Working arrange_objects with DJD selection heuristic and a bottom-left placement strategy.

This commit is contained in:
tamasmeszaros 2018-05-17 10:37:26 +02:00
parent b6b7945830
commit fd829580e9
36 changed files with 6087 additions and 45 deletions

View file

@ -49,6 +49,8 @@ if(NOT DEFINED CMAKE_PREFIX_PATH)
endif()
endif()
enable_testing ()
add_subdirectory(xs)
get_filename_component(PERL_BIN_PATH "${PERL_EXECUTABLE}" DIRECTORY)
@ -63,7 +65,6 @@ else ()
set(PERL_PROVE "${PERL_BIN_PATH}/prove")
endif ()
enable_testing ()
add_test (NAME xs COMMAND "${PERL_EXECUTABLE}" ${PERL_PROVE} -I ${PROJECT_SOURCE_DIR}/local-lib/lib/perl5 WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/xs)
add_test (NAME integration COMMAND "${PERL_EXECUTABLE}" ${PERL_PROVE} WORKING_DIRECTORY ${PROJECT_SOURCE_DIR})

View file

@ -679,6 +679,35 @@ add_custom_target(pot
COMMENT "Generate pot file from strings in the source tree"
)
# ##############################################################################
# Adding libnest2d project for bin packing...
# ##############################################################################
set(LIBNEST2D_UNITTESTS ON CACHE BOOL "Force generating unittests for libnest2d")
if(LIBNEST2D_UNITTESTS)
# If we want the libnest2d unit tests we need to build and executable with
# all the libslic3r dependencies. This is needed because the clipper library
# in the slic3r project is hacked so that it depends on the slic3r sources.
# Unfortunately, this implies that the test executable is also dependent on
# the libslic3r target.
# add_library(libslic3r_standalone STATIC ${LIBDIR}/libslic3r/utils.cpp)
# set(LIBNEST2D_TEST_LIBRARIES
# libslic3r libslic3r_standalone nowide libslic3r_gui admesh miniz
# ${Boost_LIBRARIES} clipper ${EXPAT_LIBRARIES} ${GLEW_LIBRARIES}
# polypartition poly2tri ${TBB_LIBRARIES} ${wxWidgets_LIBRARIES}
# ${CURL_LIBRARIES}
# )
endif()
add_subdirectory(${LIBDIR}/libnest2d)
target_include_directories(libslic3r PUBLIC BEFORE ${LIBNEST2D_INCLUDES})
# Add the binpack2d main sources and link them to libslic3r
target_link_libraries(libslic3r libnest2d)
# ##############################################################################
# Installation
install(TARGETS XS DESTINATION ${PERL_VENDORARCH}/auto/Slic3r/XS)
install(FILES lib/Slic3r/XS.pm DESTINATION ${PERL_VENDORLIB}/Slic3r)

View file

@ -0,0 +1,81 @@
cmake_minimum_required(VERSION 2.8)
project(Libnest2D)
enable_testing()
if(CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX)
# Update if necessary
# set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wno-long-long -pedantic")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wno-long-long ")
endif()
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED)
# Add our own cmake module path.
list(APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake_modules/)
option(LIBNEST2D_UNITTESTS "If enabled, googletest framework will be downloaded
and the provided unit tests will be included in the build." OFF)
#set(LIBNEST2D_GEOMETRIES_TARGET "" CACHE STRING
# "Build libnest2d with geometry classes implemented by the chosen target.")
#set(libnest2D_TEST_LIBRARIES "" CACHE STRING
# "Libraries needed to compile the test executable for libnest2d.")
set(LIBNEST2D_SRCFILES
libnest2d/libnest2d.hpp # Templates only
libnest2d.h # Exports ready made types using template arguments
libnest2d/geometry_traits.hpp
libnest2d/geometries_io.hpp
libnest2d/common.hpp
libnest2d/placers/placer_boilerplate.hpp
libnest2d/placers/bottomleftplacer.hpp
libnest2d/placers/nfpplacer.hpp
libnest2d/geometries_nfp.hpp
libnest2d/selections/selection_boilerplate.hpp
libnest2d/selections/filler.hpp
libnest2d/selections/firstfit.hpp
libnest2d/selections/djd_heuristic.hpp
)
if((NOT LIBNEST2D_GEOMETRIES_TARGET) OR (LIBNEST2D_GEOMETRIES_TARGET STREQUAL ""))
message(STATUS "libnest2D backend is default")
if(NOT Boost_INCLUDE_DIRS_FOUND)
find_package(Boost REQUIRED)
# TODO automatic download of boost geometry headers
endif()
add_subdirectory(libnest2d/clipper_backend)
set(LIBNEST2D_GEOMETRIES_TARGET ${CLIPPER_LIBRARIES})
include_directories(BEFORE ${CLIPPER_INCLUDE_DIRS})
include_directories(${Boost_INCLUDE_DIRS})
list(APPEND LIBNEST2D_SRCFILES libnest2d/clipper_backend/clipper_backend.cpp
libnest2d/clipper_backend/clipper_backend.hpp
libnest2d/boost_alg.hpp)
else()
message(STATUS "Libnest2D backend is: ${LIBNEST2D_GEOMETRIES_TARGET}")
endif()
add_library(libnest2d STATIC ${LIBNEST2D_SRCFILES} )
target_link_libraries(libnest2d ${LIBNEST2D_GEOMETRIES_TARGET})
target_include_directories(libnest2d PUBLIC ${CMAKE_SOURCE_DIR})
set(LIBNEST2D_HEADERS ${CMAKE_CURRENT_SOURCE_DIR})
get_directory_property(hasParent PARENT_DIRECTORY)
if(hasParent)
set(LIBNEST2D_INCLUDES ${CMAKE_CURRENT_SOURCE_DIR} PARENT_SCOPE)
endif()
if(LIBNEST2D_UNITTESTS)
add_subdirectory(tests)
endif()

View file

@ -0,0 +1,661 @@
GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU Affero General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<http://www.gnu.org/licenses/>.

View file

@ -0,0 +1,36 @@
# Introduction
Libnest2D is a library and framework for the 2D bin packaging problem.
Inspired from the [SVGNest](svgnest.com) Javascript library the project is is
built from scratch in C++11. The library is written with a policy that it should
be usable out of the box with a very simple interface but has to be customizable
to the very core as well. This has led to a design where the algorithms are
defined in a header only fashion with template only geometry types. These
geometries can have custom or already existing implementation to avoid copying
or having unnecessary dependencies.
A default backend is provided if a user just wants to use the library out of the
box without implementing the interface of these geometry types. The default
backend is built on top of boost geometry and the
[polyclipping](http://www.angusj.com/delphi/clipper.php) library and implies the
dependency on these packages as well as the compilation of the backend (although
I may find a solution in the future to make the backend header only as well).
This software is currently under heavy construction and lacks a throughout
documentation and some essential algorithms as well. At this point a fairly
untested version of the DJD selection heuristic is working with a bottom-left
placing strategy which may produce usable arrangements in most cases.
The no-fit polygon based placement strategy will be implemented in the very near
future which should produce high quality results for convex and non convex
polygons with holes as well.
# References
- [SVGNest](https://github.com/Jack000/SVGnest)
- [An effective heuristic for the two-dimensional irregular
bin packing problem](http://www.cs.stir.ac.uk/~goc/papers/EffectiveHueristic2DAOR2013.pdf)
- [Complete and robust no-fit polygon generation for the irregular stock cutting problem](https://www.sciencedirect.com/science/article/abs/pii/S0377221706001639)
- [Applying Meta-Heuristic Algorithms to the Nesting
Problem Utilising the No Fit Polygon](http://www.graham-kendall.com/papers/k2001.pdf)
- [A comprehensive and robust procedure for obtaining the nofit polygon
using Minkowski sums](https://www.sciencedirect.com/science/article/pii/S0305054806000669)

View file

@ -0,0 +1,17 @@
# Distributed under the OSI-approved MIT License. See accompanying
# file LICENSE or https://github.com/Crascit/DownloadProject for details.
cmake_minimum_required(VERSION 2.8.2)
project(${DL_ARGS_PROJ}-download NONE)
include(ExternalProject)
ExternalProject_Add(${DL_ARGS_PROJ}-download
${DL_ARGS_UNPARSED_ARGUMENTS}
SOURCE_DIR "${DL_ARGS_SOURCE_DIR}"
BINARY_DIR "${DL_ARGS_BINARY_DIR}"
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
TEST_COMMAND ""
)

View file

@ -0,0 +1,182 @@
# Distributed under the OSI-approved MIT License. See accompanying
# file LICENSE or https://github.com/Crascit/DownloadProject for details.
#
# MODULE: DownloadProject
#
# PROVIDES:
# download_project( PROJ projectName
# [PREFIX prefixDir]
# [DOWNLOAD_DIR downloadDir]
# [SOURCE_DIR srcDir]
# [BINARY_DIR binDir]
# [QUIET]
# ...
# )
#
# Provides the ability to download and unpack a tarball, zip file, git repository,
# etc. at configure time (i.e. when the cmake command is run). How the downloaded
# and unpacked contents are used is up to the caller, but the motivating case is
# to download source code which can then be included directly in the build with
# add_subdirectory() after the call to download_project(). Source and build
# directories are set up with this in mind.
#
# The PROJ argument is required. The projectName value will be used to construct
# the following variables upon exit (obviously replace projectName with its actual
# value):
#
# projectName_SOURCE_DIR
# projectName_BINARY_DIR
#
# The SOURCE_DIR and BINARY_DIR arguments are optional and would not typically
# need to be provided. They can be specified if you want the downloaded source
# and build directories to be located in a specific place. The contents of
# projectName_SOURCE_DIR and projectName_BINARY_DIR will be populated with the
# locations used whether you provide SOURCE_DIR/BINARY_DIR or not.
#
# The DOWNLOAD_DIR argument does not normally need to be set. It controls the
# location of the temporary CMake build used to perform the download.
#
# The PREFIX argument can be provided to change the base location of the default
# values of DOWNLOAD_DIR, SOURCE_DIR and BINARY_DIR. If all of those three arguments
# are provided, then PREFIX will have no effect. The default value for PREFIX is
# CMAKE_BINARY_DIR.
#
# The QUIET option can be given if you do not want to show the output associated
# with downloading the specified project.
#
# In addition to the above, any other options are passed through unmodified to
# ExternalProject_Add() to perform the actual download, patch and update steps.
# The following ExternalProject_Add() options are explicitly prohibited (they
# are reserved for use by the download_project() command):
#
# CONFIGURE_COMMAND
# BUILD_COMMAND
# INSTALL_COMMAND
# TEST_COMMAND
#
# Only those ExternalProject_Add() arguments which relate to downloading, patching
# and updating of the project sources are intended to be used. Also note that at
# least one set of download-related arguments are required.
#
# If using CMake 3.2 or later, the UPDATE_DISCONNECTED option can be used to
# prevent a check at the remote end for changes every time CMake is run
# after the first successful download. See the documentation of the ExternalProject
# module for more information. It is likely you will want to use this option if it
# is available to you. Note, however, that the ExternalProject implementation contains
# bugs which result in incorrect handling of the UPDATE_DISCONNECTED option when
# using the URL download method or when specifying a SOURCE_DIR with no download
# method. Fixes for these have been created, the last of which is scheduled for
# inclusion in CMake 3.8.0. Details can be found here:
#
# https://gitlab.kitware.com/cmake/cmake/commit/bdca68388bd57f8302d3c1d83d691034b7ffa70c
# https://gitlab.kitware.com/cmake/cmake/issues/16428
#
# If you experience build errors related to the update step, consider avoiding
# the use of UPDATE_DISCONNECTED.
#
# EXAMPLE USAGE:
#
# include(DownloadProject)
# download_project(PROJ googletest
# GIT_REPOSITORY https://github.com/google/googletest.git
# GIT_TAG master
# UPDATE_DISCONNECTED 1
# QUIET
# )
#
# add_subdirectory(${googletest_SOURCE_DIR} ${googletest_BINARY_DIR})
#
#========================================================================================
set(_DownloadProjectDir "${CMAKE_CURRENT_LIST_DIR}")
include(CMakeParseArguments)
function(download_project)
set(options QUIET)
set(oneValueArgs
PROJ
PREFIX
DOWNLOAD_DIR
SOURCE_DIR
BINARY_DIR
# Prevent the following from being passed through
CONFIGURE_COMMAND
BUILD_COMMAND
INSTALL_COMMAND
TEST_COMMAND
)
set(multiValueArgs "")
cmake_parse_arguments(DL_ARGS "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
# Hide output if requested
if (DL_ARGS_QUIET)
set(OUTPUT_QUIET "OUTPUT_QUIET")
else()
unset(OUTPUT_QUIET)
message(STATUS "Downloading/updating ${DL_ARGS_PROJ}")
endif()
# Set up where we will put our temporary CMakeLists.txt file and also
# the base point below which the default source and binary dirs will be.
# The prefix must always be an absolute path.
if (NOT DL_ARGS_PREFIX)
set(DL_ARGS_PREFIX "${CMAKE_BINARY_DIR}")
else()
get_filename_component(DL_ARGS_PREFIX "${DL_ARGS_PREFIX}" ABSOLUTE
BASE_DIR "${CMAKE_CURRENT_BINARY_DIR}")
endif()
if (NOT DL_ARGS_DOWNLOAD_DIR)
set(DL_ARGS_DOWNLOAD_DIR "${DL_ARGS_PREFIX}/${DL_ARGS_PROJ}-download")
endif()
# Ensure the caller can know where to find the source and build directories
if (NOT DL_ARGS_SOURCE_DIR)
set(DL_ARGS_SOURCE_DIR "${DL_ARGS_PREFIX}/${DL_ARGS_PROJ}-src")
endif()
if (NOT DL_ARGS_BINARY_DIR)
set(DL_ARGS_BINARY_DIR "${DL_ARGS_PREFIX}/${DL_ARGS_PROJ}-build")
endif()
set(${DL_ARGS_PROJ}_SOURCE_DIR "${DL_ARGS_SOURCE_DIR}" PARENT_SCOPE)
set(${DL_ARGS_PROJ}_BINARY_DIR "${DL_ARGS_BINARY_DIR}" PARENT_SCOPE)
# The way that CLion manages multiple configurations, it causes a copy of
# the CMakeCache.txt to be copied across due to it not expecting there to
# be a project within a project. This causes the hard-coded paths in the
# cache to be copied and builds to fail. To mitigate this, we simply
# remove the cache if it exists before we configure the new project. It
# is safe to do so because it will be re-generated. Since this is only
# executed at the configure step, it should not cause additional builds or
# downloads.
file(REMOVE "${DL_ARGS_DOWNLOAD_DIR}/CMakeCache.txt")
# Create and build a separate CMake project to carry out the download.
# If we've already previously done these steps, they will not cause
# anything to be updated, so extra rebuilds of the project won't occur.
# Make sure to pass through CMAKE_MAKE_PROGRAM in case the main project
# has this set to something not findable on the PATH.
configure_file("${_DownloadProjectDir}/DownloadProject.CMakeLists.cmake.in"
"${DL_ARGS_DOWNLOAD_DIR}/CMakeLists.txt")
execute_process(COMMAND ${CMAKE_COMMAND} -G "${CMAKE_GENERATOR}"
-D "CMAKE_MAKE_PROGRAM:FILE=${CMAKE_MAKE_PROGRAM}"
.
RESULT_VARIABLE result
${OUTPUT_QUIET}
WORKING_DIRECTORY "${DL_ARGS_DOWNLOAD_DIR}"
)
if(result)
message(FATAL_ERROR "CMake step for ${DL_ARGS_PROJ} failed: ${result}")
endif()
execute_process(COMMAND ${CMAKE_COMMAND} --build .
RESULT_VARIABLE result
${OUTPUT_QUIET}
WORKING_DIRECTORY "${DL_ARGS_DOWNLOAD_DIR}"
)
if(result)
message(FATAL_ERROR "Build step for ${DL_ARGS_PROJ} failed: ${result}")
endif()
endfunction()

View file

@ -0,0 +1,46 @@
# Find Clipper library (http://www.angusj.com/delphi/clipper.php).
# The following variables are set
#
# CLIPPER_FOUND
# CLIPPER_INCLUDE_DIRS
# CLIPPER_LIBRARIES
#
# It searches the environment variable $CLIPPER_PATH automatically.
FIND_PATH(CLIPPER_INCLUDE_DIRS clipper.hpp
$ENV{CLIPPER_PATH}
$ENV{CLIPPER_PATH}/cpp/
$ENV{CLIPPER_PATH}/include/
$ENV{CLIPPER_PATH}/include/polyclipping/
${PROJECT_SOURCE_DIR}/python/pymesh/third_party/include/
${PROJECT_SOURCE_DIR}/python/pymesh/third_party/include/polyclipping/
/opt/local/include/
/opt/local/include/polyclipping/
/usr/local/include/
/usr/local/include/polyclipping/
/usr/include
/usr/include/polyclipping/)
FIND_LIBRARY(CLIPPER_LIBRARIES polyclipping
$ENV{CLIPPER_PATH}
$ENV{CLIPPER_PATH}/cpp/
$ENV{CLIPPER_PATH}/cpp/build/
$ENV{CLIPPER_PATH}/lib/
$ENV{CLIPPER_PATH}/lib/polyclipping/
${PROJECT_SOURCE_DIR}/python/pymesh/third_party/lib/
${PROJECT_SOURCE_DIR}/python/pymesh/third_party/lib/polyclipping/
/opt/local/lib/
/opt/local/lib/polyclipping/
/usr/local/lib/
/usr/local/lib/polyclipping/
/usr/lib/polyclipping)
include(FindPackageHandleStandardArgs)
FIND_PACKAGE_HANDLE_STANDARD_ARGS(Clipper
"Clipper library cannot be found. Consider set CLIPPER_PATH environment variable"
CLIPPER_INCLUDE_DIRS
CLIPPER_LIBRARIES)
MARK_AS_ADVANCED(
CLIPPER_INCLUDE_DIRS
CLIPPER_LIBRARIES)

View file

@ -0,0 +1,37 @@
#ifndef LIBNEST2D_H
#define LIBNEST2D_H
// The type of backend should be set conditionally by the cmake configuriation
// for now we set it statically to clipper backend
#include <libnest2d/clipper_backend/clipper_backend.hpp>
#include <libnest2d/libnest2d.hpp>
#include <libnest2d/placers/bottomleftplacer.hpp>
#include <libnest2d/placers/nfpplacer.hpp>
#include <libnest2d/selections/firstfit.hpp>
#include <libnest2d/selections/filler.hpp>
#include <libnest2d/selections/djd_heuristic.hpp>
namespace libnest2d {
using Point = PointImpl;
using Coord = TCoord<PointImpl>;
using Box = _Box<PointImpl>;
using Segment = _Segment<PointImpl>;
using Item = _Item<PolygonImpl>;
using Rectangle = _Rectangle<PolygonImpl>;
using PackGroup = _PackGroup<PolygonImpl>;
using IndexedPackGroup = _IndexedPackGroup<PolygonImpl>;
using FillerSelection = strategies::_FillerSelection<PolygonImpl>;
using FirstFitSelection = strategies::_FirstFitSelection<PolygonImpl>;
using DJDHeuristic = strategies::_DJDHeuristic<PolygonImpl>;
using BottomLeftPlacer = strategies::_BottomLeftPlacer<PolygonImpl>;
using NofitPolyPlacer = strategies::_NofitPolyPlacer<PolygonImpl>;
}
#endif // LIBNEST2D_H

