Slicing object and rasterization generates output zip. Needs testing.
This commit is contained in:
parent
95419370e1
commit
ffe6862626
@ -1,22 +1,21 @@
|
||||
#ifndef PRINTEXPORT_HPP
|
||||
#define PRINTEXPORT_HPP
|
||||
|
||||
#include "Print.hpp"
|
||||
|
||||
// For png export of the sliced model
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
|
||||
#include <boost/log/trivial.hpp>
|
||||
|
||||
#include "Rasterizer/Rasterizer.hpp"
|
||||
#include <tbb/parallel_for.h>
|
||||
#include <tbb/spin_mutex.h>//#include "tbb/mutex.h"
|
||||
//#include <tbb/parallel_for.h>
|
||||
//#include <tbb/spin_mutex.h>//#include "tbb/mutex.h"
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
enum class FilePrinterFormat {
|
||||
PNG,
|
||||
SLA_PNGZIP,
|
||||
SVG
|
||||
};
|
||||
|
||||
@ -28,7 +27,7 @@ enum class FilePrinterFormat {
|
||||
* different implementations of this class template for each supported format.
|
||||
*
|
||||
*/
|
||||
template<FilePrinterFormat format, class LayerFormat = void>
|
||||
template<FilePrinterFormat format>
|
||||
class FilePrinter {
|
||||
public:
|
||||
|
||||
@ -69,15 +68,17 @@ public:
|
||||
void save_layer(unsigned lyr, const std::string& path);
|
||||
};
|
||||
|
||||
// Provokes static_assert in the right way.
|
||||
template<class T = void> struct VeryFalse { static const bool value = false; };
|
||||
|
||||
// This has to be explicitly implemented in the gui layer or a default zlib
|
||||
// based implementation is needed.
|
||||
template<class Backend> class LayerWriter {
|
||||
// based implementation is needed. I don't have time for that and I'm delegating
|
||||
// the implementation to the gui layer where the gui toolkit can cover this.
|
||||
template<class Fmt> class LayerWriter {
|
||||
public:
|
||||
|
||||
LayerWriter(const std::string& /*zipfile_path*/) {
|
||||
static_assert(VeryFalse<Backend>::value,
|
||||
static_assert(VeryFalse<Fmt>::value,
|
||||
"No layer writer implementation provided!");
|
||||
}
|
||||
|
||||
@ -97,8 +98,8 @@ public:
|
||||
// Implementation for PNG raster output
|
||||
// Be aware that if a large number of layers are allocated, it can very well
|
||||
// exhaust the available memory especially on 32 bit platform.
|
||||
template<class LyrFormat> class FilePrinter<FilePrinterFormat::PNG, LyrFormat> {
|
||||
|
||||
template<> class FilePrinter<FilePrinterFormat::SLA_PNGZIP>
|
||||
{
|
||||
struct Layer {
|
||||
Raster first;
|
||||
std::stringstream second;
|
||||
@ -115,13 +116,11 @@ template<class LyrFormat> class FilePrinter<FilePrinterFormat::PNG, LyrFormat> {
|
||||
std::vector<Layer> m_layers_rst;
|
||||
Raster::Resolution m_res;
|
||||
Raster::PixelDim m_pxdim;
|
||||
const Print *m_print = nullptr;
|
||||
double m_exp_time_s = .0, m_exp_time_first_s = .0;
|
||||
double m_layer_height = .0;
|
||||
|
||||
std::string createIniContent(const std::string& projectname) {
|
||||
double layer_height = m_print?
