neighbours, we can do an iteration:
for (unsigned int j=0; j<N; ++j)
points.back()[2*k*j] = (1-ratio) * points.back()[2*k*j] + ratio * 0.5*(points.back()[neighbours[j].first] + points.back()[neighbours[j].second]);
for (auto& n : neighbours) {
++n.first;
--n.second;
}
}
}
else
for (unsigned int j=0; j<N; ++j)
points.back().emplace_back(Pointf3(facet_ptr->vertex[j].x, facet_ptr->vertex[j].y, facet_ptr->vertex[j].z));
points.back().emplace_back(Pointf3(facet_ptr->normal.x, facet_ptr->normal.y, facet_ptr->normal.z));
}
facet_ptr+=1;
}
m_gizmos.set_flattening_data(points);
////////////////////////////////////////////////////////////////////////
m_gizmos.set_flattening_data(model_object);
}
}
}
@ -2265,7 +2210,7 @@ void GLCanvas3D::update_gizmos_data()
{
m_gizmos.set_scale(1.0f);
m_gizmos.set_angle_z(0.0f);
m_gizmos.set_flattening_data(std::vector<Pointf3s>());
m_gizmos.set_flattening_data(nullptr);
}
}

View file

@ -383,7 +383,7 @@ public:
float get_angle_z() const;
void set_angle_z(float angle_z);
void set_flattening_data(std::vector<Pointf3s> vertices_list);
void set_flattening_data(const ModelObject* model_object);
Pointf3 get_flattening_normal() const;
void render(const GLCanvas3D& canvas, const BoundingBoxf3& box) const;

View file

@ -2,6 +2,8 @@
#include "../../libslic3r/Utils.hpp"
#include "../../libslic3r/BoundingBox.hpp"
#include "../../libslic3r/Model.hpp"
#include "../../libslic3r/Geometry.hpp"
#include <GL/glew.h>
@ -534,22 +536,19 @@ void GLGizmoFlatten::on_start_dragging()
m_normal = m_planes[m_hover_id].normal;
}
void GLGizmoFlatten::on_update(const Pointf& mouse_pos)
{
/*Pointf center(0.5 * (m_grabbers[1].center.x + m_grabbers[0].center.x), 0.5 * (m_grabbers[3].center.y + m_grabbers[0].center.y));
coordf_t orig_len = length(m_starting_drag_position - center);
coordf_t new_len = length(mouse_pos - center);
coordf_t ratio = (orig_len != 0.0) ? new_len / orig_len : 1.0;
m_scale = m_starting_scale * (float)ratio;*/
}
void GLGizmoFlatten::on_render(const BoundingBoxf3& box) const
{
// the dragged_offset is a vector measuring where was the object moved
// with the gizmo being on. This is reset in set_flattening_data and
// does not work correctly when there are multiple copies.
if (!m_center) // this is the first bounding box that we see
m_center.reset(new Pointf3(box.center().x, box.center().y));
Pointf3 dragged_offset = box.center() - *m_center;
bool blending_was_enabled = ::glIsEnabled(GL_BLEND);
bool depth_test_was_enabled = ::glIsEnabled(GL_DEPTH_TEST);
::glEnable(GL_BLEND);
::glDisable(GL_DEPTH_TEST);
::glEnable(GL_DEPTH_TEST);
for (int i=0; i<(int)m_planes.size(); ++i) {
if (i == m_hover_id)
@ -557,14 +556,19 @@ void GLGizmoFlatten::on_render(const BoundingBoxf3& box) const
else
::glColor4f(0.9f, 0.9f, 0.9f, 0.5f);
::glBegin(GL_POLYGON);
for (const auto& vertex : m_planes[i].vertices)
::glVertex3f((GLfloat)vertex.x, (GLfloat)vertex.y, (GLfloat)vertex.z);
::glEnd();
for (Pointf offset : m_instances_positions) {
offset += dragged_offset;
::glBegin(GL_POLYGON);
for (const auto& vertex : m_planes[i].vertices)
::glVertex3f((GLfloat)vertex.x + offset.x, (GLfloat)vertex.y + offset.y, (GLfloat)vertex.z);
::glEnd();
}
}
if (!blending_was_enabled)
::glDisable(GL_BLEND);
if (!depth_test_was_enabled)
::glDisable(GL_DEPTH_TEST);