View file

@ -0,0 +1,431 @@
#ifndef BOOST_ALG_HPP
#define BOOST_ALG_HPP
#ifndef DISABLE_BOOST_SERIALIZE
#include <sstream>
#endif
#include <boost/geometry.hpp>
// this should be removed to not confuse the compiler
// #include <libnest2d.h>
namespace bp2d {
using libnest2d::TCoord;
using libnest2d::PointImpl;
using Coord = TCoord<PointImpl>;
using libnest2d::PolygonImpl;
using libnest2d::PathImpl;
using libnest2d::Orientation;
using libnest2d::OrientationType;
using libnest2d::getX;
using libnest2d::getY;
using libnest2d::setX;
using libnest2d::setY;
using Box = libnest2d::_Box<PointImpl>;
using Segment = libnest2d::_Segment<PointImpl>;
}
/**
* We have to make all the binpack2d geometry types available to boost. The real
* models of the geometries remain the same if a conforming model for binpack2d
* was defined by the library client. Boost is used only as an optional
* implementer of some algorithms that can be implemented by the model itself
* if a faster alternative exists.
*
* However, boost has its own type traits and we have to define the needed
* specializations to be able to use boost::geometry. This can be done with the
* already provided model.
*/
namespace boost {
namespace geometry {
namespace traits {
/* ************************************************************************** */
/* Point concept adaptaion ************************************************** */
/* ************************************************************************** */
template<> struct tag<bp2d::PointImpl> {
using type = point_tag;
};
template<> struct coordinate_type<bp2d::PointImpl> {
using type = bp2d::Coord;
};
template<> struct coordinate_system<bp2d::PointImpl> {
using type = cs::cartesian;
};
template<> struct dimension<bp2d::PointImpl>: boost::mpl::int_<2> {};
template<>
struct access<bp2d::PointImpl, 0 > {
static inline bp2d::Coord get(bp2d::PointImpl const& a) {
return libnest2d::getX(a);
}
static inline void set(bp2d::PointImpl& a,
bp2d::Coord const& value) {
libnest2d::setX(a, value);
}
};
template<>
struct access<bp2d::PointImpl, 1 > {
static inline bp2d::Coord get(bp2d::PointImpl const& a) {
return libnest2d::getY(a);
}
static inline void set(bp2d::PointImpl& a,
bp2d::Coord const& value) {
libnest2d::setY(a, value);
}
};
/* ************************************************************************** */
/* Box concept adaptaion **************************************************** */
/* ************************************************************************** */
template<> struct tag<bp2d::Box> {
using type = box_tag;
};
template<> struct point_type<bp2d::Box> {
using type = bp2d::PointImpl;
};
template<> struct indexed_access<bp2d::Box, min_corner, 0> {
static inline bp2d::Coord get(bp2d::Box const& box) {
return bp2d::getX(box.minCorner());
}
static inline void set(bp2d::Box &box, bp2d::Coord const& coord) {
bp2d::setX(box.minCorner(), coord);
}
};
template<> struct indexed_access<bp2d::Box, min_corner, 1> {
static inline bp2d::Coord get(bp2d::Box const& box) {
return bp2d::getY(box.minCorner());
}
static inline void set(bp2d::Box &box, bp2d::Coord const& coord) {
bp2d::setY(box.minCorner(), coord);
}
};
template<> struct indexed_access<bp2d::Box, max_corner, 0> {
static inline bp2d::Coord get(bp2d::Box const& box) {
return bp2d::getX(box.maxCorner());
}
static inline void set(bp2d::Box &box, bp2d::Coord const& coord) {
bp2d::setX(box.maxCorner(), coord);
}
};
template<> struct indexed_access<bp2d::Box, max_corner, 1> {
static inline bp2d::Coord get(bp2d::Box const& box) {
return bp2d::getY(box.maxCorner());
}
static inline void set(bp2d::Box &box, bp2d::Coord const& coord) {
bp2d::setY(box.maxCorner(), coord);
}
};
/* ************************************************************************** */
/* Segement concept adaptaion *********************************************** */
/* ************************************************************************** */
template<> struct tag<bp2d::Segment> {
using type = segment_tag;
};
template<> struct point_type<bp2d::Segment> {
using type = bp2d::PointImpl;
};
template<> struct indexed_access<bp2d::Segment, 0, 0> {
static inline bp2d::Coord get(bp2d::Segment const& seg) {
return bp2d::getX(seg.first());
}
static inline void set(bp2d::Segment &seg, bp2d::Coord const& coord) {
bp2d::setX(seg.first(), coord);
}
};
template<> struct indexed_access<bp2d::Segment, 0, 1> {
static inline bp2d::Coord get(bp2d::Segment const& seg) {
return bp2d::getY(seg.first());
}
static inline void set(bp2d::Segment &seg, bp2d::Coord const& coord) {
bp2d::setY(seg.first(), coord);
}
};
template<> struct indexed_access<bp2d::Segment, 1, 0> {
static inline bp2d::Coord get(bp2d::Segment const& seg) {
return bp2d::getX(seg.second());
}
static inline void set(bp2d::Segment &seg, bp2d::Coord const& coord) {
bp2d::setX(seg.second(), coord);
}
};
template<> struct indexed_access<bp2d::Segment, 1, 1> {
static inline bp2d::Coord get(bp2d::Segment const& seg) {
return bp2d::getY(seg.second());
}
static inline void set(bp2d::Segment &seg, bp2d::Coord const& coord) {
bp2d::setY(seg.second(), coord);
}
};
/* ************************************************************************** */
/* Polygon concept adaptaion ************************************************ */
/* ************************************************************************** */
// Connversion between binpack2d::Orientation and order_selector ///////////////
template<bp2d::Orientation> struct ToBoostOrienation {};
template<>
struct ToBoostOrienation<bp2d::Orientation::CLOCKWISE> {
static const order_selector Value = clockwise;
};
template<>
struct ToBoostOrienation<bp2d::Orientation::COUNTER_CLOCKWISE> {
static const order_selector Value = counterclockwise;
};
static const bp2d::Orientation RealOrientation =
bp2d::OrientationType<bp2d::PolygonImpl>::Value;
// Ring implementation /////////////////////////////////////////////////////////
// Boost would refer to ClipperLib::Path (alias bp2d::PolygonImpl) as a ring
template<> struct tag<bp2d::PathImpl> {
using type = ring_tag;
};
template<> struct point_order<bp2d::PathImpl> {
static const order_selector value =
ToBoostOrienation<RealOrientation>::Value;
};
// All our Paths should be closed for the bin packing application
template<> struct closure<bp2d::PathImpl> {
static const closure_selector value = closed;
};
// Polygon implementation //////////////////////////////////////////////////////
template<> struct tag<bp2d::PolygonImpl> {
using type = polygon_tag;
};
template<> struct exterior_ring<bp2d::PolygonImpl> {
static inline bp2d::PathImpl& get(bp2d::PolygonImpl& p) {
return libnest2d::ShapeLike::getContour(p);
}
static inline bp2d::PathImpl const& get(bp2d::PolygonImpl const& p) {
return libnest2d::ShapeLike::getContour(p);
}
};
template<> struct ring_const_type<bp2d::PolygonImpl> {
using type = const bp2d::PathImpl&;
};
template<> struct ring_mutable_type<bp2d::PolygonImpl> {
using type = bp2d::PathImpl&;
};
template<> struct interior_const_type<bp2d::PolygonImpl> {
using type = const libnest2d::THolesContainer<bp2d::PolygonImpl>&;
};
template<> struct interior_mutable_type<bp2d::PolygonImpl> {
using type = libnest2d::THolesContainer<bp2d::PolygonImpl>&;
};
template<>
struct interior_rings<bp2d::PolygonImpl> {
static inline libnest2d::THolesContainer<bp2d::PolygonImpl>& get(
bp2d::PolygonImpl& p)
{
return libnest2d::ShapeLike::holes(p);
}
static inline const libnest2d::THolesContainer<bp2d::PolygonImpl>& get(
bp2d::PolygonImpl const& p)
{
return libnest2d::ShapeLike::holes(p);
}
};
} // traits
} // geometry
// This is an addition to the ring implementation
template<>
struct range_value<bp2d::PathImpl> {
using type = bp2d::PointImpl;
};
} // boost
namespace libnest2d { // Now the algorithms that boost can provide...
template<>
inline double PointLike::distance(const PointImpl& p1,
const PointImpl& p2 )
{
return boost::geometry::distance(p1, p2);
}
template<>
inline double PointLike::distance(const PointImpl& p,
const bp2d::Segment& seg )
{
return boost::geometry::distance(p, seg);
}
// Tell binpack2d how to make string out of a ClipperPolygon object
template<>
inline bool ShapeLike::intersects(const PathImpl& sh1,
const PathImpl& sh2)
{
return boost::geometry::intersects(sh1, sh2);
}
// Tell binpack2d how to make string out of a ClipperPolygon object
template<>
inline bool ShapeLike::intersects(const PolygonImpl& sh1,
const PolygonImpl& sh2) {
return boost::geometry::intersects(sh1, sh2);
}
// Tell binpack2d how to make string out of a ClipperPolygon object
template<>
inline bool ShapeLike::intersects(const bp2d::Segment& s1,
const bp2d::Segment& s2) {
return boost::geometry::intersects(s1, s2);
}
#ifndef DISABLE_BOOST_AREA
template<>
inline double ShapeLike::area(const PolygonImpl& shape) {
return boost::geometry::area(shape);
}
#endif
template<>
inline bool ShapeLike::isInside(const PointImpl& point,
const PolygonImpl& shape)
{
return boost::geometry::within(point, shape);
}
template<>
inline bool ShapeLike::isInside(const PolygonImpl& sh1,
const PolygonImpl& sh2)
{
return boost::geometry::within(sh1, sh2);
}
template<>
inline bool ShapeLike::touches( const PolygonImpl& sh1,
const PolygonImpl& sh2)
{
return boost::geometry::touches(sh1, sh2);
}
template<>
inline bp2d::Box ShapeLike::boundingBox(const PolygonImpl& sh) {
bp2d::Box b;
boost::geometry::envelope(sh, b);
return b;
}
template<>
inline void ShapeLike::rotate(PolygonImpl& sh, const Radians& rads) {
namespace trans = boost::geometry::strategy::transform;
PolygonImpl cpy = sh;
trans::rotate_transformer<boost::geometry::radian, Radians, 2, 2>
rotate(rads);
boost::geometry::transform(cpy, sh, rotate);
}
template<>
inline void ShapeLike::translate(PolygonImpl& sh, const PointImpl& offs) {
namespace trans = boost::geometry::strategy::transform;
PolygonImpl cpy = sh;
trans::translate_transformer<bp2d::Coord, 2, 2> translate(
bp2d::getX(offs), bp2d::getY(offs));
boost::geometry::transform(cpy, sh, translate);
}
#ifndef DISABLE_BOOST_OFFSET
template<>
inline void ShapeLike::offset(PolygonImpl& sh, bp2d::Coord distance) {
PolygonImpl cpy = sh;
boost::geometry::buffer(cpy, sh, distance);
}
#endif
#ifndef DISABLE_BOOST_MINKOWSKI_ADD
template<>
inline PolygonImpl& Nfp::minkowskiAdd(PolygonImpl& sh,
const PolygonImpl& /*other*/) {
return sh;
}
#endif
#ifndef DISABLE_BOOST_SERIALIZE
template<>
inline std::string ShapeLike::serialize<libnest2d::Formats::SVG>(
const PolygonImpl& sh)
{
std::stringstream ss;
std::string style = "fill: orange; stroke: black; stroke-width: 1px;";
auto svg_data = boost::geometry::svg(sh, style);
ss << svg_data << std::endl;
return ss.str();
}
#endif
#ifndef DISABLE_BOOST_UNSERIALIZE
template<>
inline void ShapeLike::unserialize<libnest2d::Formats::SVG>(
PolygonImpl& sh,
const std::string& str)
{
}
#endif
template<> inline std::pair<bool, std::string>
ShapeLike::isValid(const PolygonImpl& sh) {
std::string message;
bool ret = boost::geometry::is_valid(sh, message);
return {ret, message};
}
}
#endif // BOOST_ALG_HPP

View file

@ -0,0 +1,48 @@
if(NOT TARGET clipper) # If there is a clipper target in the parent project we are good to go.
find_package(Clipper QUIET)
if(NOT CLIPPER_FOUND)
find_package(Subversion QUIET)
if(Subversion_FOUND)
message(STATUS "Clipper not found so it will be downloaded.")
# Silently download and build the library in the build dir
if (CMAKE_VERSION VERSION_LESS 3.2)
set(UPDATE_DISCONNECTED_IF_AVAILABLE "")
else()
set(UPDATE_DISCONNECTED_IF_AVAILABLE "UPDATE_DISCONNECTED 1")
endif()
include(DownloadProject)
download_project( PROJ clipper_library
SVN_REPOSITORY https://svn.code.sf.net/p/polyclipping/code/trunk/cpp
SVN_REVISION -r540
#SOURCE_SUBDIR cpp
INSTALL_COMMAND ""
CONFIGURE_COMMAND "" # Not working, I will just add the source files
${UPDATE_DISCONNECTED_IF_AVAILABLE}
)
# This is not working and I dont have time to fix it
# add_subdirectory(${clipper_library_SOURCE_DIR}/cpp
# ${clipper_library_BINARY_DIR}
# )
add_library(clipper_lib STATIC
${clipper_library_SOURCE_DIR}/clipper.cpp
${clipper_library_SOURCE_DIR}/clipper.hpp)
set(CLIPPER_INCLUDE_DIRS ${clipper_library_SOURCE_DIR}
PARENT_SCOPE)
set(CLIPPER_LIBRARIES clipper_lib PARENT_SCOPE)
else()
message(FATAL_ERROR "Can't find clipper library and no SVN client found to download.
You can download the clipper sources and define a clipper target in your project, that will work for libnest2d.")
endif()
endif()
else()
set(CLIPPER_LIBRARIES clipper PARENT_SCOPE)
endif()

View file

@ -0,0 +1,77 @@
#include "clipper_backend.hpp"
namespace libnest2d {
namespace {
class HoleCache {
friend struct libnest2d::ShapeLike;
std::unordered_map< const PolygonImpl*, ClipperLib::Paths> map;
ClipperLib::Paths& _getHoles(const PolygonImpl* p) {
ClipperLib::Paths& paths = map[p];
if(paths.size() != p->Childs.size()) {
paths.reserve(p->Childs.size());
for(auto np : p->Childs) {
paths.emplace_back(np->Contour);
}
}
return paths;
}
ClipperLib::Paths& getHoles(PolygonImpl& p) {
return _getHoles(&p);
}
const ClipperLib::Paths& getHoles(const PolygonImpl& p) {
return _getHoles(&p);
}
};
}
HoleCache holeCache;
template<>
std::string ShapeLike::toString(const PolygonImpl& sh)
{
std::stringstream ss;
for(auto p : sh.Contour) {
ss << p.X << " " << p.Y << "\n";
}
return ss.str();
}
template<> PolygonImpl ShapeLike::create( std::initializer_list< PointImpl > il)
{
PolygonImpl p;
p.Contour = il;
// Expecting that the coordinate system Y axis is positive in upwards
// direction
if(ClipperLib::Orientation(p.Contour)) {
// Not clockwise then reverse the b*tch
ClipperLib::ReversePath(p.Contour);
}
return p;
}
template<>
const THolesContainer<PolygonImpl>& ShapeLike::holes(
const PolygonImpl& sh)
{
return holeCache.getHoles(sh);
}
template<>
THolesContainer<PolygonImpl>& ShapeLike::holes(PolygonImpl& sh) {
return holeCache.getHoles(sh);
}
}