}
void GLGizmoFlatten::on_render_for_picking(const BoundingBoxf3& box) const
@ -576,27 +580,220 @@ void GLGizmoFlatten::on_render_for_picking(const BoundingBoxf3& box) const
for (unsigned int i = 0; i < m_planes.size(); ++i)
{
::glColor3f(1.f, 1.f, (254.0f - (float)i) * INV_255);
::glBegin(GL_POLYGON);
for (const auto& vertex : m_planes[i].vertices)
::glVertex3f((GLfloat)vertex.x, (GLfloat)vertex.y, (GLfloat)vertex.z);
::glEnd();
for (const Pointf& offset : m_instances_positions) {
::glBegin(GL_POLYGON);
for (const auto& vertex : m_planes[i].vertices)
::glVertex3f((GLfloat)vertex.x + offset.x, (GLfloat)vertex.y + offset.y, (GLfloat)vertex.z);
::glEnd();
}
}
}
void GLGizmoFlatten::set_flattening_data(std::vector<Pointf3s> vertices_list)
// TODO - remove and use Eigen instead
static Pointf3 super_rotation(const Pointf3& axis, float angle, const Pointf3& point)
{
// Each entry in vertices_list describe one polygon that can be laid flat.
// All points but the last one are vertices of the polygon, the last "point" is the outer normal vector.
float axis_length = axis.distance_to(Pointf3(0.f, 0.f, 0.f));
float x = axis.x / axis_length;
float y = axis.y / axis_length;
float z = axis.z / axis_length;
float s = sin(angle);
float c = cos(angle);
float D = 1-c;
float matrix[3][3] = { { c + x*x*D, x*y*D-z*s, x*z*D+y*s },
{ y*x*D+z*s, c+y*y*D, y*z*D-x*s },
{ z*x*D-y*s, z*y*D+x*s, c+z*z*D } };
float in[3] = { (float)point.x, (float)point.y, (float)point.z };
float out[3] = { 0, 0, 0 };
for (unsigned char i=0; i<3; ++i)
for (unsigned char j=0; j<3; ++j)
out[i] += matrix[i][j] * in[j];
return Pointf3(out[0], out[1], out[2]);
}
void GLGizmoFlatten::set_flattening_data(const ModelObject* model_object)
{
m_center.release(); // object is not being dragged (this would not be called otherwise) - we must forget about the bounding box position...
m_model_object = model_object;
// ...and save the updated positions of the object instances:
if (m_model_object && !m_model_object->instances.empty()) {
m_instances_positions.clear();
for (const auto* instance : m_model_object->instances)
m_instances_positions.emplace_back(instance->offset);
}
if (is_plane_update_necessary())
update_planes();
}
void GLGizmoFlatten::update_planes()
{
TriangleMesh ch;
for (const ModelVolume* vol : m_model_object->volumes)
ch.merge(vol->get_convex_hull());
ch = ch.convex_hull_3d();
ch.scale(m_model_object->instances.front()->scaling_factor);
ch.rotate_z(m_model_object->instances.front()->rotation);
m_planes.clear();
m_planes.reserve(vertices_list.size());
for (const auto& plane_data : vertices_list) {
m_planes.emplace_back(PlaneData());
for (unsigned int i=0; i<plane_data.size()-1; ++i)
m_planes.back().vertices.emplace_back(plane_data[i]);
m_planes.back().normal = plane_data.back();
// Now we'll go through all the facets and append Points of facets sharing the same normal:
const int num_of_facets = ch.stl.stats.number_of_facets;
std::vector<int> facet_queue(num_of_facets, 0);
std::vector<bool> facet_visited(num_of_facets, false);
int facet_queue_cnt = 0;
const stl_normal* normal_ptr = nullptr;
while (1) {
// Find next unvisited triangle:
int facet_idx = 0;
for (; facet_idx < num_of_facets; ++ facet_idx)
if (!facet_visited[facet_idx]) {