View file

@ -0,0 +1,240 @@
#ifndef CLIPPER_BACKEND_HPP
#define CLIPPER_BACKEND_HPP
#include <sstream>
#include <unordered_map>
#include <cassert>
#include <iostream>
#include "../geometry_traits.hpp"
#include "../geometries_nfp.hpp"
#include <clipper.hpp>
namespace libnest2d {
// Aliases for convinience
using PointImpl = ClipperLib::IntPoint;
using PolygonImpl = ClipperLib::PolyNode;
using PathImpl = ClipperLib::Path;
inline PointImpl& operator +=(PointImpl& p, const PointImpl& pa ) {
p.X += pa.X;
p.Y += pa.Y;
return p;
}
inline PointImpl operator+(const PointImpl& p1, const PointImpl& p2) {
PointImpl ret = p1;
ret += p2;
return ret;
}
inline PointImpl& operator -=(PointImpl& p, const PointImpl& pa ) {
p.X -= pa.X;
p.Y -= pa.Y;
return p;
}
inline PointImpl operator-(const PointImpl& p1, const PointImpl& p2) {
PointImpl ret = p1;
ret -= p2;
return ret;
}
//extern HoleCache holeCache;
// Type of coordinate units used by Clipper
template<> struct CoordType<PointImpl> {
using Type = ClipperLib::cInt;
};
// Type of point used by Clipper
template<> struct PointType<PolygonImpl> {
using Type = PointImpl;
};
// Type of vertex iterator used by Clipper
template<> struct VertexIteratorType<PolygonImpl> {
using Type = ClipperLib::Path::iterator;
};
// Type of vertex iterator used by Clipper
template<> struct VertexConstIteratorType<PolygonImpl> {
using Type = ClipperLib::Path::const_iterator;
};
template<> struct CountourType<PolygonImpl> {
using Type = PathImpl;
};
// Tell binpack2d how to extract the X coord from a ClipperPoint object
template<> inline TCoord<PointImpl> PointLike::x(const PointImpl& p)
{
return p.X;
}
// Tell binpack2d how to extract the Y coord from a ClipperPoint object
template<> inline TCoord<PointImpl> PointLike::y(const PointImpl& p)
{
return p.Y;
}
// Tell binpack2d how to extract the X coord from a ClipperPoint object
template<> inline TCoord<PointImpl>& PointLike::x(PointImpl& p)
{
return p.X;
}
// Tell binpack2d how to extract the Y coord from a ClipperPoint object
template<>
inline TCoord<PointImpl>& PointLike::y(PointImpl& p)
{
return p.Y;
}
template<>
inline void ShapeLike::reserve(PolygonImpl& sh, unsigned long vertex_capacity)
{
return sh.Contour.reserve(vertex_capacity);
}
// Tell binpack2d how to make string out of a ClipperPolygon object
template<>
inline double ShapeLike::area(const PolygonImpl& sh) {
#define DISABLE_BOOST_AREA
double ret = ClipperLib::Area(sh.Contour);
// if(OrientationType<PolygonImpl>::Value == Orientation::COUNTER_CLOCKWISE)
// ret = -ret;
return ret;
}
template<>
inline void ShapeLike::offset(PolygonImpl& sh, TCoord<PointImpl> distance) {
#define DISABLE_BOOST_OFFSET
using ClipperLib::ClipperOffset;
using ClipperLib::jtMiter;
using ClipperLib::etClosedPolygon;
using ClipperLib::Paths;
ClipperOffset offs;
Paths result;
offs.AddPath(sh.Contour, jtMiter, etClosedPolygon);
offs.Execute(result, static_cast<double>(distance));
// I dont know why does the offsetting revert the orientation and
// it removes the last vertex as well so boost will not have a closed
// polygon
assert(result.size() == 1);
sh.Contour = result.front();
// recreate closed polygon
sh.Contour.push_back(sh.Contour.front());
if(ClipperLib::Orientation(sh.Contour)) {
// Not clockwise then reverse the b*tch
ClipperLib::ReversePath(sh.Contour);
}
}
template<>
inline PolygonImpl& Nfp::minkowskiAdd(PolygonImpl& sh,
const PolygonImpl& other)
{
#define DISABLE_BOOST_MINKOWSKI_ADD
ClipperLib::Paths solution;
ClipperLib::MinkowskiSum(sh.Contour, other.Contour, solution, true);
assert(solution.size() == 1);
sh.Contour = solution.front();
return sh;
}
// Tell binpack2d how to make string out of a ClipperPolygon object
template<> std::string ShapeLike::toString(const PolygonImpl& sh);
template<>
inline TVertexIterator<PolygonImpl> ShapeLike::begin(PolygonImpl& sh)
{
return sh.Contour.begin();
}
template<>
inline TVertexIterator<PolygonImpl> ShapeLike::end(PolygonImpl& sh)
{
return sh.Contour.end();
}
template<>
inline TVertexConstIterator<PolygonImpl> ShapeLike::cbegin(
const PolygonImpl& sh)
{
return sh.Contour.cbegin();
}
template<>
inline TVertexConstIterator<PolygonImpl> ShapeLike::cend(
const PolygonImpl& sh)
{
return sh.Contour.cend();
}
template<> struct HolesContainer<PolygonImpl> {
using Type = ClipperLib::Paths;
};
template<>
PolygonImpl ShapeLike::create( std::initializer_list< PointImpl > il);
template<>
const THolesContainer<PolygonImpl>& ShapeLike::holes(
const PolygonImpl& sh);
template<>
THolesContainer<PolygonImpl>& ShapeLike::holes(PolygonImpl& sh);
template<>
inline TCountour<PolygonImpl>& ShapeLike::getHole(PolygonImpl& sh,
unsigned long idx)
{
return sh.Childs[idx]->Contour;
}
template<>
inline const TCountour<PolygonImpl>& ShapeLike::getHole(const PolygonImpl& sh,
unsigned long idx) {
return sh.Childs[idx]->Contour;
}
template<>
inline size_t ShapeLike::holeCount(const PolygonImpl& sh) {
return sh.Childs.size();
}
template<>
inline PathImpl& ShapeLike::getContour(PolygonImpl& sh) {
return sh.Contour;
}
template<>
inline const PathImpl& ShapeLike::getContour(const PolygonImpl& sh) {
return sh.Contour;
}
}
//#define DISABLE_BOOST_SERIALIZE
//#define DISABLE_BOOST_UNSERIALIZE
// All other operators and algorithms are implemented with boost
#include "../boost_alg.hpp"
#endif // CLIPPER_BACKEND_HPP

View file

@ -0,0 +1,94 @@
#ifndef LIBNEST2D_CONFIG_HPP
#define LIBNEST2D_CONFIG_HPP
#if defined(_MSC_VER) && _MSC_VER <= 1800 || __cplusplus < 201103L
#define BP2D_NOEXCEPT
#define BP2D_CONSTEXPR
#elif __cplusplus >= 201103L
#define BP2D_NOEXCEPT noexcept
#define BP2D_CONSTEXPR constexpr
#endif
#include <stdexcept>
#include <string>
#include <cmath>
namespace libnest2d {
template< class T >
struct remove_cvref {
using type = typename std::remove_cv<
typename std::remove_reference<T>::type>::type;
};
template< class T >
using remove_cvref_t = typename remove_cvref<T>::type;
template<bool B, class T>
using enable_if_t = typename std::enable_if<B, T>::type;
/**
* A useful little tool for triggering static_assert error messages e.g. when
* a mandatory template specialization (implementation) is missing.
*
* \tparam T A template argument that may come from and outer template method.
*/
template<class T> struct always_false { enum { value = false }; };
const auto BP2D_CONSTEXPR Pi = 3.141592653589793238463; // 2*std::acos(0);
/**
* @brief Only for the Radian and Degrees classes to behave as doubles.
*/
class Double {
double val_;
public:
Double(): val_(double{}) { }
Double(double d) : val_(d) { }
operator double() const BP2D_NOEXCEPT { return val_; }
operator double&() BP2D_NOEXCEPT { return val_; }
};
class Degrees;
/**
* @brief Data type representing radians. It supports conversion to degrees.
*/
class Radians: public Double {
public:
Radians(double rads = Double() ): Double(rads) {}
inline Radians(const Degrees& degs);
inline operator Degrees();
inline double toDegrees();
};
/**
* @brief Data type representing degrees. It supports conversion to radians.
*/
class Degrees: public Double {
public:
Degrees(double deg = Double()): Double(deg) {}
Degrees(const Radians& rads): Double( rads * 180/Pi ) {}
inline double toRadians() { return Radians(*this);}
};
inline bool operator==(const Degrees& deg, const Radians& rads) {
Degrees deg2 = rads;
auto diff = std::abs(deg - deg2);
return diff < 0.0001;
}
inline bool operator==(const Radians& rads, const Degrees& deg) {
return deg == rads;
}
inline Radians::operator Degrees() { return *this * 180/Pi; }
inline Radians::Radians(const Degrees &degs): Double( degs * Pi/180) {}
inline double Radians::toDegrees() { return operator Degrees(); }
}
#endif // LIBNEST2D_CONFIG_HPP

View file

@ -0,0 +1,18 @@
#ifndef GEOMETRIES_IO_HPP
#define GEOMETRIES_IO_HPP
#include "libnest2d.hpp"
#include <ostream>
namespace libnest2d {
template<class RawShape>
std::ostream& operator<<(std::ostream& stream, const _Item<RawShape>& sh) {
stream << sh.toString() << "\n";
return stream;
}
}
#endif // GEOMETRIES_IO_HPP

View file

@ -0,0 +1,125 @@
#ifndef GEOMETRIES_NOFITPOLYGON_HPP
#define GEOMETRIES_NOFITPOLYGON_HPP
#include "geometry_traits.hpp"
#include <algorithm>
namespace libnest2d {
struct Nfp {
template<class RawShape>
static RawShape& minkowskiAdd(RawShape& sh, const RawShape& /*other*/) {
static_assert(always_false<RawShape>::value,
"ShapeLike::minkowskiAdd() unimplemented!");
return sh;
}
template<class RawShape>
static RawShape noFitPolygon(const RawShape& sh, const RawShape& other) {
auto isConvex = [](const RawShape& sh) {
return true;
};
using Vertex = TPoint<RawShape>;
using Edge = _Segment<Vertex>;
auto nfpConvexConvex = [] (
const RawShape& sh,
const RawShape& cother)
{
RawShape other = cother;
// Make it counter-clockwise
for(auto shit = ShapeLike::begin(other);
shit != ShapeLike::end(other); ++shit ) {
auto& v = *shit;
setX(v, -getX(v));
setY(v, -getY(v));
}
RawShape rsh;
std::vector<Edge> edgelist;
size_t cap = ShapeLike::contourVertexCount(sh) +
ShapeLike::contourVertexCount(other);
edgelist.reserve(cap);
ShapeLike::reserve(rsh, cap);
{
auto first = ShapeLike::cbegin(sh);
auto next = first + 1;
auto endit = ShapeLike::cend(sh);
while(next != endit) edgelist.emplace_back(*(first++), *(next++));
}
{
auto first = ShapeLike::cbegin(other);
auto next = first + 1;
auto endit = ShapeLike::cend(other);
while(next != endit) edgelist.emplace_back(*(first++), *(next++));
}
std::sort(edgelist.begin(), edgelist.end(),
[](const Edge& e1, const Edge& e2)
{
return e1.angleToXaxis() > e2.angleToXaxis();
});
ShapeLike::addVertex(rsh, edgelist.front().first());
ShapeLike::addVertex(rsh, edgelist.front().second());
auto tmp = std::next(ShapeLike::begin(rsh));
// Construct final nfp
for(auto eit = std::next(edgelist.begin());
eit != edgelist.end();
++eit) {
auto dx = getX(*tmp) - getX(eit->first());
auto dy = getY(*tmp) - getY(eit->first());
ShapeLike::addVertex(rsh, getX(eit->second())+dx,
getY(eit->second())+dy );
tmp = std::next(tmp);
}
return rsh;
};
RawShape rsh;
enum e_dispatch {
CONVEX_CONVEX,
CONCAVE_CONVEX,
CONVEX_CONCAVE,
CONCAVE_CONCAVE
};
int sel = isConvex(sh) ? CONVEX_CONVEX : CONCAVE_CONVEX;
sel += isConvex(other) ? CONVEX_CONVEX : CONVEX_CONCAVE;
switch(sel) {
case CONVEX_CONVEX:
rsh = nfpConvexConvex(sh, other); break;
case CONCAVE_CONVEX:
break;
case CONVEX_CONCAVE:
break;
case CONCAVE_CONCAVE:
break;
}
return rsh;
}
};
}
#endif // GEOMETRIES_NOFITPOLYGON_HPP

View file

@ -0,0 +1,501 @@
#ifndef GEOMETRY_TRAITS_HPP
#define GEOMETRY_TRAITS_HPP
#include <string>
#include <type_traits>
#include <array>
#include <vector>
#include <limits>
#include "common.hpp"
namespace libnest2d {
/// Getting the coordinate data type for a geometry class.
template<class GeomClass> struct CoordType { using Type = long; };
/// TCoord<GeomType> as shorthand for typename `CoordType<GeomType>::Type`.
template<class GeomType>
using TCoord = typename CoordType<remove_cvref_t<GeomType>>::Type;
/// Getting the type of point structure used by a shape.
template<class Shape> struct PointType { using Type = void; };
/// TPoint<ShapeClass> as shorthand for `typename PointType<ShapeClass>::Type`.
template<class Shape>
using TPoint = typename PointType<remove_cvref_t<Shape>>::Type;
/// Getting the VertexIterator type of a shape class.
template<class Shape> struct VertexIteratorType { using Type = void; };
/// Getting the const vertex iterator for a shape class.
template<class Shape> struct VertexConstIteratorType { using Type = void; };
/**
* TVertexIterator<Shape> as shorthand for
* `typename VertexIteratorType<Shape>::Type`
*/
template<class Shape>
using TVertexIterator =
typename VertexIteratorType<remove_cvref_t<Shape>>::Type;
/**
* \brief TVertexConstIterator<Shape> as shorthand for
* `typename VertexConstIteratorType<Shape>::Type`
*/
template<class ShapeClass>
using TVertexConstIterator =
typename VertexConstIteratorType<remove_cvref_t<ShapeClass>>::Type;
/**
* \brief A point pair base class for other point pairs (segment, box, ...).
* \tparam RawPoint The actual point type to use.
*/
template<class RawPoint>
struct PointPair {
RawPoint p1;
RawPoint p2;
};
/**
* \brief An abstraction of a box;
*/
template<class RawPoint>
class _Box: PointPair<RawPoint> {
using PointPair<RawPoint>::p1;
using PointPair<RawPoint>::p2;
public:
inline _Box() {}
inline _Box(const RawPoint& p, const RawPoint& pp):
PointPair<RawPoint>({p, pp}) {}
inline _Box(TCoord<RawPoint> width, TCoord<RawPoint> height):
_Box(RawPoint{0, 0}, RawPoint{width, height}) {}
inline const RawPoint& minCorner() const BP2D_NOEXCEPT { return p1; }
inline const RawPoint& maxCorner() const BP2D_NOEXCEPT { return p2; }
inline RawPoint& minCorner() BP2D_NOEXCEPT { return p1; }
inline RawPoint& maxCorner() BP2D_NOEXCEPT { return p2; }
inline TCoord<RawPoint> width() const BP2D_NOEXCEPT;
inline TCoord<RawPoint> height() const BP2D_NOEXCEPT;
};
template<class RawPoint>
class _Segment: PointPair<RawPoint> {
using PointPair<RawPoint>::p1;
using PointPair<RawPoint>::p2;
public:
inline _Segment() {}
inline _Segment(const RawPoint& p, const RawPoint& pp):
PointPair<RawPoint>({p, pp}) {}
inline const RawPoint& first() const BP2D_NOEXCEPT { return p1; }
inline const RawPoint& second() const BP2D_NOEXCEPT { return p2; }
inline RawPoint& first() BP2D_NOEXCEPT { return p1; }
inline RawPoint& second() BP2D_NOEXCEPT { return p2; }
inline Radians angleToXaxis() const;
};
class PointLike {
public:
template<class RawPoint>
static TCoord<RawPoint> x(const RawPoint& p)
{
return p.x();
}
template<class RawPoint>
static TCoord<RawPoint> y(const RawPoint& p)
{
return p.y();
}
template<class RawPoint>
static TCoord<RawPoint>& x(RawPoint& p)
{
return p.x();
}
template<class RawPoint>
static TCoord<RawPoint>& y(RawPoint& p)
{
return p.y();
}
template<class RawPoint>
static double distance(const RawPoint& /*p1*/, const RawPoint& /*p2*/)
{
static_assert(always_false<RawPoint>::value,
"PointLike::distance(point, point) unimplemented");
return 0;
}
template<class RawPoint>
static double distance(const RawPoint& /*p1*/,
const _Segment<RawPoint>& /*s*/)
{
static_assert(always_false<RawPoint>::value,
"PointLike::distance(point, segment) unimplemented");
return 0;
}
template<class RawPoint>
static std::pair<TCoord<RawPoint>, bool> horizontalDistance(
const RawPoint& p, const _Segment<RawPoint>& s)
{
using Unit = TCoord<RawPoint>;
auto x = PointLike::x(p), y = PointLike::y(p);
auto x1 = PointLike::x(s.first()), y1 = PointLike::y(s.first());
auto x2 = PointLike::x(s.second()), y2 = PointLike::y(s.second());
TCoord<RawPoint> ret;
if( (y < y1 && y < y2) || (y > y1 && y > y2) )
return {0, false};
else if ((y == y1 && y == y2) && (x > x1 && x > x2))
ret = std::min( x-x1, x -x2);
else if( (y == y1 && y == y2) && (x < x1 && x < x2))
ret = -std::min(x1 - x, x2 - x);
else if(std::abs(y - y1) <= std::numeric_limits<Unit>::epsilon() &&
std::abs(y - y2) <= std::numeric_limits<Unit>::epsilon())
ret = 0;
else
ret = x - x1 + (x1 - x2)*(y1 - y)/(y1 - y2);
return {ret, true};
}
template<class RawPoint>
static std::pair<TCoord<RawPoint>, bool> verticalDistance(
const RawPoint& p, const _Segment<RawPoint>& s)
{
using Unit = TCoord<RawPoint>;
auto x = PointLike::x(p), y = PointLike::y(p);
auto x1 = PointLike::x(s.first()), y1 = PointLike::y(s.first());
auto x2 = PointLike::x(s.second()), y2 = PointLike::y(s.second());
TCoord<RawPoint> ret;
if( (x < x1 && x < x2) || (x > x1 && x > x2) )
return {0, false};
else if ((x == x1 && x == x2) && (y > y1 && y > y2))
ret = std::min( y-y1, y -y2);
else if( (x == x1 && x == x2) && (y < y1 && y < y2))
ret = -std::min(y1 - y, y2 - y);
else if(std::abs(x - x1) <= std::numeric_limits<Unit>::epsilon() &&
std::abs(x - x2) <= std::numeric_limits<Unit>::epsilon())
ret = 0;
else
ret = y - y1 + (y1 - y2)*(x1 - x)/(x1 - x2);
return {ret, true};
}
};
template<class RawPoint>
TCoord<RawPoint> _Box<RawPoint>::width() const BP2D_NOEXCEPT {
return PointLike::x(maxCorner()) - PointLike::x(minCorner());
}
template<class RawPoint>
TCoord<RawPoint> _Box<RawPoint>::height() const BP2D_NOEXCEPT {
return PointLike::y(maxCorner()) - PointLike::y(minCorner());
}
template<class RawPoint>
TCoord<RawPoint> getX(const RawPoint& p) { return PointLike::x<RawPoint>(p); }
template<class RawPoint>
TCoord<RawPoint> getY(const RawPoint& p) { return PointLike::y<RawPoint>(p); }
template<class RawPoint>
void setX(RawPoint& p, const TCoord<RawPoint>& val) {
PointLike::x<RawPoint>(p) = val;
}
template<class RawPoint>
void setY(RawPoint& p, const TCoord<RawPoint>& val) {
PointLike::y<RawPoint>(p) = val;
}
template<class RawPoint>
inline Radians _Segment<RawPoint>::angleToXaxis() const
{
TCoord<RawPoint> dx = getX(second()) - getX(first());
TCoord<RawPoint> dy = getY(second()) - getY(first());
if(dx == 0 && dy >= 0) return Pi/2;
if(dx == 0 && dy < 0) return 3*Pi/2;
if(dy == 0 && dx >= 0) return 0;
if(dy == 0 && dx < 0) return Pi;
double ddx = static_cast<double>(dx);
auto s = std::signbit(ddx);
double a = std::atan(ddx/dy);
if(s) a += Pi;
return a;
}
template<class RawShape>
struct HolesContainer {
using Type = std::vector<RawShape>;
};
template<class RawShape>
using THolesContainer = typename HolesContainer<remove_cvref_t<RawShape>>::Type;
template<class RawShape>
struct CountourType {
using Type = RawShape;
};
template<class RawShape>
using TCountour = typename CountourType<remove_cvref_t<RawShape>>::Type;
enum class Orientation {
CLOCKWISE,
COUNTER_CLOCKWISE
};
template<class RawShape>
struct OrientationType {
// Default Polygon orientation that the library expects
static const Orientation Value = Orientation::CLOCKWISE;
};
enum class Formats {
WKT,
SVG
};
struct ShapeLike {
template<class RawShape>
static RawShape create( std::initializer_list< TPoint<RawShape> > il)
{
return RawShape(il);
}
// Optional, does nothing by default
template<class RawShape>
static void reserve(RawShape& /*sh*/, unsigned long /*vertex_capacity*/) {}
template<class RawShape, class...Args>
static void addVertex(RawShape& sh, Args...args)
{
return getContour(sh).emplace_back(std::forward<Args>(args)...);
}
template<class RawShape>
static TVertexIterator<RawShape> begin(RawShape& sh)
{
return sh.begin();
}
template<class RawShape>
static TVertexIterator<RawShape> end(RawShape& sh)
{
return sh.end();
}
template<class RawShape>
static TVertexConstIterator<RawShape> cbegin(const RawShape& sh)
{
return sh.cbegin();
}
template<class RawShape>
static TVertexConstIterator<RawShape> cend(const RawShape& sh)
{
return sh.cend();
}
template<class RawShape>
static TPoint<RawShape>& vertex(RawShape& sh, unsigned long idx)
{
return *(begin(sh) + idx);
}
template<class RawShape>
static const TPoint<RawShape>& vertex(const RawShape& sh,
unsigned long idx)
{
return *(cbegin(sh) + idx);
}
template<class RawShape>
static size_t contourVertexCount(const RawShape& sh)
{
return cend(sh) - cbegin(sh);
}
template<class RawShape>
static std::string toString(const RawShape& /*sh*/)
{
return "";
}
template<Formats, class RawShape>
static std::string serialize(const RawShape& /*sh*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::serialize() unimplemented");
return "";
}
template<Formats, class RawShape>
static void unserialize(RawShape& /*sh*/, const std::string& /*str*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::unserialize() unimplemented");
}
template<class RawShape>
static double area(const RawShape& /*sh*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::area() unimplemented");
return 0;
}
template<class RawShape>
static double area(const _Box<TPoint<RawShape>>& box)
{
return box.width() * box.height();
return 0;
}
template<class RawShape>
static bool intersects(const RawShape& /*sh*/, const RawShape& /*sh*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::intersects() unimplemented");
return false;
}
template<class RawShape>
static bool isInside(const TPoint<RawShape>& /*point*/,
const RawShape& /*shape*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::isInside(point, shape) unimplemented");
return false;
}
template<class RawShape>
static bool isInside(const RawShape& /*shape*/,
const RawShape& /*shape*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::isInside(shape, shape) unimplemented");
return false;
}
template<class RawShape>
static bool touches( const RawShape& /*shape*/,
const RawShape& /*shape*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::touches(shape, shape) unimplemented");
return false;
}
template<class RawShape>
static _Box<TPoint<RawShape>> boundingBox(const RawShape& /*sh*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::boundingBox(shape) unimplemented");
}
template<class RawShape>
static _Box<TPoint<RawShape>> boundingBox(const _Box<TPoint<RawShape>>& box)
{
return box;
}
template<class RawShape>
static THolesContainer<RawShape>& holes(RawShape& /*sh*/)
{
static THolesContainer<RawShape> empty;
return empty;
}
template<class RawShape>
static const THolesContainer<RawShape>& holes(const RawShape& /*sh*/)
{
static THolesContainer<RawShape> empty;
return empty;
}
template<class RawShape>
static TCountour<RawShape>& getHole(RawShape& sh, unsigned long idx)
{
return holes(sh)[idx];
}
template<class RawShape>
static const TCountour<RawShape>& getHole(const RawShape& sh,
unsigned long idx)
{
return holes(sh)[idx];
}
template<class RawShape>
static size_t holeCount(const RawShape& sh)
{
return holes(sh).size();
}
template<class RawShape>
static TCountour<RawShape>& getContour(RawShape& sh)
{
return sh;
}
template<class RawShape>
static const TCountour<RawShape>& getContour(const RawShape& sh)
{
return sh;
}
template<class RawShape>
static void rotate(RawShape& /*sh*/, const Radians& /*rads*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::rotate() unimplemented");
}
template<class RawShape, class RawPoint>
static void translate(RawShape& /*sh*/, const RawPoint& /*offs*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::translate() unimplemented");
}
template<class RawShape>
static void offset(RawShape& /*sh*/, TCoord<TPoint<RawShape>> /*distance*/)
{
static_assert(always_false<RawShape>::value,
"ShapeLike::offset() unimplemented!");
}
template<class RawShape>
static std::pair<bool, std::string> isValid(const RawShape& /*sh*/) {
return {false, "ShapeLike::isValid() unimplemented"};
}
};
}
#endif // GEOMETRY_TRAITS_HPP

View file

@ -0,0 +1,802 @@
#ifndef LIBNEST2D_HPP
#define LIBNEST2D_HPP
#include <memory>
#include <vector>
#include <map>
#include <array>
#include <algorithm>
#include <functional>
#include "geometry_traits.hpp"
namespace libnest2d {
/**
* \brief An item to be placed on a bin.
*
* It holds a copy of the original shape object but supports move construction
* from the shape objects if its an rvalue reference. This way we can construct
* the items without the cost of copying a potentially large amount of input.
*
* The results of some calculations are cached for maintaining fast run times.
* For this reason, memory demands are much higher but this should pay off.
*/
template<class RawShape>
class _Item {
using Coord = TCoord<TPoint<RawShape>>;
using Vertex = TPoint<RawShape>;
using Box = _Box<Vertex>;
// The original shape that gets encapsulated.
RawShape sh_;
// Transformation data
Vertex translation_;
Radians rotation_;
Coord offset_distance_;
// Info about whether the tranformations will have to take place
// This is needed because if floating point is used, it is hard to say
// that a zero angle is not a rotation because of testing for equality.
bool has_rotation_ = false, has_translation_ = false, has_offset_ = false;
// For caching the calculations as they can get pretty expensive.
mutable RawShape tr_cache_;
mutable bool tr_cache_valid_ = false;
mutable double area_cache_ = 0;
mutable bool area_cache_valid_ = false;
mutable RawShape offset_cache_;
mutable bool offset_cache_valid_ = false;
public:
/// The type of the shape which was handed over as the template argument.
using ShapeType = RawShape;
/**
* \brief Iterator type for the outer vertices.
*
* Only const iterators can be used. The _Item type is not intended to
* modify the carried shapes from the outside. The main purpose of this type
* is to cache the calculation results from the various operators it
* supports. Giving out a non const iterator would make it impossible to
* perform correct cache invalidation.
*/
using Iterator = TVertexConstIterator<RawShape>;
/**
* @brief Get the orientation of the polygon.
*
* The orientation have to be specified as a specialization of the
* OrientationType struct which has a Value constant.
*
* @return The orientation type identifier for the _Item type.
*/
static BP2D_CONSTEXPR Orientation orientation() {
return OrientationType<RawShape>::Value;
}
/**
* @brief Constructing an _Item form an existing raw shape. The shape will
* be copied into the _Item object.
* @param sh The original shape object.
*/
explicit inline _Item(const RawShape& sh): sh_(sh) {}
/**
* @brief Construction of an item by moving the content of the raw shape,
* assuming that it supports move semantics.
* @param sh The original shape object.
*/
explicit inline _Item(RawShape&& sh): sh_(std::move(sh)) {}
/**
* @brief Create an item from an initilizer list.
* @param il The initializer list of vertices.
*/
inline _Item(const std::initializer_list< Vertex >& il):
sh_(ShapeLike::create<RawShape>(il)) {}
/**
* @brief Convert the polygon to string representation. The format depends
* on the implementation of the polygon.
* @return
*/
inline std::string toString() const
{
return ShapeLike::toString(sh_);
}
/// Iterator tho the first vertex in the polygon.
inline Iterator begin() const
{
return ShapeLike::cbegin(sh_);
}
/// Alias to begin()
inline Iterator cbegin() const
{
return ShapeLike::cbegin(sh_);
}
/// Iterator to the last element.
inline Iterator end() const
{
return ShapeLike::cend(sh_);
}
/// Alias to end()
inline Iterator cend() const
{
return ShapeLike::cend(sh_);
}
/**
* @brief Get a copy of an outer vertex whithin the carried shape.
*
* Note that the vertex considered here is taken from the original shape
* that this item is constructed from. This means that no transformation is
* applied to the shape in this call.
*
* @param idx The index of the requested vertex.
* @return A copy of the requested vertex.
*/
inline Vertex vertex(unsigned long idx) const
{
return ShapeLike::vertex(sh_, idx);
}
/**
* @brief Modify a vertex.
*
* Note that this method will invalidate every cached calculation result
* including polygon offset and transformations.
*
* @param idx The index of the requested vertex.
* @param v The new vertex data.
*/
inline void setVertex(unsigned long idx,
const Vertex& v )
{
invalidateCache();
ShapeLike::vertex(sh_, idx) = v;
}
/**
* @brief Calculate the shape area.
*
* The method returns absolute value and does not reflect polygon
* orientation. The result is cached, subsequent calls will have very little
* cost.
* @return The shape area in floating point double precision.
*/
inline double area() const {
double ret ;
if(area_cache_valid_) ret = area_cache_;
else {
ret = std::abs(ShapeLike::area(offsettedShape()));
area_cache_ = ret;
area_cache_valid_ = true;
}
return ret;
}
/// The number of the outer ring vertices.
inline unsigned long vertexCount() const {
return ShapeLike::contourVertexCount(sh_);
}
/**
* @brief isPointInside
* @param p
* @return
*/
inline bool isPointInside(const Vertex& p)
{
return ShapeLike::isInside(p, sh_);
}
inline bool isInside(const _Item& sh) const
{
return ShapeLike::isInside(transformedShape(), sh.transformedShape());
}
inline void translate(const Vertex& d) BP2D_NOEXCEPT
{
translation_ += d; has_translation_ = true;
tr_cache_valid_ = false;
}
inline void rotate(const Radians& rads) BP2D_NOEXCEPT
{
rotation_ += rads;
has_rotation_ = true;
tr_cache_valid_ = false;
}
inline void addOffset(Coord distance) BP2D_NOEXCEPT
{
offset_distance_ = distance;
has_offset_ = true;
offset_cache_valid_ = false;
}
inline void removeOffset() BP2D_NOEXCEPT {
has_offset_ = false;
invalidateCache();
}
inline Radians rotation() const BP2D_NOEXCEPT
{
return rotation_;
}
inline TPoint<RawShape> translation() const BP2D_NOEXCEPT
{
return translation_;
}
inline void rotation(Radians rot) BP2D_NOEXCEPT
{
if(rotation_ != rot) {
rotation_ = rot; has_rotation_ = true; tr_cache_valid_ = false;
}
}
inline void translation(const TPoint<RawShape>& tr) BP2D_NOEXCEPT
{
if(translation_ != tr) {
translation_ = tr; has_translation_ = true; tr_cache_valid_ = false;
}
}
inline RawShape transformedShape() const
{
if(tr_cache_valid_) return tr_cache_;
RawShape cpy = offsettedShape();
if(has_rotation_) ShapeLike::rotate(cpy, rotation_);
if(has_translation_) ShapeLike::translate(cpy, translation_);
tr_cache_ = cpy; tr_cache_valid_ = true;
return cpy;
}
inline operator RawShape() const
{
return transformedShape();
}
inline const RawShape& rawShape() const BP2D_NOEXCEPT
{
return sh_;
}
inline void resetTransformation() BP2D_NOEXCEPT
{
has_translation_ = false; has_rotation_ = false; has_offset_ = false;
}
inline Box boundingBox() const {
return ShapeLike::boundingBox(transformedShape());
}
//Static methods:
inline static bool intersects(const _Item& sh1, const _Item& sh2)
{
return ShapeLike::intersects(sh1.transformedShape(),
sh2.transformedShape());
}
inline static bool touches(const _Item& sh1, const _Item& sh2)
{
return ShapeLike::touches(sh1.transformedShape(),
sh2.transformedShape());
}
private:
inline const RawShape& offsettedShape() const {
if(has_offset_ ) {
if(offset_cache_valid_) return offset_cache_;
else {
offset_cache_ = sh_;
ShapeLike::offset(offset_cache_, offset_distance_);
offset_cache_valid_ = true;
return offset_cache_;
}
}
return sh_;
}
inline void invalidateCache() const BP2D_NOEXCEPT
{
tr_cache_valid_ = false;
area_cache_valid_ = false;
offset_cache_valid_ = false;
}
};
/**
* \brief Subclass of _Item for regular rectangle items.
*/
template<class RawShape>
class _Rectangle: public _Item<RawShape> {
RawShape sh_;
using _Item<RawShape>::vertex;
using TO = Orientation;
public:
using Unit = TCoord<RawShape>;
template<TO o = OrientationType<RawShape>::Value>
inline _Rectangle(Unit width, Unit height,
// disable this ctor if o != CLOCKWISE
enable_if_t< o == TO::CLOCKWISE, int> = 0 ):
_Item<RawShape>( ShapeLike::create<RawShape>( {
{0, 0},
{0, height},
{width, height},
{width, 0},
{0, 0}
} ))
{
}
template<TO o = OrientationType<RawShape>::Value>
inline _Rectangle(Unit width, Unit height,
// disable this ctor if o != COUNTER_CLOCKWISE
enable_if_t< o == TO::COUNTER_CLOCKWISE, int> = 0 ):
_Item<RawShape>( ShapeLike::create<RawShape>( {
{0, 0},
{width, 0},
{width, height},
{0, height},
{0, 0}
} ))
{
}
inline Unit width() const BP2D_NOEXCEPT {
return getX(vertex(2));
}
inline Unit height() const BP2D_NOEXCEPT {
return getY(vertex(2));
}
};
/**
* \brief A wrapper interface (trait) class for any placement strategy provider.
*
* If a client want's to use its own placement algorithm, all it has to do is to
* specialize this class template and define all the ten methods it has. It can
* use the strategies::PlacerBoilerplace class for creating a new placement
* strategy where only the constructor and the trypack method has to be provided
* and it will work out of the box.
*/
template<class PlacementStrategy>
class PlacementStrategyLike {
PlacementStrategy impl_;
public:
/// The item type that the placer works with.
using Item = typename PlacementStrategy::Item;
/// The placer's config type. Should be a simple struct but can be anything.
using Config = typename PlacementStrategy::Config;
/**
* \brief The type of the bin that the placer works with.
*
* Can be a box or an arbitrary shape or just a width or height without a
* second dimension if an infinite bin is considered.
*/
using BinType = typename PlacementStrategy::BinType;
/**
* \brief Pack result that can be used to accept or discard it. See trypack
* method.
*/
using PackResult = typename PlacementStrategy::PackResult;
using ItemRef = std::reference_wrapper<Item>;
using ItemGroup = std::vector<ItemRef>;
/**
* @brief Constructor taking the bin and an optional configuration.
* @param bin The bin object whose type is defined by the placement strategy.
* @param config The configuration for the particular placer.
*/
explicit PlacementStrategyLike(const BinType& bin,
const Config& config = Config()):
impl_(bin)
{
configure(config);
}
/**
* @brief Provide a different configuration for the placer.
*
* Note that it depends on the particular placer implementation how it
* reacts to config changes in the middle of a calculation.
*
* @param config The configuration object defined by the placement startegy.
*/
inline void configure(const Config& config) { impl_.configure(config); }
/**
* @brief A method that tries to pack an item and returns an object
* describing the pack result.
*
* The result can be casted to bool and used as an argument to the accept
* method to accept a succesfully packed item. This way the next packing
* will consider the accepted item as well. The PackResult should carry the
* transformation info so that if the tried item is later modified or tried
* multiple times, the result object should set it to the originally
* determied position. An implementation can be found in the
* strategies::PlacerBoilerplate::PackResult class.
*
* @param item Ithe item to be packed.
* @return The PackResult object that can be implicitly casted to bool.
*/
inline PackResult trypack(Item& item) { return impl_.trypack(item); }
/**
* @brief A method to accept a previously tried item.
*
* If the pack result is a failure the method should ignore it.
* @param r The result of a previous trypack call.
*/
inline void accept(PackResult& r) { impl_.accept(r); }
/**
* @brief pack Try to pack an item and immediately accept it on success.
*
* A default implementation would be to call
* { auto&& r = trypack(item); accept(r); return r; } but we should let the
* implementor of the placement strategy to harvest any optimizations from
* the absence of an intermadiate step. The above version can still be used
* in the implementation.
*
* @param item The item to pack.
* @return Returns true if the item was packed or false if it could not be
* packed.
*/
inline bool pack(Item& item) { return impl_.pack(item); }
/// Unpack the last element (remove it from the list of packed items).
inline void unpackLast() { impl_.unpackLast(); }
/// Get the bin object.
inline const BinType& bin() const { return impl_.bin(); }
/// Set a new bin object.
inline void bin(const BinType& bin) { impl_.bin(bin); }
/// Get the packed items.
inline ItemGroup getItems() { return impl_.getItems(); }
/// Clear the packed items so a new session can be started.
inline void clearItems() { impl_.clearItems(); }
};
/**
* A wrapper interface (trait) class for any selections strategy provider.
*/
template<class SelectionStrategy>
class SelectionStrategyLike {
SelectionStrategy impl_;
public:
using Item = typename SelectionStrategy::Item;
using Config = typename SelectionStrategy::Config;
using ItemRef = std::reference_wrapper<Item>;
using ItemGroup = std::vector<ItemRef>;
/**
* @brief Provide a different configuration for the selection strategy.
*
* Note that it depends on the particular placer implementation how it
* reacts to config changes in the middle of a calculation.
*
* @param config The configuration object defined by the selection startegy.
*/
inline void configure(const Config& config) {
impl_.configure(config);
}
/**
* \brief A method to start the calculation on the input sequence.
*
* \tparam TPlacer The only mandatory template parameter is the type of
* placer compatible with the PlacementStrategyLike interface.
*
* \param first, last The first and last iterator if the input sequence. It
* can be only an iterator of a type converitible to Item.
* \param bin. The shape of the bin. It has to be supported by the placement
* strategy.
* \param An optional config object for the placer.
*/
template<class TPlacer, class TIterator,
class TBin = typename PlacementStrategyLike<TPlacer>::BinType,
class PConfig = typename PlacementStrategyLike<TPlacer>::Config>
inline void packItems(
TIterator first,
TIterator last,
TBin&& bin,
PConfig&& config = PConfig() )
{
impl_.template packItems<TPlacer>(first, last,
std::forward<TBin>(bin),
std::forward<PConfig>(config));
}
/**
* \brief Get the number of bins opened by the selection algorithm.
*
* Initially it is zero and after the call to packItems it will return
* the number of bins opened by the packing procedure.
*
* \return The number of bins opened.
*/
inline size_t binCount() const { return impl_.binCount(); }
/**
* @brief Get the items for a particular bin.
* @param binIndex The index of the requested bin.
* @return Returns a list of allitems packed into the requested bin.
*/
inline ItemGroup itemsForBin(size_t binIndex) {
return impl_.itemsForBin(binIndex);
}
/// Same as itemsForBin but for a const context.
inline const ItemGroup itemsForBin(size_t binIndex) const {
return impl_.itemsForBin(binIndex);
}
};
/**
* \brief A list of packed item vectors. Each vector represents a bin.
*/
template<class RawShape>
using _PackGroup = std::vector<
std::vector<
std::reference_wrapper<_Item<RawShape>>
>
>;
/**
* \brief A list of packed (index, item) pair vectors. Each vector represents a
* bin.
*
* The index is points to the position of the item in the original input
* sequence. This way the caller can use the items as a transformation data
* carrier and transform the original objects manually.
*/
template<class RawShape>
using _IndexedPackGroup = std::vector<
std::vector<
std::pair<
unsigned,
std::reference_wrapper<_Item<RawShape>>
>
>
>;
/**
* The Arranger is the frontend class for the binpack2d library. It takes the
* input items and outputs the items with the proper transformations to be
* inside the provided bin.
*/
template<class PlacementStrategy, class SelectionStrategy >
class Arranger {
using TSel = SelectionStrategyLike<SelectionStrategy>;
TSel selector_;
public:
using Item = typename PlacementStrategy::Item;
using ItemRef = std::reference_wrapper<Item>;
using TPlacer = PlacementStrategyLike<PlacementStrategy>;
using BinType = typename TPlacer::BinType;
using PlacementConfig = typename TPlacer::Config;
using SelectionConfig = typename TSel::Config;
using Unit = TCoord<TPoint<typename Item::ShapeType>>;
using IndexedPackGroup = _IndexedPackGroup<typename Item::ShapeType>;
using PackGroup = _PackGroup<typename Item::ShapeType>;
private:
BinType bin_;
PlacementConfig pconfig_;
TCoord<typename Item::ShapeType> min_obj_distance_;
using SItem = typename SelectionStrategy::Item;
using TPItem = remove_cvref_t<Item>;
using TSItem = remove_cvref_t<SItem>;
std::vector<TPItem> item_cache_;
public:
/**
* \brief Constructor taking the bin as the only mandatory parameter.
*
* \param bin The bin shape that will be used by the placers. The type
* of the bin should be one that is supported by the placer type.
*/
template<class TBinType = BinType,
class PConf = PlacementConfig,
class SConf = SelectionConfig>
Arranger( TBinType&& bin,
Unit min_obj_distance = 0,
PConf&& pconfig = PConf(),
SConf&& sconfig = SConf()):
bin_(std::forward<TBinType>(bin)),
pconfig_(std::forward<PlacementConfig>(pconfig)),
min_obj_distance_(min_obj_distance)
{
static_assert( std::is_same<TPItem, TSItem>::value,
"Incompatible placement and selection strategy!");
selector_.configure(std::forward<SelectionConfig>(sconfig));
}
/**
* \brief Arrange an input sequence and return a PackGroup object with
* the packed groups corresponding to the bins.
*
* The number of groups in the pack group is the number of bins opened by
* the selection algorithm.
*/
template<class TIterator>
inline PackGroup arrange(TIterator from, TIterator to)
{
return _arrange(from, to);
}
/**
* A version of the arrange method returning an IndexedPackGroup with
* the item indexes into the original input sequence.
*
* Takes a little longer to collect the indices. Scales linearly with the
* input sequence size.
*/
template<class TIterator>
inline IndexedPackGroup arrangeIndexed(TIterator from, TIterator to)
{
return _arrangeIndexed(from, to);
}
/// Shorthand to normal arrange method.
template<class TIterator>
inline PackGroup operator() (TIterator from, TIterator to)
{
return _arrange(from, to);
}
private:
template<class TIterator,
class IT = remove_cvref_t<typename TIterator::value_type>,
// This funtion will be used only if the iterators are pointing to
// a type compatible with the binpack2d::_Item template.
// This way we can use references to input elements as they will
// have to exist for the lifetime of this call.
class T = enable_if_t< std::is_convertible<IT, TPItem>::value, IT>
>
inline PackGroup _arrange(TIterator from, TIterator to, bool = false)
{
__arrange(from, to);
PackGroup ret;
for(size_t i = 0; i < selector_.binCount(); i++) {
auto items = selector_.itemsForBin(i);
ret.push_back(items);
}
return ret;
}
template<class TIterator,
class IT = remove_cvref_t<typename TIterator::value_type>,
class T = enable_if_t<!std::is_convertible<IT, TPItem>::value, IT>
>
inline PackGroup _arrange(TIterator from, TIterator to, int = false)
{
item_cache_ = {from, to};
__arrange(item_cache_.begin(), item_cache_.end());
PackGroup ret;
for(size_t i = 0; i < selector_.binCount(); i++) {
auto items = selector_.itemsForBin(i);
ret.push_back(items);
}
return ret;
}
template<class TIterator,
class IT = remove_cvref_t<typename TIterator::value_type>,
// This funtion will be used only if the iterators are pointing to
// a type compatible with the binpack2d::_Item template.
// This way we can use references to input elements as they will
// have to exist for the lifetime of this call.
class T = enable_if_t< std::is_convertible<IT, TPItem>::value, IT>
>
inline IndexedPackGroup _arrangeIndexed(TIterator from,
TIterator to,
bool = false)
{
__arrange(from, to);
return createIndexedPackGroup(from, to, selector_);
}
template<class TIterator,
class IT = remove_cvref_t<typename TIterator::value_type>,
class T = enable_if_t<!std::is_convertible<IT, TPItem>::value, IT>
>
inline IndexedPackGroup _arrangeIndexed(TIterator from,
TIterator to,
int = false)
{
item_cache_ = {from, to};
__arrange(item_cache_.begin(), item_cache_.end());
return createIndexedPackGroup(from, to, selector_);
}
template<class TIterator>
static IndexedPackGroup createIndexedPackGroup(TIterator from,
TIterator to,
TSel& selector)
{
IndexedPackGroup pg;
pg.reserve(selector.binCount());
for(size_t i = 0; i < selector.binCount(); i++) {
auto items = selector.itemsForBin(i);
pg.push_back({});
pg[i].reserve(items.size());
for(Item& itemA : items) {
auto it = from;
unsigned idx = 0;
while(it != to) {
Item& itemB = *it;
if(&itemB == &itemA) break;
it++; idx++;
}
pg[i].emplace_back(idx, itemA);
}
}
return pg;
}
template<class TIter> inline void __arrange(TIter from, TIter to)
{
if(min_obj_distance_ > 0) std::for_each(from, to, [this](Item& item) {
item.addOffset(std::ceil(min_obj_distance_/2.0));
});
selector_.template packItems<PlacementStrategy>(
from, to, bin_, pconfig_);
if(min_obj_distance_ > 0) std::for_each(from, to, [this](Item& item) {
item.removeOffset();
});
}
};
}
#endif // LIBNEST2D_HPP