facet_queue[facet_queue_cnt ++] = facet_idx;
facet_visited[facet_idx] = true;
normal_ptr = &ch.stl.facet_start[facet_idx].normal;
m_planes.emplace_back();
break;
}
if (facet_idx == num_of_facets)
break; // Everything was visited already
while (facet_queue_cnt > 0) {
int facet_idx = facet_queue[-- facet_queue_cnt];
const stl_normal* this_normal_ptr = &ch.stl.facet_start[facet_idx].normal;
//if (this_normal_ptr->x == normal_ptr->x && this_normal_ptr->y == normal_ptr->y && this_normal_ptr->z == normal_ptr->z) {
if (std::abs(this_normal_ptr->x-normal_ptr->x) < 0.001 && std::abs(this_normal_ptr->y-normal_ptr->y) < 0.001 && std::abs(this_normal_ptr->z-normal_ptr->z) < 0.001) {
stl_vertex* first_vertex = ch.stl.facet_start[facet_idx].vertex;
for (int j=0; j<3; ++j)
m_planes.back().vertices.emplace_back(first_vertex[j].x, first_vertex[j].y, first_vertex[j].z);
facet_visited[facet_idx] = true;
for (int j = 0; j < 3; ++ j) {
int neighbor_idx = ch.stl.neighbors_start[facet_idx].neighbor[j];
if (! facet_visited[neighbor_idx])
facet_queue[facet_queue_cnt ++] = neighbor_idx;
}
}
}
m_planes.back().normal = Pointf3(normal_ptr->x, normal_ptr->y, normal_ptr->z);
}
// Now we'll go through all the polygons, transform the points into xy plane to process them:
for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) {
Pointf3s& polygon = m_planes[polygon_id].vertices;
const Pointf3& normal = m_planes[polygon_id].normal;
// We are going to rotate about z and y to flatten the plane
float angle_z = 0.f;
float angle_y = 0.f;
if (std::abs(normal.y) > 0.001)
angle_z = -atan2(normal.y, normal.x); // angle to rotate so that normal ends up in xz-plane
if (std::abs(normal.x*cos(angle_z)-normal.y*sin(angle_z)) > 0.001)
angle_y = - atan2(normal.x*cos(angle_z)-normal.y*sin(angle_z), normal.z); // angle to rotate to make normal point upwards
else {
// In case it already was in z-direction, we must ensure it is not the wrong way:
angle_y = normal.z > 0.f ? 0 : -M_PI;
}
// Rotate all points to the xy plane:
for (auto& vertex : polygon) {
vertex = super_rotation(Pointf3(0,0,1), angle_z, vertex);
vertex = super_rotation(Pointf3(0,1,0), angle_y, vertex);
}
polygon = Slic3r::Geometry::convex_hull(polygon); // To remove the inner points
// Calculate area of the polygon and discard ones that are too small
float area = 0.f;
for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula
area += polygon[i].x*polygon[i+1 < polygon.size() ? i+1 : 0 ].y - polygon[i+1 < polygon.size() ? i+1 : 0].x*polygon[i].y;
area = std::abs(area/2.f);
if (area < 20.f) {
m_planes.erase(m_planes.begin()+(polygon_id--));
continue;
}
// We will shrink the polygon a little bit so it does not touch the object edges:
Pointf3 centroid = std::accumulate(polygon.begin(), polygon.end(), Pointf3(0.f, 0.f, 0.f));
centroid.scale(1.f/polygon.size());
for (auto& vertex : polygon)
vertex = 0.9f*vertex + 0.1f*centroid;
// Polygon is now simple and convex, we'll round the corners to make them look nicer.
// The algorithm takes a vertex, calculates middles of respective sides and moves the vertex
// towards their average (controlled by 'aggressivity'). This is repeated k times.
// In next iterations, the neighbours are not always taken at the middle (to increase the
// rounding effect at the corners, where we need it most).