View file

@ -0,0 +1,391 @@
#ifndef BOTTOMLEFT_HPP
#define BOTTOMLEFT_HPP
#include <limits>
#include "placer_boilerplate.hpp"
namespace libnest2d { namespace strategies {
template<class RawShape>
struct BLConfig {
TCoord<TPoint<RawShape>> min_obj_distance = 0;
bool allow_rotations = false;
};
template<class RawShape>
class _BottomLeftPlacer: public PlacerBoilerplate<
_BottomLeftPlacer<RawShape>,
RawShape, _Box<TPoint<RawShape>>,
BLConfig<RawShape> >
{
using Base = PlacerBoilerplate<_BottomLeftPlacer<RawShape>, RawShape,
_Box<TPoint<RawShape>>, BLConfig<RawShape>>;
DECLARE_PLACER(Base)
public:
explicit _BottomLeftPlacer(const BinType& bin): Base(bin) {}
PackResult trypack(Item& item) {
auto r = _trypack(item);
if(!r && Base::config_.allow_rotations) {
item.rotate(Degrees(90));
r =_trypack(item);
}
return r;
}
enum class Dir {
LEFT,
DOWN
};
inline RawShape leftPoly(const Item& item) const {
return toWallPoly(item, Dir::LEFT);
}
inline RawShape downPoly(const Item& item) const {
return toWallPoly(item, Dir::DOWN);
}
inline Unit availableSpaceLeft(const Item& item) {
return availableSpace(item, Dir::LEFT);
}
inline Unit availableSpaceDown(const Item& item) {
return availableSpace(item, Dir::DOWN);
}
protected:
PackResult _trypack(Item& item) {
// Get initial position for item in the top right corner
setInitialPosition(item);
Unit d = availableSpaceDown(item);
bool can_move = d > 1 /*std::numeric_limits<Unit>::epsilon()*/;
bool can_be_packed = can_move;
bool left = true;
while(can_move) {
if(left) { // write previous down move and go down
item.translate({0, -d+1});
d = availableSpaceLeft(item);
can_move = d > 1/*std::numeric_limits<Unit>::epsilon()*/;
left = false;
} else { // write previous left move and go down
item.translate({-d+1, 0});
d = availableSpaceDown(item);
can_move = d > 1/*std::numeric_limits<Unit>::epsilon()*/;
left = true;
}
}
if(can_be_packed) {
Item trsh(item.transformedShape());
for(auto& v : trsh) can_be_packed = can_be_packed &&
getX(v) < bin_.width() &&
getY(v) < bin_.height();
}
return can_be_packed? PackResult(item) : PackResult();
}
void setInitialPosition(Item& item) {
auto bb = item.boundingBox();
Vertex v = { getX(bb.maxCorner()), getY(bb.minCorner()) };
Coord dx = getX(bin_.maxCorner()) - getX(v);
Coord dy = getY(bin_.maxCorner()) - getY(v);
item.translate({dx, dy});
}
template<class C = Coord>
static enable_if_t<std::is_floating_point<C>::value, bool>
isInTheWayOf( const Item& item,
const Item& other,
const RawShape& scanpoly)
{
auto tsh = other.transformedShape();
return ( ShapeLike::intersects(tsh, scanpoly) ||
ShapeLike::isInside(tsh, scanpoly) ) &&
( !ShapeLike::intersects(tsh, item.rawShape()) &&
!ShapeLike::isInside(tsh, item.rawShape()) );
}
template<class C = Coord>
static enable_if_t<std::is_integral<C>::value, bool>
isInTheWayOf( const Item& item,
const Item& other,
const RawShape& scanpoly)
{
auto tsh = other.transformedShape();
bool inters_scanpoly = ShapeLike::intersects(tsh, scanpoly) &&
!ShapeLike::touches(tsh, scanpoly);
bool inters_item = ShapeLike::intersects(tsh, item.rawShape()) &&
!ShapeLike::touches(tsh, item.rawShape());
return ( inters_scanpoly ||
ShapeLike::isInside(tsh, scanpoly)) &&
( !inters_item &&
!ShapeLike::isInside(tsh, item.rawShape())
);
}
Container itemsInTheWayOf(const Item& item, const Dir dir) {
// Get the left or down polygon, that has the same area as the shadow
// of input item reflected to the left or downwards
auto&& scanpoly = dir == Dir::LEFT? leftPoly(item) :
downPoly(item);
Container ret; // packed items 'in the way' of item
ret.reserve(items_.size());
// Predicate to find items that are 'in the way' for left (down) move
auto predicate = [&scanpoly, &item](const Item& it) {
return isInTheWayOf(item, it, scanpoly);
};
// Get the items that are in the way for the left (or down) movement
std::copy_if(items_.begin(), items_.end(),
std::back_inserter(ret), predicate);
return ret;
}
Unit availableSpace(const Item& _item, const Dir dir) {
Item item (_item.transformedShape());
std::function<Coord(const Vertex&)> getCoord;
std::function< std::pair<Coord, bool>(const Segment&, const Vertex&) >
availableDistanceSV;
std::function< std::pair<Coord, bool>(const Vertex&, const Segment&) >
availableDistance;
if(dir == Dir::LEFT) {
getCoord = [](const Vertex& v) { return getX(v); };
availableDistance = PointLike::horizontalDistance<Vertex>;
availableDistanceSV = [](const Segment& s, const Vertex& v) {
auto ret = PointLike::horizontalDistance<Vertex>(v, s);
if(ret.second) ret.first = -ret.first;
return ret;
};
}
else {
getCoord = [](const Vertex& v) { return getY(v); };
availableDistance = PointLike::verticalDistance<Vertex>;
availableDistanceSV = [](const Segment& s, const Vertex& v) {
auto ret = PointLike::verticalDistance<Vertex>(v, s);
if(ret.second) ret.first = -ret.first;
return ret;
};
}
auto&& items_in_the_way = itemsInTheWayOf(item, dir);
// Comparison function for finding min vertex
auto cmp = [&getCoord](const Vertex& v1, const Vertex& v2) {
return getCoord(v1) < getCoord(v2);
};
// find minimum left or down coordinate of item
auto minvertex_it = std::min_element(item.begin(),
item.end(),
cmp);
// Get the initial distance in floating point
Unit m = getCoord(*minvertex_it);
// Check available distance for every vertex of item to the objects
// in the way for the nearest intersection
if(!items_in_the_way.empty()) { // This is crazy, should be optimized...
for(Item& pleft : items_in_the_way) {
// For all segments in items_to_left
assert(pleft.vertexCount() > 0);
auto trpleft = pleft.transformedShape();
auto first = ShapeLike::begin(trpleft);
auto next = first + 1;
auto endit = ShapeLike::end(trpleft);
while(next != endit) {
Segment seg(*(first++), *(next++));
for(auto& v : item) { // For all vertices in item
auto d = availableDistance(v, seg);
if(d.second && d.first < m) m = d.first;
}
}
}
auto first = item.begin();
auto next = first + 1;
auto endit = item.end();
// For all edges in item:
while(next != endit) {
Segment seg(*(first++), *(next++));
// for all shapes in items_to_left
for(Item& sh : items_in_the_way) {
assert(sh.vertexCount() > 0);
Item tsh(sh.transformedShape());
for(auto& v : tsh) { // For all vertices in item
auto d = availableDistanceSV(seg, v);
if(d.second && d.first < m) m = d.first;
}
}
}
}
return m;
}
/**
* Implementation of the left (and down) polygon as described by
* [López-Camacho et al. 2013]\
* (http://www.cs.stir.ac.uk/~goc/papers/EffectiveHueristic2DAOR2013.pdf)
* see algorithm 8 for details...
*/
RawShape toWallPoly(const Item& _item, const Dir dir) const {
// The variable names reflect the case of left polygon calculation.
//
// We will iterate through the item's vertices and search for the top
// and bottom vertices (or right and left if dir==Dir::DOWN).
// Save the relevant vertices and their indices into `bottom` and
// `top` vectors. In case of left polygon construction these will
// contain the top and bottom polygons which have the same vertical
// coordinates (in case there is more of them).
//
// We get the leftmost (or downmost) vertex from the `bottom` and `top`
// vectors and construct the final polygon.
Item item (_item.transformedShape());
auto getCoord = [dir](const Vertex& v) {
return dir == Dir::LEFT? getY(v) : getX(v);
};
Coord max_y = std::numeric_limits<Coord>::min();
Coord min_y = std::numeric_limits<Coord>::max();
using El = std::pair<size_t, std::reference_wrapper<const Vertex>>;
std::function<bool(const El&, const El&)> cmp;
if(dir == Dir::LEFT)
cmp = [](const El& e1, const El& e2) {
return getX(e1.second.get()) < getX(e2.second.get());
};
else
cmp = [](const El& e1, const El& e2) {
return getY(e1.second.get()) < getY(e2.second.get());
};
std::vector< El > top;
std::vector< El > bottom;
size_t idx = 0;
for(auto& v : item) { // Find the bottom and top vertices and save them
auto vref = std::cref(v);
auto vy = getCoord(v);
if( vy > max_y ) {
max_y = vy;
top.clear();
top.emplace_back(idx, vref);
}
else if(vy == max_y) { top.emplace_back(idx, vref); }
if(vy < min_y) {
min_y = vy;
bottom.clear();
bottom.emplace_back(idx, vref);
}
else if(vy == min_y) { bottom.emplace_back(idx, vref); }
idx++;
}
// Get the top and bottom leftmost vertices, or the right and left
// downmost vertices (if dir == Dir::DOWN)
auto topleft_it = std::min_element(top.begin(), top.end(), cmp);
auto bottomleft_it =
std::min_element(bottom.begin(), bottom.end(), cmp);
auto& topleft_vertex = topleft_it->second.get();
auto& bottomleft_vertex = bottomleft_it->second.get();
// Start and finish positions for the vertices that will be part of the
// new polygon
auto start = std::min(topleft_it->first, bottomleft_it->first);
auto finish = std::max(topleft_it->first, bottomleft_it->first);
// the return shape
RawShape rsh;
// reserve for all vertices plus 2 for the left horizontal wall, 2 for
// the additional vertices for maintaning min object distance
ShapeLike::reserve(rsh, finish-start+4);
/*auto addOthers = [&rsh, finish, start, &item](){
for(size_t i = start+1; i < finish; i++)
ShapeLike::addVertex(rsh, item.vertex(i));
};*/
auto reverseAddOthers = [&rsh, finish, start, &item](){
for(size_t i = finish-1; i > start; i--)
ShapeLike::addVertex(rsh, item.vertex(i));
};
// Final polygon construction...
static_assert(OrientationType<RawShape>::Value ==
Orientation::CLOCKWISE,
"Counter clockwise toWallPoly() Unimplemented!");
// Clockwise polygon construction
ShapeLike::addVertex(rsh, topleft_vertex);
if(dir == Dir::LEFT) reverseAddOthers();
else {
ShapeLike::addVertex(rsh, getX(topleft_vertex), 0);
ShapeLike::addVertex(rsh, getX(bottomleft_vertex), 0);
}
ShapeLike::addVertex(rsh, bottomleft_vertex);
if(dir == Dir::LEFT) {
ShapeLike::addVertex(rsh, 0, getY(bottomleft_vertex));
ShapeLike::addVertex(rsh, 0, getY(topleft_vertex));
}
else reverseAddOthers();
// Close the polygon
ShapeLike::addVertex(rsh, topleft_vertex);
return rsh;
}
};
}
}
#endif //BOTTOMLEFT_HPP

View file

@ -0,0 +1,31 @@
#ifndef NOFITPOLY_HPP
#define NOFITPOLY_HPP
#include "placer_boilerplate.hpp"
namespace libnest2d { namespace strategies {
template<class RawShape>
class _NofitPolyPlacer: public PlacerBoilerplate<_NofitPolyPlacer<RawShape>,
RawShape, _Box<TPoint<RawShape>>> {
using Base = PlacerBoilerplate<_NofitPolyPlacer<RawShape>,
RawShape, _Box<TPoint<RawShape>>>;
DECLARE_PLACER(Base)
public:
inline explicit _NofitPolyPlacer(const BinType& bin): Base(bin) {}
PackResult trypack(Item& item) {
return PackResult();
}
};
}
}
#endif // NOFITPOLY_H

View file

@ -0,0 +1,102 @@
#ifndef PLACER_BOILERPLATE_HPP
#define PLACER_BOILERPLATE_HPP
#include "../libnest2d.hpp"
namespace libnest2d { namespace strategies {
struct EmptyConfig {};
template<class Subclass, class RawShape, class TBin,
class Cfg = EmptyConfig,
class Store = std::vector<std::reference_wrapper<_Item<RawShape>>>
>
class PlacerBoilerplate {
public:
using Item = _Item<RawShape>;
using Vertex = TPoint<RawShape>;
using Segment = _Segment<Vertex>;
using BinType = TBin;
using Coord = TCoord<Vertex>;
using Unit = Coord;
using Config = Cfg;
using Container = Store;
class PackResult {
Item *item_ptr_;
Vertex move_;
Radians rot_;
friend class PlacerBoilerplate;
friend Subclass;
PackResult(Item& item):
item_ptr_(&item),
move_(item.translation()),
rot_(item.rotation()) {}
PackResult(): item_ptr_(nullptr) {}
public:
operator bool() { return item_ptr_ != nullptr; }
};
using ItemGroup = const Container&;
inline PlacerBoilerplate(const BinType& bin): bin_(bin) {}
inline const BinType& bin() const BP2D_NOEXCEPT { return bin_; }
template<class TB> inline void bin(TB&& b) {
bin_ = std::forward<BinType>(b);
}
inline void configure(const Config& config) BP2D_NOEXCEPT {
config_ = config;
}
bool pack(Item& item) {
auto&& r = static_cast<Subclass*>(this)->trypack(item);
if(r) items_.push_back(*(r.item_ptr_));
return r;
}
void accept(PackResult& r) {
if(r) {
r.item_ptr_->translation(r.move_);
r.item_ptr_->rotation(r.rot_);
items_.push_back(*(r.item_ptr_));
}
}
void unpackLast() { items_.pop_back(); }
inline ItemGroup getItems() { return items_; }
inline void clearItems() { items_.clear(); }
protected:
BinType bin_;
Container items_;
Cfg config_;
};
#define DECLARE_PLACER(Base) \
using Base::bin_; \
using Base::items_; \
using Base::config_; \
public: \
using typename Base::Item; \
using typename Base::BinType; \
using typename Base::Config; \
using typename Base::Vertex; \
using typename Base::Segment; \
using typename Base::PackResult; \
using typename Base::Coord; \
using typename Base::Unit; \
using typename Base::Container; \
private:
}
}
#endif // PLACER_BOILERPLATE_HPP

View file

@ -0,0 +1,514 @@
#ifndef DJD_HEURISTIC_HPP
#define DJD_HEURISTIC_HPP
#include <list>
#include "selection_boilerplate.hpp"
namespace libnest2d { namespace strategies {
/**
* Selection heuristic based on [López-Camacho]\
* (http://www.cs.stir.ac.uk/~goc/papers/EffectiveHueristic2DAOR2013.pdf)
*/
template<class RawShape>
class _DJDHeuristic: public SelectionBoilerplate<RawShape> {
using Base = SelectionBoilerplate<RawShape>;
public:
using typename Base::Item;
using typename Base::ItemRef;
/**
* @brief The Config for DJD heuristic.
*/
struct Config {
/// Max number of bins.
unsigned max_bins = 0;
/**
* If true, the algorithm will try to place pair and driplets in all
* possible order.
*/
bool try_reverse_order = true;
};
private:
using Base::packed_bins_;
using ItemGroup = typename Base::ItemGroup;
using Container = ItemGroup;//typename std::vector<Item>;
Container store_;
Config config_;
// The initial fill proportion of the bin area that will be filled before
// trying items one by one, or pairs or triplets.
static const double INITIAL_FILL_PROPORTION;
public:
inline void configure(const Config& config) {
config_ = config;
}
template<class TPlacer, class TIterator,
class TBin = typename PlacementStrategyLike<TPlacer>::BinType,
class PConfig = typename PlacementStrategyLike<TPlacer>::Config>
void packItems( TIterator first,
TIterator last,
const TBin& bin,
PConfig&& pconfig = PConfig() )
{
using Placer = PlacementStrategyLike<TPlacer>;
using ItemList = std::list<ItemRef>;
const double bin_area = ShapeLike::area<RawShape>(bin);
const double w = bin_area * 0.1;
const double INITIAL_FILL_AREA = bin_area*INITIAL_FILL_PROPORTION;
store_.clear();
store_.reserve(last-first);
packed_bins_.clear();
std::copy(first, last, std::back_inserter(store_));
std::sort(store_.begin(), store_.end(), [](Item& i1, Item& i2) {
return i1.area() > i2.area();
});
ItemList not_packed(store_.begin(), store_.end());
std::vector<Placer> placers;
double free_area = 0;
double filled_area = 0;
double waste = 0;
bool try_reverse = config_.try_reverse_order;
// Will use a subroutine to add a new bin
auto addBin = [&placers, &free_area, &filled_area, &bin, &pconfig]()
{
placers.emplace_back(bin);
placers.back().configure(pconfig);
free_area = ShapeLike::area<RawShape>(bin);
filled_area = 0;
};
// Types for pairs and triplets
using TPair = std::tuple<ItemRef, ItemRef>;
using TTriplet = std::tuple<ItemRef, ItemRef, ItemRef>;
// Method for checking a pair whether it was a pack failure.
auto check_pair = [](const std::vector<TPair>& wrong_pairs,
ItemRef i1, ItemRef i2)
{
return std::any_of(wrong_pairs.begin(), wrong_pairs.end(),
[&i1, &i2](const TPair& pair)
{
Item& pi1 = std::get<0>(pair), pi2 = std::get<1>(pair);
Item& ri1 = i1, ri2 = i2;
return (&pi1 == &ri1 && &pi2 == &ri2) ||
(&pi1 == &ri2 && &pi2 == &ri1);
});
};
// Method for checking if a triplet was a pack failure
auto check_triplet = [](
const std::vector<TTriplet>& wrong_triplets,
ItemRef i1,
ItemRef i2,
ItemRef i3)
{
return std::any_of(wrong_triplets.begin(),
wrong_triplets.end(),
[&i1, &i2, &i3](const TTriplet& tripl)
{
Item& pi1 = std::get<0>(tripl);
Item& pi2 = std::get<1>(tripl);
Item& pi3 = std::get<2>(tripl);
Item& ri1 = i1, ri2 = i2, ri3 = i3;
return (&pi1 == &ri1 && &pi2 == &ri2 && &pi3 == &ri3) ||
(&pi1 == &ri1 && &pi2 == &ri3 && &pi3 == &ri2) ||
(&pi1 == &ri2 && &pi2 == &ri1 && &pi3 == &ri3) ||
(&pi1 == &ri3 && &pi2 == &ri2 && &pi3 == &ri1);
});
};
auto tryOneByOne = // Subroutine to try adding items one by one.
[&not_packed, &bin_area, &free_area, &filled_area]
(Placer& placer, double waste)
{
double item_area = 0;
bool ret = false;
auto it = not_packed.begin();
while(it != not_packed.end() && !ret &&
free_area - (item_area = it->get().area()) <= waste)
{
if(item_area <= free_area && placer.pack(*it) ) {
free_area -= item_area;
filled_area = bin_area - free_area;
ret = true;
} else
it++;
}
if(ret) not_packed.erase(it);
return ret;
};
auto tryGroupsOfTwo = // Try adding groups of two items into the bin.
[&not_packed, &bin_area, &free_area, &filled_area, &check_pair,
try_reverse]
(Placer& placer, double waste)
{
double item_area = 0, largest_area = 0, smallest_area = 0;
double second_largest = 0, second_smallest = 0;
const auto endit = not_packed.end();
if(not_packed.size() < 2)
return false; // No group of two items
else {
largest_area = not_packed.front().get().area();
auto itmp = not_packed.begin(); itmp++;
second_largest = itmp->get().area();
if( free_area - second_largest - largest_area > waste)
return false; // If even the largest two items do not fill
// the bin to the desired waste than we can end here.
smallest_area = not_packed.back().get().area();
itmp = endit; std::advance(itmp, -2);
second_smallest = itmp->get().area();
}
bool ret = false;
auto it = not_packed.begin();
auto it2 = it;
std::vector<TPair> wrong_pairs;
double largest = second_largest;
double smallest= smallest_area;
while(it != endit && !ret && free_area -
(item_area = it->get().area()) - largest <= waste )
{
// if this is the last element, the next smallest is the
// previous item
auto itmp = it; std::advance(itmp, 1);
if(itmp == endit) smallest = second_smallest;
if(item_area + smallest > free_area ) { it++; continue; }
auto pr = placer.trypack(*it);
// First would fit
it2 = not_packed.begin();
double item2_area = 0;
while(it2 != endit && pr && !ret && free_area -
(item2_area = it2->get().area()) - item_area <= waste)
{
double area_sum = item_area + item2_area;
if(it == it2 || area_sum > free_area ||
check_pair(wrong_pairs, *it, *it2)) {
it2++; continue;
}
placer.accept(pr);
auto pr2 = placer.trypack(*it2);
if(!pr2) {
placer.unpackLast(); // remove first
if(try_reverse) {
pr2 = placer.trypack(*it2);
if(pr2) {
placer.accept(pr2);
auto pr12 = placer.trypack(*it);
if(pr12) {
placer.accept(pr12);
ret = true;
} else {
placer.unpackLast();
}
}
}
} else {
placer.accept(pr2); ret = true;
}
if(ret)
{ // Second fits as well
free_area -= area_sum;
filled_area = bin_area - free_area;
} else {
wrong_pairs.emplace_back(*it, *it2);
it2++;
}
}
if(!ret) it++;
largest = largest_area;
}
if(ret) { not_packed.erase(it); not_packed.erase(it2); }
return ret;
};
auto tryGroupsOfThree = // Try adding groups of three items.
[&not_packed, &bin_area, &free_area, &filled_area,
&check_pair, &check_triplet, try_reverse]
(Placer& placer, double waste)
{
if(not_packed.size() < 3) return false;
auto it = not_packed.begin(); // from
const auto endit = not_packed.end(); // to
auto it2 = it, it3 = it;
// Containers for pairs and triplets that were tried before and
// do not work.
std::vector<TPair> wrong_pairs;
std::vector<TTriplet> wrong_triplets;
// Will be true if a succesfull pack can be made.
bool ret = false;
while (it != endit && !ret) { // drill down 1st level
// We need to determine in each iteration the largest, second
// largest, smallest and second smallest item in terms of area.
auto first = not_packed.begin();
Item& largest = it == first? *std::next(it) : *first;
auto second = std::next(first);
Item& second_largest = it == second ? *std::next(it) : *second;
double area_of_two_largest =
largest.area() + second_largest.area();
// Check if there is enough free area for the item and the two
// largest item
if(free_area - it->get().area() - area_of_two_largest > waste)
break;
// Determine the area of the two smallest item.
auto last = std::prev(endit);
Item& smallest = it == last? *std::prev(it) : *last;
auto second_last = std::prev(last);
Item& second_smallest = it == second_last? *std::prev(it) :
*second_last;
// Check if there is enough free area for the item and the two
// smallest item.
double area_of_two_smallest =
smallest.area() + second_smallest.area();
auto pr = placer.trypack(*it);
// Check for free area and try to pack the 1st item...
if(!pr || it->get().area() + area_of_two_smallest > free_area) {
it++; continue;
}
it2 = not_packed.begin();
double rem2_area = free_area - largest.area();
double a2_sum = it->get().area() + it2->get().area();
while(it2 != endit && !ret &&
rem2_area - a2_sum <= waste) { // Drill down level 2
if(it == it2 || check_pair(wrong_pairs, *it, *it2)) {
it2++; continue;
}
a2_sum = it->get().area() + it2->get().area();
if(a2_sum + smallest.area() > free_area) {
it2++; continue;
}
bool can_pack2 = false;
placer.accept(pr);
auto pr2 = placer.trypack(*it2);
auto pr12 = pr;
if(!pr2) {
placer.unpackLast(); // remove first
if(try_reverse) {
pr2 = placer.trypack(*it2);
if(pr2) {
placer.accept(pr2);
pr12 = placer.trypack(*it);
if(pr12) can_pack2 = true;
placer.unpackLast();
}
}
} else {
placer.unpackLast();
can_pack2 = true;
}
if(!can_pack2) {
wrong_pairs.emplace_back(*it, *it2);
it2++;
continue;
}
// Now we have packed a group of 2 items.
// The 'smallest' variable now could be identical with
// it2 but we don't bother with that
if(!can_pack2) { it2++; continue; }
it3 = not_packed.begin();
double a3_sum = a2_sum + it3->get().area();
while(it3 != endit && !ret &&
free_area - a3_sum <= waste) { // 3rd level
if(it3 == it || it3 == it2 ||
check_triplet(wrong_triplets, *it, *it2, *it3))
{ it3++; continue; }
placer.accept(pr12); placer.accept(pr2);
bool can_pack3 = placer.pack(*it3);
if(!can_pack3) {
placer.unpackLast();
placer.unpackLast();
}
if(!can_pack3 && try_reverse) {
std::array<size_t, 3> indices = {0, 1, 2};
std::array<ItemRef, 3>
candidates = {*it, *it2, *it3};
auto tryPack = [&placer, &candidates](
const decltype(indices)& idx)
{
std::array<bool, 3> packed = {false};
for(auto id : idx) packed[id] =
placer.pack(candidates[id]);
bool check =
std::all_of(packed.begin(),
packed.end(),
[](bool b) { return b; });
if(!check) for(bool b : packed) if(b)
placer.unpackLast();
return check;
};
while (!can_pack3 && std::next_permutation(
indices.begin(),
indices.end())){
can_pack3 = tryPack(indices);
};
}
if(can_pack3) {
// finishit
free_area -= a3_sum;
filled_area = bin_area - free_area;
ret = true;
} else {
wrong_triplets.emplace_back(*it, *it2, *it3);
it3++;
}
} // 3rd while
if(!ret) it2++;
} // Second while
if(!ret) it++;
} // First while
if(ret) { // If we eventually succeeded, remove all the packed ones.
not_packed.erase(it);
not_packed.erase(it2);
not_packed.erase(it3);
}
return ret;
};
addBin();
// Safety test: try to pack each item into an empty bin. If it fails
// then it should be removed from the not_packed list
{ auto it = not_packed.begin();
while (it != not_packed.end()) {
Placer p(bin);
if(!p.pack(*it)) {
auto itmp = it++;
not_packed.erase(itmp);
} else it++;
}
}
while(!not_packed.empty()) {
auto& placer = placers.back();
{// Fill the bin up to INITIAL_FILL_PROPORTION of its capacity
auto it = not_packed.begin();
while(it != not_packed.end() &&
filled_area < INITIAL_FILL_AREA)
{
if(placer.pack(*it)) {
filled_area += it->get().area();
free_area = bin_area - filled_area;
auto itmp = it++;
not_packed.erase(itmp);
} else it++;
}
}
// try pieses one by one
while(tryOneByOne(placer, waste))
waste = 0;
// try groups of 2 pieses
while(tryGroupsOfTwo(placer, waste))
waste = 0;
// try groups of 3 pieses
while(tryGroupsOfThree(placer, waste))
waste = 0;
if(waste < free_area) waste += w;
else if(!not_packed.empty()) addBin();
}
std::for_each(placers.begin(), placers.end(),
[this](Placer& placer){
packed_bins_.push_back(placer.getItems());
});
}
};
/*
* The initial fill proportion suggested by
* [López-Camacho]\
* (http://www.cs.stir.ac.uk/~goc/papers/EffectiveHueristic2DAOR2013.pdf)
* is one third of the area of bin.
*/
template<class RawShape>
const double _DJDHeuristic<RawShape>::INITIAL_FILL_PROPORTION = 1.0/3.0;
}
}
#endif // DJD_HEURISTIC_HPP

View file

@ -0,0 +1,71 @@
#ifndef FILLER_HPP
#define FILLER_HPP
#include "selection_boilerplate.hpp"
namespace libnest2d { namespace strategies {
template<class RawShape>
class _FillerSelection: public SelectionBoilerplate<RawShape> {
using Base = SelectionBoilerplate<RawShape>;
public:
using typename Base::Item;
using Config = int; //dummy
private:
using Base::packed_bins_;
using typename Base::ItemGroup;
using Container = ItemGroup;
Container store_;
public:
void configure(const Config& /*config*/) { }
template<class TPlacer, class TIterator,
class TBin = typename PlacementStrategyLike<TPlacer>::BinType,
class PConfig = typename PlacementStrategyLike<TPlacer>::Config>
void packItems(TIterator first,
TIterator last,
TBin&& bin,
PConfig&& pconfig = PConfig())
{
store_.clear();
store_.reserve(last-first);
packed_bins_.clear();
std::copy(first, last, std::back_inserter(store_));
auto sortfunc = [](Item& i1, Item& i2) {
return i1.area() > i2.area();
};
std::sort(store_.begin(), store_.end(), sortfunc);
// Container a = {store_[0], store_[1], store_[4], store_[5] };
//// a.insert(a.end(), store_.end()-10, store_.end());
// store_ = a;
PlacementStrategyLike<TPlacer> placer(bin);
placer.configure(pconfig);
bool was_packed = false;
for(auto& item : store_ ) {
if(!placer.pack(item)) {
packed_bins_.push_back(placer.getItems());
placer.clearItems();
was_packed = placer.pack(item);
} else was_packed = true;
}
if(was_packed) {
packed_bins_.push_back(placer.getItems());
}
}
};
}
}
#endif //BOTTOMLEFT_HPP

View file

@ -0,0 +1,77 @@
#ifndef FIRSTFIT_HPP
#define FIRSTFIT_HPP
#include "../libnest2d.hpp"
#include "selection_boilerplate.hpp"
namespace libnest2d { namespace strategies {
template<class RawShape>
class _FirstFitSelection: public SelectionBoilerplate<RawShape> {
using Base = SelectionBoilerplate<RawShape>;
public:
using typename Base::Item;
using Config = int; //dummy
private:
using Base::packed_bins_;
using typename Base::ItemGroup;
using Container = ItemGroup;//typename std::vector<_Item<RawShape>>;
Container store_;
public:
void configure(const Config& /*config*/) { }
template<class TPlacer, class TIterator,
class TBin = typename PlacementStrategyLike<TPlacer>::BinType,
class PConfig = typename PlacementStrategyLike<TPlacer>::Config>
void packItems(TIterator first,
TIterator last,
TBin&& bin,
PConfig&& pconfig = PConfig())
{
using Placer = PlacementStrategyLike<TPlacer>;
store_.clear();
store_.reserve(last-first);
packed_bins_.clear();
std::vector<Placer> placers;
std::copy(first, last, std::back_inserter(store_));
auto sortfunc = [](Item& i1, Item& i2) {
return i1.area() > i2.area();
};
std::sort(store_.begin(), store_.end(), sortfunc);
for(auto& item : store_ ) {
bool was_packed = false;
while(!was_packed) {
for(size_t j = 0; j < placers.size() && !was_packed; j++)
was_packed = placers[j].pack(item);
if(!was_packed) {
placers.emplace_back(bin);
placers.back().configure(pconfig);
}
}
}
std::for_each(placers.begin(), placers.end(),
[this](Placer& placer){
packed_bins_.push_back(placer.getItems());
});
}
};
}
}
#endif // FIRSTFIT_HPP

View file

@ -0,0 +1,36 @@
#ifndef SELECTION_BOILERPLATE_HPP
#define SELECTION_BOILERPLATE_HPP
#include "../libnest2d.hpp"
namespace libnest2d {
namespace strategies {
template<class RawShape>
class SelectionBoilerplate {
public:
using Item = _Item<RawShape>;
using ItemRef = std::reference_wrapper<Item>;
using ItemGroup = std::vector<ItemRef>;
using PackGroup = std::vector<ItemGroup>;
size_t binCount() const { return packed_bins_.size(); }
ItemGroup itemsForBin(size_t binIndex) {
assert(binIndex < packed_bins_.size());
return packed_bins_[binIndex];
}
inline const ItemGroup itemsForBin(size_t binIndex) const {
assert(binIndex < packed_bins_.size());
return packed_bins_[binIndex];
}
protected:
PackGroup packed_bins_;
};
}
}
#endif // SELECTION_BOILERPLATE_HPP