const unsigned int k = 10; // number of iterations
const float aggressivity = 0.2f; // agressivity
const unsigned int N = polygon.size();
std::vector<std::pair<unsigned int, unsigned int>> neighbours;
if (k != 0) {
Pointf3s points_out(2*k*N); // vector long enough to store the future vertices
for (unsigned int j=0; j<N; ++j) {
points_out[j*2*k] = polygon[j];
neighbours.push_back(std::make_pair((int)(j*2*k-k) < 0 ? (N-1)*2*k+k : j*2*k-k, j*2*k+k));
}
for (unsigned int i=0; i<k; ++i) {
// Calculate middle of each edge so that neighbours points to something useful:
for (unsigned int j=0; j<N; ++j)
if (i==0)
points_out[j*2*k+k] = 0.5f * (points_out[j*2*k] + points_out[j==N-1 ? 0 : (j+1)*2*k]);
else {
float r = 0.2+0.3/(k-1)*i; // the neighbours are not always taken in the middle
points_out[neighbours[j].first] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].first-1];
points_out[neighbours[j].second] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].second+1];
}
// Now we have a triangle and valid neighbours, we can do an iteration:
for (unsigned int j=0; j<N; ++j)
points_out[2*k*j] = (1-aggressivity) * points_out[2*k*j] +
aggressivity*0.5f*(points_out[neighbours[j].first] + points_out[neighbours[j].second]);
for (auto& n : neighbours) {
++n.first;
--n.second;
}
}
polygon = points_out; // replace the coarse polygon with the smooth one that we just created
}
// Transform back to 3D;
for (auto& b : polygon) {
b.z += 0.1f; // raise a bit above the object surface to avoid flickering
b = super_rotation(Pointf3(0,1,0), -angle_y, b);
b = super_rotation(Pointf3(0,0,1), -angle_z, b);
}
}
// Planes are finished - let's save what we calculated it from:
m_source_data.bounding_boxes.clear();
for (const auto& vol : m_model_object->volumes)
m_source_data.bounding_boxes.push_back(vol->get_convex_hull().bounding_box());
m_source_data.scaling_factor = m_model_object->instances.front()->scaling_factor;
m_source_data.rotation = m_model_object->instances.front()->rotation;
}
// Check if the bounding boxes of each volume's convex hull is the same as before
// and that scaling and rotation has not changed. In that case we don't have to recalculate it.
bool GLGizmoFlatten::is_plane_update_necessary() const
{
if (m_state != On || !m_model_object || m_model_object->instances.empty())
return false;
if (m_model_object->volumes.size() != m_source_data.bounding_boxes.size()
|| m_model_object->instances.front()->scaling_factor != m_source_data.scaling_factor
|| m_model_object->instances.front()->rotation != m_source_data.rotation)
return true;
// now compare the bounding boxes:
for (unsigned int i=0; i<m_model_object->volumes.size(); ++i)
if (m_model_object->volumes[i]->get_convex_hull().bounding_box() != m_source_data.bounding_boxes[i])
return true;
return false;
}
Pointf3 GLGizmoFlatten::get_flattening_normal() const {
@ -607,7 +804,5 @@ Pointf3 GLGizmoFlatten::get_flattening_normal() const {
} // namespace GUI
} // namespace Slic3r

View file

@ -10,6 +10,7 @@ namespace Slic3r {
class BoundingBoxf3;
class Pointf3;
class ModelObject;
namespace GUI {
@ -160,23 +161,39 @@ private:
struct PlaneData {
std::vector<Pointf3> vertices;
Pointf3 normal;
float color[3];
};
struct SourceDataSummary {
std::vector<BoundingBoxf3> bounding_boxes; // bounding boxes of convex hulls of individual volumes
float scaling_factor;
float rotation;
};
// This holds information to decide whether recalculation is necessary:
SourceDataSummary m_source_data;
std::vector<PlaneData> m_planes;
std::vector<Pointf> m_instances_positions;
mutable std::unique_ptr<Pointf3> m_center = nullptr;
const ModelObject* m_model_object = nullptr;
void update_planes();
bool is_plane_update_necessary() const;
public:
GLGizmoFlatten();
void set_flattening_data(std::vector<Pointf3s> vertices_list);
void set_flattening_data(const ModelObject* model_object);
Pointf3 get_flattening_normal() const;
protected:
virtual bool on_init();
virtual void on_start_dragging();
virtual void on_update(const Pointf& mouse_pos);
virtual void on_render(const BoundingBoxf3& box) const;
virtual void on_render_for_picking(const BoundingBoxf3& box) const;
bool on_init() override;
void on_start_dragging() override;
void on_update(const Pointf& mouse_pos) override {};
void on_render(const BoundingBoxf3& box) const override;
void on_render_for_picking(const BoundingBoxf3& box) const override;
void on_set_state() override {
if (m_state == On && is_plane_update_necessary())
update_planes();
}
};