View file

@ -0,0 +1,48 @@
# Try to find existing GTest installation
find_package(GTest QUIET)
if(NOT GTEST_FOUND)
# Go and download google test framework, integrate it with the build
set(GTEST_LIBRARIES gtest gmock)
if (CMAKE_VERSION VERSION_LESS 3.2)
set(UPDATE_DISCONNECTED_IF_AVAILABLE "")
else()
set(UPDATE_DISCONNECTED_IF_AVAILABLE "UPDATE_DISCONNECTED 1")
endif()
include(DownloadProject)
download_project(PROJ googletest
GIT_REPOSITORY https://github.com/google/googletest.git
GIT_TAG release-1.8.0
${UPDATE_DISCONNECTED_IF_AVAILABLE}
)
# Prevent GoogleTest from overriding our compiler/linker options
# when building with Visual Studio
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
add_subdirectory(${googletest_SOURCE_DIR}
${googletest_BINARY_DIR}
)
else()
include_directories(${GTEST_INCLUDE_DIRS} )
endif()
include_directories(BEFORE ${LIBNEST2D_HEADERS})
add_executable(bp2d_tests test.cpp printer_parts.h printer_parts.cpp)
target_link_libraries(bp2d_tests libnest2d
${GTEST_LIBRARIES}
)
if(DEFINED LIBNEST2D_TEST_LIBRARIES)
target_link_libraries(bp2d_tests ${LIBNEST2D_TEST_LIBRARIES})
endif()
add_test(gtests bp2d_tests)
add_executable(main EXCLUDE_FROM_ALL main.cpp printer_parts.cpp printer_parts.h)
target_link_libraries(main libnest2d)
target_include_directories(main PUBLIC ${CMAKE_SOURCE_DIR})

View file

@ -0,0 +1,58 @@
/*
* Copyright (C) Tamás Mészáros
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef INCLUDE_BENCHMARK_H_
#define INCLUDE_BENCHMARK_H_
#include <chrono>
#include <ratio>
/**
* A class for doing benchmarks.
*/
class Benchmark {
typedef std::chrono::high_resolution_clock Clock;
typedef Clock::duration Duration;
typedef Clock::time_point TimePoint;
TimePoint t1, t2;
Duration d;
inline double to_sec(Duration d) {
return d.count() * double(Duration::period::num) / Duration::period::den;
}
public:
/**
* Measure time from the moment of this call.
*/
void start() { t1 = Clock::now(); }
/**
* Measure time to the moment of this call.
*/
void stop() { t2 = Clock::now(); }
/**
* Get the time elapsed between a start() end a stop() call.
* @return Returns the elapsed time in seconds.
*/
double getElapsedSec() { d = t2 - t1; return to_sec(d); }
};
#endif /* INCLUDE_BENCHMARK_H_ */

View file

@ -0,0 +1,260 @@
#include <iostream>
#include <fstream>
#include <string>
#include <libnest2d.h>
#include <libnest2d/geometries_io.hpp>
#include "printer_parts.h"
#include "benchmark.h"
namespace {
using namespace libnest2d;
using ItemGroup = std::vector<std::reference_wrapper<Item>>;
//using PackGroup = std::vector<ItemGroup>;
template<int SCALE, class Bin >
void exportSVG(PackGroup& result, const Bin& bin) {
std::string loc = "out";
static std::string svg_header =
R"raw(<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg height="500" width="500" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
)raw";
int i = 0;
for(auto r : result) {
std::fstream out(loc + std::to_string(i) + ".svg", std::fstream::out);
if(out.is_open()) {
out << svg_header;
Item rbin( Rectangle(bin.width(), bin.height()) );
for(unsigned i = 0; i < rbin.vertexCount(); i++) {
auto v = rbin.vertex(i);
setY(v, -getY(v)/SCALE + 500 );
setX(v, getX(v)/SCALE);
rbin.setVertex(i, v);
}
out << ShapeLike::serialize<Formats::SVG>(rbin.rawShape()) << std::endl;
for(Item& sh : r) {
Item tsh(sh.transformedShape());
for(unsigned i = 0; i < tsh.vertexCount(); i++) {
auto v = tsh.vertex(i);
setY(v, -getY(v)/SCALE + 500);
setX(v, getX(v)/SCALE);
tsh.setVertex(i, v);
}
out << ShapeLike::serialize<Formats::SVG>(tsh.rawShape()) << std::endl;
}
out << "\n</svg>" << std::endl;
}
out.close();
i++;
}
}
template< int SCALE, class Bin>
void exportSVG(ItemGroup& result, const Bin& bin, int idx) {
std::string loc = "out";
static std::string svg_header =
R"raw(<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg height="500" width="500" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
)raw";
int i = idx;
auto r = result;
// for(auto r : result) {
std::fstream out(loc + std::to_string(i) + ".svg", std::fstream::out);
if(out.is_open()) {
out << svg_header;
Item rbin( Rectangle(bin.width(), bin.height()) );
for(unsigned i = 0; i < rbin.vertexCount(); i++) {
auto v = rbin.vertex(i);
setY(v, -getY(v)/SCALE + 500 );
setX(v, getX(v)/SCALE);
rbin.setVertex(i, v);
}
out << ShapeLike::serialize<Formats::SVG>(rbin.rawShape()) << std::endl;
for(Item& sh : r) {
Item tsh(sh.transformedShape());
for(unsigned i = 0; i < tsh.vertexCount(); i++) {
auto v = tsh.vertex(i);
setY(v, -getY(v)/SCALE + 500);
setX(v, getX(v)/SCALE);
tsh.setVertex(i, v);
}
out << ShapeLike::serialize<Formats::SVG>(tsh.rawShape()) << std::endl;
}
out << "\n</svg>" << std::endl;
}
out.close();
// i++;
// }
}
}
void findDegenerateCase() {
using namespace libnest2d;
auto input = PRINTER_PART_POLYGONS;
auto scaler = [](Item& item) {
for(unsigned i = 0; i < item.vertexCount(); i++) {
auto v = item.vertex(i);
setX(v, 100*getX(v)); setY(v, 100*getY(v));
item.setVertex(i, v);
}
};
auto cmp = [](const Item& t1, const Item& t2) {
return t1.area() > t2.area();
};
std::for_each(input.begin(), input.end(), scaler);
std::sort(input.begin(), input.end(), cmp);
Box bin(210*100, 250*100);
BottomLeftPlacer placer(bin);
auto it = input.begin();
auto next = it;
int i = 0;
while(it != input.end() && ++next != input.end()) {
placer.pack(*it);
placer.pack(*next);
auto result = placer.getItems();
bool valid = true;
if(result.size() == 2) {
Item& r1 = result[0];
Item& r2 = result[1];
valid = !Item::intersects(r1, r2) || Item::touches(r1, r2);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
if(!valid) {
std::cout << "error index: " << i << std::endl;
exportSVG<100>(result, bin, i);
}
} else {
std::cout << "something went terribly wrong!" << std::endl;
}
placer.clearItems();
it++;
i++;
}
}
void arrangeRectangles() {
using namespace libnest2d;
// std::vector<Rectangle> input = {
// {80, 80},
// {110, 10},
// {200, 5},
// {80, 30},
// {60, 90},
// {70, 30},
// {80, 60},
// {60, 60},
// {60, 40},
// {40, 40},
// {10, 10},
// {10, 10},
// {10, 10},
// {10, 10},
// {10, 10},
// {5, 5},
// {5, 5},
// {5, 5},
// {5, 5},
// {5, 5},
// {5, 5},
// {5, 5},
// {20, 20},
// {80, 80},
// {110, 10},
// {200, 5},
// {80, 30},
// {60, 90},
// {70, 30},
// {80, 60},
// {60, 60},
// {60, 40},
// {40, 40},
// {10, 10},
// {10, 10},
// {10, 10},
// {10, 10},
// {10, 10},
// {5, 5},
// {5, 5},
// {5, 5},
// {5, 5},
// {5, 5},
// {5, 5},
// {5, 5},
// {20, 20}
// };
auto input = PRINTER_PART_POLYGONS;
const int SCALE = 1000000;
// const int SCALE = 1;
Box bin(210*SCALE, 250*SCALE);
auto scaler = [&SCALE, &bin](Item& item) {
// double max_area = 0;
for(unsigned i = 0; i < item.vertexCount(); i++) {
auto v = item.vertex(i);
setX(v, SCALE*getX(v)); setY(v, SCALE*getY(v));
item.setVertex(i, v);
// double area = item.area();
// if(max_area < area) {
// max_area = area;
// bin = item.boundingBox();
// }
}
};
Coord min_obj_distance = 2*SCALE;
std::for_each(input.begin(), input.end(), scaler);
Arranger<BottomLeftPlacer, DJDHeuristic> arrange(bin, min_obj_distance);
Benchmark bench;
bench.start();
auto result = arrange(input.begin(),
input.end());
bench.stop();
std::cout << bench.getElapsedSec() << std::endl;
for(auto& it : input) {
auto ret = ShapeLike::isValid(it.transformedShape());
std::cout << ret.second << std::endl;
}
exportSVG<SCALE>(result, bin);
}
int main(void /*int argc, char **argv*/) {
arrangeRectangles();
// findDegenerateCase();
return EXIT_SUCCESS;
}

View file

@ -0,0 +1,339 @@
#include "printer_parts.h"
const std::vector<libnest2d::Item> PRINTER_PART_POLYGONS = {
{
{120, 114},
{130, 114},
{130, 103},
{128, 96},
{122, 96},
{120, 103},
{120, 114}
},
{
{61, 97},
{70, 151},
{176, 151},
{189, 138},
{189, 59},
{70, 59},
{61, 77},
{61, 97}
},
{
{72, 147},
{94, 151},
{178, 151},
{178, 59},
{72, 59},
{72, 147}
},
{
{121, 119},
{123, 119},
{129, 109},
{129, 107},
{128, 100},
{127, 98},
{123, 91},
{121, 91},
{121, 119},
},
{
{93, 104},
{100, 146},
{107, 152},
{136, 152},
{142, 146},
{157, 68},
{157, 61},
{154, 58},
{104, 58},
{93, 101},
{93, 104},
},
{
{90, 91},
{114, 130},
{158, 130},
{163, 126},
{163, 123},
{152, 80},
{116, 80},
{90, 81},
{87, 86},
{90, 91},
},
{
{111, 114},
{114, 122},
{139, 122},
{139, 88},
{114, 88},
{111, 97},
{111, 114},
},
{
{120, 107},
{125, 110},
{130, 110},
{130, 100},
{120, 100},
{120, 107},
},
{
{113, 123},
{137, 123},
{137, 87},
{113, 87},
{113, 123},
},
{
{107, 104},
{110, 127},
{114, 131},
{136, 131},
{140, 127},
{143, 104},
{143, 79},
{107, 79},
{107, 104},
},
{
{48, 135},
{50, 138},
{52, 140},
{198, 140},
{202, 135},
{202, 72},
{200, 70},
{50, 70},
{48, 72},
{48, 135},
},
{
{115, 104},
{116, 106},
{123, 119},
{127, 119},
{134, 106},
{135, 104},
{135, 98},
{134, 96},
{132, 93},
{128, 91},
{122, 91},
{118, 93},
{116, 96},
{115, 98},
{115, 104},
},
{
{91, 100},
{94, 144},
{117, 153},
{118, 153},
{159, 112},
{159, 110},
{156, 66},
{133, 57},
{132, 57},
{91, 98},
{91, 100},
},
{
{101, 90},
{103, 98},
{107, 113},
{114, 125},
{115, 126},
{135, 126},
{136, 125},
{144, 114},
{149, 90},
{149, 89},
{148, 87},
{145, 84},
{105, 84},
{102, 87},
{101, 89},
{101, 90},
},
{
{93, 116},
{94, 118},
{141, 121},
{151, 121},
{156, 118},
{157, 116},
{157, 91},
{156, 89},
{94, 89},
{93, 91},
{93, 116},
},
{
{89, 60},
{91, 66},
{134, 185},
{139, 198},
{140, 200},
{141, 201},
{159, 201},
{161, 199},
{161, 195},
{157, 179},
{114, 26},
{110, 12},
{108, 10},
{106, 9},
{92, 9},
{89, 50},
{89, 60},
},
{
{99, 130},
{101, 133},
{118, 150},
{142, 150},
{145, 148},
{151, 142},
{151, 80},
{142, 62},
{139, 60},
{111, 60},
{108, 62},
{102, 80},
{99, 95},
{99, 130},
},
{
{99, 122},
{108, 140},
{110, 142},
{139, 142},
{151, 122},
{151, 102},
{142, 70},
{139, 68},
{111, 68},
{108, 70},
{99, 102},
{99, 122},
},
{
{107, 124},
{128, 125},
{133, 125},
{136, 124},
{140, 121},
{142, 119},
{143, 116},
{143, 109},
{141, 93},
{139, 89},
{136, 86},
{134, 85},
{108, 85},
{107, 86},
{107, 124},
},
{
{107, 146},
{124, 146},
{141, 96},
{143, 79},
{143, 73},
{142, 70},
{140, 68},
{136, 65},
{134, 64},
{127, 64},
{107, 65},
{107, 146},
},
{
{113, 118},
{115, 120},
{129, 129},
{137, 129},
{137, 81},
{129, 81},
{115, 90},
{113, 92},
{113, 118},
},
{
{112, 122},
{138, 122},
{138, 88},
{112, 88},
{112, 122},
},
{
{102, 116},
{111, 126},
{114, 126},
{144, 106},
{148, 100},
{148, 85},
{147, 84},
{102, 84},
{102, 116},
},
{
{112, 110},
{121, 112},
{129, 112},
{138, 110},
{138, 106},
{134, 98},
{117, 98},
{114, 102},
{112, 106},
{112, 110},
},
{
{100, 156},
{102, 158},
{104, 159},
{143, 159},
{150, 152},
{150, 58},
{143, 51},
{104, 51},
{102, 52},
{100, 54},
{100, 156}
},
{
{106, 151},
{108, 151},
{139, 139},
{144, 134},
{144, 76},
{139, 71},
{108, 59},
{106, 59},
{106, 151}
},
{
{117, 107},
{118, 109},
{120, 112},
{122, 113},
{128, 113},
{130, 112},
{132, 109},
{133, 107},
{133, 103},
{132, 101},
{130, 98},
{128, 97},
{122, 97},
{120, 98},
{118, 101},
{117, 103},
{117, 107}
}
};

View file

@ -0,0 +1,9 @@
#ifndef PRINTER_PARTS_H
#define PRINTER_PARTS_H
#include <vector>
#include <libnest2d.h>
extern const std::vector<libnest2d::Item> PRINTER_PART_POLYGONS;
#endif // PRINTER_PARTS_H

View file

@ -0,0 +1,474 @@
#include "gtest/gtest.h"
#include "gmock/gmock.h"
#include <fstream>
#include <libnest2d.h>
#include "printer_parts.h"
#include <libnest2d/geometries_io.hpp>
#include <libnest2d/geometries_nfp.hpp>
TEST(BasicFunctionality, Angles)
{
using namespace libnest2d;
Degrees deg(180);
Radians rad(deg);
Degrees deg2(rad);
ASSERT_DOUBLE_EQ(rad, Pi);
ASSERT_DOUBLE_EQ(deg, 180);
ASSERT_DOUBLE_EQ(deg2, 180);
ASSERT_DOUBLE_EQ(rad, (Radians) deg);
ASSERT_DOUBLE_EQ( (Degrees) rad, deg);
ASSERT_TRUE(rad == deg);
}
// Simple test, does not use gmock
TEST(BasicFunctionality, creationAndDestruction)
{
using namespace libnest2d;
Item sh = { {0, 0}, {1, 0}, {1, 1}, {0, 1} };
ASSERT_EQ(sh.vertexCount(), 4);
Item sh2 ({ {0, 0}, {1, 0}, {1, 1}, {0, 1} });
ASSERT_EQ(sh2.vertexCount(), 4);
// copy
Item sh3 = sh2;
ASSERT_EQ(sh3.vertexCount(), 4);
sh2 = {};
ASSERT_EQ(sh2.vertexCount(), 0);
ASSERT_EQ(sh3.vertexCount(), 4);
}
TEST(GeometryAlgorithms, Distance) {
using namespace libnest2d;
Point p1 = {0, 0};
Point p2 = {10, 0};
Point p3 = {10, 10};
ASSERT_DOUBLE_EQ(PointLike::distance(p1, p2), 10);
ASSERT_DOUBLE_EQ(PointLike::distance(p1, p3), sqrt(200));
Segment seg(p1, p3);
ASSERT_DOUBLE_EQ(PointLike::distance(p2, seg), 7.0710678118654755);
auto result = PointLike::horizontalDistance(p2, seg);
auto check = [](Coord val, Coord expected) {
if(std::is_floating_point<Coord>::value)
ASSERT_DOUBLE_EQ(static_cast<double>(val), expected);
else
ASSERT_EQ(val, expected);
};
ASSERT_TRUE(result.second);
check(result.first, 10);
result = PointLike::verticalDistance(p2, seg);
ASSERT_TRUE(result.second);
check(result.first, -10);
result = PointLike::verticalDistance(Point{10, 20}, seg);
ASSERT_TRUE(result.second);
check(result.first, 10);
Point p4 = {80, 0};
Segment seg2 = { {0, 0}, {0, 40} };
result = PointLike::horizontalDistance(p4, seg2);
ASSERT_TRUE(result.second);
check(result.first, 80);
result = PointLike::verticalDistance(p4, seg2);
// Point should not be related to the segment
ASSERT_FALSE(result.second);
}
TEST(GeometryAlgorithms, Area) {
using namespace libnest2d;
Rectangle rect(10, 10);
ASSERT_EQ(rect.area(), 100);
Rectangle rect2 = {100, 100};
ASSERT_EQ(rect2.area(), 10000);
}
TEST(GeometryAlgorithms, IsPointInsidePolygon) {
using namespace libnest2d;
Rectangle rect(10, 10);
Point p = {1, 1};
ASSERT_TRUE(rect.isPointInside(p));
p = {11, 11};
ASSERT_FALSE(rect.isPointInside(p));
p = {11, 12};
ASSERT_FALSE(rect.isPointInside(p));
p = {3, 3};
ASSERT_TRUE(rect.isPointInside(p));
}
//TEST(GeometryAlgorithms, Intersections) {
// using namespace binpack2d;
// Rectangle rect(70, 30);
// rect.translate({80, 60});
// Rectangle rect2(80, 60);
// rect2.translate({80, 0});
//// ASSERT_FALSE(Item::intersects(rect, rect2));
// Segment s1({0, 0}, {10, 10});
// Segment s2({1, 1}, {11, 11});
// ASSERT_FALSE(ShapeLike::intersects(s1, s1));
// ASSERT_FALSE(ShapeLike::intersects(s1, s2));
//}
// Simple test, does not use gmock
TEST(GeometryAlgorithms, LeftAndDownPolygon)
{
using namespace libnest2d;
using namespace libnest2d;
Box bin(100, 100);
BottomLeftPlacer placer(bin);
Item item = {{70, 75}, {88, 60}, {65, 50}, {60, 30}, {80, 20}, {42, 20},
{35, 35}, {35, 55}, {40, 75}, {70, 75}};
Item leftControl = { {40, 75},
{35, 55},
{35, 35},
{42, 20},
{0, 20},
{0, 75},
{40, 75}};
Item downControl = {{88, 60},
{88, 0},
{35, 0},
{35, 35},
{42, 20},
{80, 20},
{60, 30},
{65, 50},
{88, 60}};
Item leftp(placer.leftPoly(item));
ASSERT_TRUE(ShapeLike::isValid(leftp.rawShape()).first);
ASSERT_EQ(leftp.vertexCount(), leftControl.vertexCount());
for(size_t i = 0; i < leftControl.vertexCount(); i++) {
ASSERT_EQ(getX(leftp.vertex(i)), getX(leftControl.vertex(i)));
ASSERT_EQ(getY(leftp.vertex(i)), getY(leftControl.vertex(i)));
}
Item downp(placer.downPoly(item));
ASSERT_TRUE(ShapeLike::isValid(downp.rawShape()).first);
ASSERT_EQ(downp.vertexCount(), downControl.vertexCount());
for(size_t i = 0; i < downControl.vertexCount(); i++) {
ASSERT_EQ(getX(downp.vertex(i)), getX(downControl.vertex(i)));
ASSERT_EQ(getY(downp.vertex(i)), getY(downControl.vertex(i)));
}
}
// Simple test, does not use gmock
TEST(GeometryAlgorithms, ArrangeRectanglesTight)
{
using namespace libnest2d;
std::vector<Rectangle> rects = {
{80, 80},
{60, 90},
{70, 30},
{80, 60},
{60, 60},
{60, 40},
{40, 40},
{10, 10},
{10, 10},
{10, 10},
{10, 10},
{10, 10},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{20, 20} };
Arranger<BottomLeftPlacer, DJDHeuristic> arrange(Box(210, 250));
auto groups = arrange(rects.begin(), rects.end());
ASSERT_EQ(groups.size(), 1);
ASSERT_EQ(groups[0].size(), rects.size());
// check for no intersections, no containment:
for(auto result : groups) {
bool valid = true;
for(Item& r1 : result) {
for(Item& r2 : result) {
if(&r1 != &r2 ) {
valid = !Item::intersects(r1, r2) || Item::touches(r1, r2);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
ASSERT_TRUE(valid);
}
}
}
}
}
TEST(GeometryAlgorithms, ArrangeRectanglesLoose)
{
using namespace libnest2d;
// std::vector<Rectangle> rects = { {40, 40}, {10, 10}, {20, 20} };
std::vector<Rectangle> rects = {
{80, 80},
{60, 90},
{70, 30},
{80, 60},
{60, 60},
{60, 40},
{40, 40},
{10, 10},
{10, 10},
{10, 10},
{10, 10},
{10, 10},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{5, 5},
{20, 20} };
Coord min_obj_distance = 5;
Arranger<BottomLeftPlacer, DJDHeuristic> arrange(Box(210, 250),
min_obj_distance);
auto groups = arrange(rects.begin(), rects.end());
ASSERT_EQ(groups.size(), 1);
ASSERT_EQ(groups[0].size(), rects.size());
// check for no intersections, no containment:
auto result = groups[0];
bool valid = true;
for(Item& r1 : result) {
for(Item& r2 : result) {
if(&r1 != &r2 ) {
valid = !Item::intersects(r1, r2);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
ASSERT_TRUE(valid);
}
}
}
}
namespace {
using namespace libnest2d;
template<unsigned long SCALE = 1, class Bin>
void exportSVG(std::vector<std::reference_wrapper<Item>>& result, const Bin& bin, int idx = 0) {
std::string loc = "out";
static std::string svg_header =
R"raw(<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg height="500" width="500" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
)raw";
int i = idx;
auto r = result;
// for(auto r : result) {
std::fstream out(loc + std::to_string(i) + ".svg", std::fstream::out);
if(out.is_open()) {
out << svg_header;
Item rbin( Rectangle(bin.width(), bin.height()) );
for(unsigned i = 0; i < rbin.vertexCount(); i++) {
auto v = rbin.vertex(i);
setY(v, -getY(v)/SCALE + 500 );
setX(v, getX(v)/SCALE);
rbin.setVertex(i, v);
}
out << ShapeLike::serialize<Formats::SVG>(rbin.rawShape()) << std::endl;
for(Item& sh : r) {
Item tsh(sh.transformedShape());
for(unsigned i = 0; i < tsh.vertexCount(); i++) {
auto v = tsh.vertex(i);
setY(v, -getY(v)/SCALE + 500);
setX(v, getX(v)/SCALE);
tsh.setVertex(i, v);
}
out << ShapeLike::serialize<Formats::SVG>(tsh.rawShape()) << std::endl;
}
out << "\n</svg>" << std::endl;
}
out.close();
// i++;
// }
}
}
TEST(GeometryAlgorithms, BottomLeftStressTest) {
using namespace libnest2d;
auto input = PRINTER_PART_POLYGONS;
Box bin(210, 250);
BottomLeftPlacer placer(bin);
auto it = input.begin();
auto next = it;
int i = 0;
while(it != input.end() && ++next != input.end()) {
placer.pack(*it);
placer.pack(*next);
auto result = placer.getItems();
bool valid = true;
if(result.size() == 2) {
Item& r1 = result[0];
Item& r2 = result[1];
valid = !Item::intersects(r1, r2) || Item::touches(r1, r2);
valid = (valid && !r1.isInside(r2) && !r2.isInside(r1));
if(!valid) {
std::cout << "error index: " << i << std::endl;
exportSVG(result, bin, i);
}
// ASSERT_TRUE(valid);
} else {
std::cout << "something went terribly wrong!" << std::endl;
}
placer.clearItems();
it++;
i++;
}
}
TEST(GeometryAlgorithms, nfpConvexConvex) {
using namespace libnest2d;
const unsigned long SCALE = 1;
Box bin(210*SCALE, 250*SCALE);
Item stationary = {
{120, 114},
{130, 114},
{130, 103},
{128, 96},
{122, 96},
{120, 103},
{120, 114}
};
Item orbiter = {
{72, 147},
{94, 151},
{178, 151},
{178, 59},
{72, 59},
{72, 147}
};
orbiter.translate({210*SCALE, 0});
auto&& nfp = Nfp::noFitPolygon(stationary.rawShape(),
orbiter.transformedShape());
auto v = ShapeLike::isValid(nfp);
if(!v.first) {
std::cout << v.second << std::endl;
}
ASSERT_TRUE(v.first);
Item infp(nfp);
int i = 0;
auto rorbiter = orbiter.transformedShape();
auto vo = *(ShapeLike::begin(rorbiter));
for(auto v : infp) {
auto dx = getX(v) - getX(vo);
auto dy = getY(v) - getY(vo);
Item tmp = orbiter;
tmp.translate({dx, dy});
bool notinside = !tmp.isInside(stationary);
bool notintersecting = !Item::intersects(tmp, stationary);
if(!(notinside && notintersecting)) {
std::vector<std::reference_wrapper<Item>> inp = {
std::ref(stationary), std::ref(tmp), std::ref(infp)
};
exportSVG<SCALE>(inp, bin, i++);
}
//ASSERT_TRUE(notintersecting);
ASSERT_TRUE(notinside);
}
}
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}

View file

@ -470,9 +470,9 @@ static bool prepare_infill_hatching_segments(
int ir = std::min<int>(int(out.segs.size()) - 1, (r - x0) / line_spacing);
// The previous tests were done with floating point arithmetics over an epsilon-extended interval.
// Now do the same tests with exact arithmetics over the exact interval.
while (il <= ir && Int128::orient(out.segs[il].pos, out.segs[il].pos + out.direction, *pl) < 0)
while (il <= ir && int128::orient(out.segs[il].pos, out.segs[il].pos + out.direction, *pl) < 0)
++ il;
while (il <= ir && Int128::orient(out.segs[ir].pos, out.segs[ir].pos + out.direction, *pr) > 0)
while (il <= ir && int128::orient(out.segs[ir].pos, out.segs[ir].pos + out.direction, *pr) > 0)
-- ir;
// Here it is ensured, that
// 1) out.seg is not parallel to (pl, pr)
@ -489,8 +489,8 @@ static bool prepare_infill_hatching_segments(
is.iSegment = iSegment;
// Test whether the calculated intersection point falls into the bounding box of the input segment.
// +-1 to take rounding into account.
assert(Int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pl) >= 0);
assert(Int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pr) <= 0);
assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pl) >= 0);
assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pr) <= 0);
assert(is.pos().x + 1 >= std::min(pl->x, pr->x));
assert(is.pos().y + 1 >= std::min(pl->y, pr->y));
assert(is.pos().x <= std::max(pl->x, pr->x) + 1);
@ -527,7 +527,7 @@ static bool prepare_infill_hatching_segments(
const Points &contour = poly_with_offset.contour(iContour).points;
size_t iSegment = sil.intersections[i].iSegment;
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
int dir = Int128::cross(contour[iSegment] - contour[iPrev], sil.dir);
int dir = int128::cross(contour[iSegment] - contour[iPrev], sil.dir);
bool low = dir > 0;
sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
(low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :

View file

@ -48,7 +48,6 @@
#endif
#include <cassert>
#include "Point.hpp"
#if ! defined(_MSC_VER) && defined(__SIZEOF_INT128__)
#define HAS_INTRINSIC_128_TYPE
@ -288,20 +287,4 @@ public:
}
return sign_determinant_2x2(p1, q1, p2, q2) * invert;
}
// Exact orientation predicate,
// returns +1: CCW, 0: collinear, -1: CW.
static int orient(const Slic3r::Point &p1, const Slic3r::Point &p2, const Slic3r::Point &p3)
{
Slic3r::Vector v1(p2 - p1);
Slic3r::Vector v2(p3 - p1);
return sign_determinant_2x2_filtered(v1.x, v1.y, v2.x, v2.y);
}
// Exact orientation predicate,
// returns +1: CCW, 0: collinear, -1: CW.
static int cross(const Slic3r::Point &v1, const Slic3r::Point &v2)
{
return sign_determinant_2x2_filtered(v1.x, v1.y, v2.x, v2.y);
}
};

View file

@ -7,6 +7,12 @@
#include "Format/STL.hpp"
#include "Format/3mf.hpp"
#include <numeric>
#include <libnest2d.h>
#include <libnest2d/geometries_io.hpp>
#include <ClipperUtils.hpp>
#include "slic3r/GUI/GUI.hpp"
#include <float.h>
#include <boost/algorithm/string/predicate.hpp>
@ -296,35 +302,224 @@ static bool _arrange(const Pointfs &sizes, coordf_t dist, const BoundingBoxf* bb
return result;
}
namespace arr {
using namespace libnest2d;
// A container which stores a pointer to the 3D object and its projected
// 2D shape from top view.
using ShapeData2D =
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
ShapeData2D ret;
auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
[](size_t s, ModelObject* o){
return s + o->instances.size();
});
ret.reserve(s);
for(auto objptr : model.objects) {
if(objptr) {
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(objinst) {
Slic3r::TriangleMesh tmpmesh = rmesh;
objinst->transform_mesh(&tmpmesh);
ClipperLib::PolyNode pn;
auto p = tmpmesh.convex_hull();
p.make_clockwise();
p.append(p.first_point());
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
ret.emplace_back(objinst, Item(std::move(pn)));
}
}
}
}
return ret;
}
/**
* \brief Arranges the model objects on the screen.
*
* The arrangement considers multiple bins (aka. print beds) for placing all
* the items provided in the model argument. If the items don't fit on one
* print bed, the remaining will be placed onto newly created print beds.
* The first_bin_only parameter, if set to true, disables this behaviour and
* makes sure that only one print bed is filled and the remaining items will be
* untouched. When set to false, the items which could not fit onto the
* print bed will be placed next to the print bed so the user should see a
* pile of items on the print bed and some other piles outside the print
* area that can be dragged later onto the print bed as a group.
*
* \param model The model object with the 3D content.
* \param dist The minimum distance which is allowed for any pair of items
* on the print bed in any direction.
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
* for bin packing.
* \param first_bin_only This parameter controls whether to place the
* remaining items which do not fit onto the print area next to the print
* bed or leave them untouched (let the user arrange them by hand or remove
* them).
*/
bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
bool first_bin_only)
{
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
bool ret = true;
// Create the arranger config
auto min_obj_distance = static_cast<Coord>(dist/SCALING_FACTOR);
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model);
double area = 0;
double area_max = 0;
Item *biggest = nullptr;
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
std::vector<std::reference_wrapper<Item>> shapes;
shapes.reserve(shapemap.size());
std::for_each(shapemap.begin(), shapemap.end(),
[&shapes, &area, min_obj_distance, &area_max, &biggest]
(ShapeData2D::value_type& it)
{
Item& item = it.second;
item.addOffset(min_obj_distance);
auto b = ShapeLike::boundingBox(item.transformedShape());
auto a = b.width()*b.height();
if(area_max < a) {
area_max = static_cast<double>(a);
biggest = &item;
}
area += b.width()*b.height();
shapes.push_back(std::ref(it.second));
});
Box bin;
if(bb != nullptr && bb->defined) {
// Scale up the bounding box to clipper scale.
BoundingBoxf bbb = *bb;
bbb.scale(1.0/SCALING_FACTOR);
bin = Box({
static_cast<libnest2d::Coord>(bbb.min.x),
static_cast<libnest2d::Coord>(bbb.min.y)
},
{
static_cast<libnest2d::Coord>(bbb.max.x),
static_cast<libnest2d::Coord>(bbb.max.y)
});
} else {
// Just take the biggest item as bin... ?
bin = ShapeLike::boundingBox(biggest->transformedShape());
}
// Will use the DJD selection heuristic with the BottomLeft placement
// strategy
using Arranger = Arranger<BottomLeftPlacer, DJDHeuristic>;
Arranger arranger(bin, min_obj_distance);
// Arrange and return the items with their respective indices within the
// input sequence.
ArrangeResult result =
arranger.arrangeIndexed(shapes.begin(), shapes.end());
auto applyResult = [&shapemap](ArrangeResult::value_type& group,
Coord batch_offset)
{
for(auto& r : group) {
auto idx = r.first; // get the original item index
Item& item = r.second; // get the item itself
// Get the model instance from the shapemap using the index
ModelInstance *inst_ptr = shapemap[idx].first;
// Get the tranformation data from the item object and scale it
// appropriately
Radians rot = item.rotation();
auto off = item.translation();
Pointf foff(off.X*SCALING_FACTOR + batch_offset,
off.Y*SCALING_FACTOR);
// write the tranformation data into the model instance
inst_ptr->rotation += rot;
inst_ptr->offset += foff;
// Debug
/*std::cout << "item " << idx << ": \n" << "\toffset_x: "
* << foff.x << "\n\toffset_y: " << foff.y << std::endl;*/
}
};
if(first_bin_only) {
applyResult(result.front(), 0);
} else {
Coord batch_offset = 0;
for(auto& group : result) {
applyResult(group, batch_offset);
// Only the first pack group can be placed onto the print bed. The
// other objects which could not fit will be placed next to the
// print bed
batch_offset += static_cast<Coord>(2*bin.width()*SCALING_FACTOR);
}
}
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
return ret && result.size() == 1;
}
}
/* arrange objects preserving their instance count
but altering their instance positions */
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
{
// get the (transformed) size of each instance so that we take
// into account their different transformations when packing
Pointfs instance_sizes;
Pointfs instance_centers;
for (const ModelObject *o : this->objects)
for (size_t i = 0; i < o->instances.size(); ++ i) {
// an accurate snug bounding box around the transformed mesh.
BoundingBoxf3 bbox(o->instance_bounding_box(i, true));
instance_sizes.push_back(bbox.size());
instance_centers.push_back(bbox.center());
}
bool ret = false;
if(bb != nullptr && bb->defined) {
const bool FIRST_BIN_ONLY = true;
ret = arr::arrange(*this, dist, bb, FIRST_BIN_ONLY);
} else {
// get the (transformed) size of each instance so that we take
// into account their different transformations when packing
Pointfs instance_sizes;
Pointfs instance_centers;
for (const ModelObject *o : this->objects)
for (size_t i = 0; i < o->instances.size(); ++ i) {
// an accurate snug bounding box around the transformed mesh.
BoundingBoxf3 bbox(o->instance_bounding_box(i, true));
instance_sizes.push_back(bbox.size());
instance_centers.push_back(bbox.center());
}
Pointfs positions;
if (! _arrange(instance_sizes, dist, bb, positions))
return false;
size_t idx = 0;
for (ModelObject *o : this->objects) {
for (ModelInstance *i : o->instances) {
i->offset = positions[idx] - instance_centers[idx];
++ idx;
Pointfs positions;
if (! _arrange(instance_sizes, dist, bb, positions))
return false;
size_t idx = 0;
for (ModelObject *o : this->objects) {
for (ModelInstance *i : o->instances) {
i->offset = positions[idx] - instance_centers[idx];
++ idx;
}
o->invalidate_bounding_box();
}
o->invalidate_bounding_box();
}
return true;
return ret;
}
// Duplicate the entire model preserving instance relative positions.

View file

@ -1,6 +1,7 @@
#include "Point.hpp"
#include "Line.hpp"
#include "MultiPoint.hpp"
#include "Int128.hpp"
#include <algorithm>
#include <cmath>
@ -375,4 +376,20 @@ Pointf3::vector_to(const Pointf3 &point) const
return Vectorf3(point.x - this->x, point.y - this->y, point.z - this->z);
}
namespace int128 {
int orient(const Point &p1, const Point &p2, const Point &p3)
{
Slic3r::Vector v1(p2 - p1);
Slic3r::Vector v2(p3 - p1);
return Int128::sign_determinant_2x2_filtered(v1.x, v1.y, v2.x, v2.y);
}
int cross(const Point &v1, const Point &v2)
{
return Int128::sign_determinant_2x2_filtered(v1.x, v1.y, v2.x, v2.y);
}
}
}

View file

@ -81,6 +81,17 @@ inline Point operator*(double scalar, const Point& point2) { return Point(scalar
inline int64_t cross(const Point &v1, const Point &v2) { return int64_t(v1.x) * int64_t(v2.y) - int64_t(v1.y) * int64_t(v2.x); }
inline int64_t dot(const Point &v1, const Point &v2) { return int64_t(v1.x) * int64_t(v2.x) + int64_t(v1.y) * int64_t(v2.y); }
namespace int128 {
// Exact orientation predicate,
// returns +1: CCW, 0: collinear, -1: CW.
int orient(const Point &p1, const Point &p2, const Point &p3);
// Exact orientation predicate,
// returns +1: CCW, 0: collinear, -1: CW.
int cross(const Point &v1, const Slic3r::Point &v2);
}
// To be used by std::unordered_map, std::unordered_multimap and friends.
struct PointHash {
size_t operator()(const Point &pt) const {