|
||||
m_print->default_object_config().layer_height.getFloat() :
|
||||
0.05;
|
||||
double layer_height = m_layer_height;
|
||||
|
||||
using std::string;
|
||||
using std::to_string;
|
||||
@ -154,11 +153,13 @@ template<class LyrFormat> class FilePrinter<FilePrinterFormat::PNG, LyrFormat> {
|
||||
public:
|
||||
inline FilePrinter(double width_mm, double height_mm,
|
||||
unsigned width_px, unsigned height_px,
|
||||
double layer_height,
|
||||
double exp_time, double exp_time_first):
|
||||
m_res(width_px, height_px),
|
||||
m_pxdim(width_mm/width_px, height_mm/height_px),
|
||||
m_exp_time_s(exp_time),
|
||||
m_exp_time_first_s(exp_time_first)
|
||||
m_exp_time_first_s(exp_time_first),
|
||||
m_layer_height(layer_height)
|
||||
{
|
||||
}
|
||||
|
||||
@ -171,8 +172,6 @@ public:
|
||||
inline void layers(unsigned cnt) { if(cnt > 0) m_layers_rst.resize(cnt); }
|
||||
inline unsigned layers() const { return unsigned(m_layers_rst.size()); }
|
||||
|
||||
void print_config(const Print& printconf) { m_print = &printconf; }
|
||||
|
||||
inline void draw_polygon(const ExPolygon& p, unsigned lyr) {
|
||||
assert(lyr < m_layers_rst.size());
|
||||
m_layers_rst[lyr].first.draw(p);
|
||||
@ -203,9 +202,10 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
template<class LyrFmt>
|
||||
inline void save(const std::string& path) {
|
||||
try {
|
||||
LayerWriter<LyrFormat> writer(path);
|
||||
LayerWriter<LyrFmt> writer(path);
|
||||
|
||||
std::string project = writer.get_name();
|
||||
|
||||
@ -250,145 +250,145 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
// Let's shadow this eigen interface
|
||||
inline coord_t px(const Point& p) { return p(0); }
|
||||
inline coord_t py(const Point& p) { return p(1); }
|
||||
inline coordf_t px(const Vec2d& p) { return p(0); }
|
||||
inline coordf_t py(const Vec2d& p) { return p(1); }
|
||||
//// Let's shadow this eigen interface
|
||||
//inline coord_t px(const Point& p) { return p(0); }
|
||||
//inline coord_t py(const Point& p) { return p(1); }
|
||||
//inline coordf_t px(const Vec2d& p) { return p(0); }
|
||||
//inline coordf_t py(const Vec2d& p) { return p(1); }
|
||||
|
||||
template<FilePrinterFormat format, class LayerFormat, class...Args>
|
||||
void print_to(Print& print,
|
||||
std::string dirpath,
|
||||
double width_mm,
|
||||
double height_mm,
|
||||
Args&&...args)
|
||||
{
|
||||
//template<FilePrinterFormat format, class LayerFormat, class...Args>
|
||||
//void print_to(Print& print,
|
||||
// std::string dirpath,
|
||||
// double width_mm,
|
||||
// double height_mm,
|
||||
// Args&&...args)
|
||||
//{
|
||||
|
||||
std::string& dir = dirpath;
|
||||
// std::string& dir = dirpath;
|
||||
|
||||
// This map will hold the layers sorted by z coordinate. Layers on the
|
||||
// same height (from different objects) will be mapped to the same key and
|
||||
// rasterized to the same image.
|
||||
std::map<long long, LayerPtrs> layers;
|
||||
// // This map will hold the layers sorted by z coordinate. Layers on the
|
||||
// // same height (from different objects) will be mapped to the same key and
|
||||
// // rasterized to the same image.
|
||||
// std::map<long long, LayerPtrs> layers;
|
||||
|
||||
auto& objects = print.objects();
|
||||
// auto& objects = print.objects();
|
||||
|
||||
// Merge the sliced layers with the support layers
|
||||
std::for_each(objects.cbegin(), objects.cend(),
|
||||
[&layers](const PrintObject *o)
|
||||
{
|
||||
for(const auto l : o->layers()) {
|
||||
auto& lyrs = layers[static_cast<long long>(scale_(l->print_z))];
|
||||
lyrs.push_back(l);
|
||||
}
|
||||
// // Merge the sliced layers with the support layers
|
||||
// std::for_each(objects.cbegin(), objects.cend(),
|
||||
// [&layers](const PrintObject *o)
|
||||
// {
|
||||
// for(const auto l : o->layers()) {
|
||||
// auto& lyrs = layers[static_cast<long long>(scale_(l->print_z))];
|
||||
// lyrs.push_back(l);
|
||||
// }
|
||||
|
||||
for(const auto l : o->support_layers()) {
|
||||
auto& lyrs = layers[static_cast<long long>(scale_(l->print_z))];
|
||||
lyrs.push_back(l);
|
||||
}
|
||||
});
|
||||
// for(const auto l : o->support_layers()) {
|
||||
// auto& lyrs = layers[static_cast<long long>(scale_(l->print_z))];
|
||||
// lyrs.push_back(l);
|
||||
// }
|
||||
// });
|
||||
|
||||
auto print_bb = print.bounding_box();
|
||||
Vec2d punsc = unscale(print_bb.size());
|
||||
// auto print_bb = print.bounding_box();
|
||||
// Vec2d punsc = unscale(print_bb.size());
|
||||
|
||||
// If the print does not fit into the print area we should cry about it.
|
||||
if(px(punsc) > width_mm || py(punsc) > height_mm) {
|
||||
BOOST_LOG_TRIVIAL(warning) << "Warning: Print will not fit!" << "\n"
|
||||
<< "Width needed: " << px(punsc) << "\n"
|
||||
<< "Height needed: " << py(punsc) << "\n";
|
||||
}
|
||||
// // If the print does not fit into the print area we should cry about it.
|
||||
// if(px(punsc) > width_mm || py(punsc) > height_mm) {
|
||||
// BOOST_LOG_TRIVIAL(warning) << "Warning: Print will not fit!" << "\n"
|
||||
// << "Width needed: " << px(punsc) << "\n"
|
||||
// << "Height needed: " << py(punsc) << "\n";
|
||||
// }
|
||||
|
||||
// Offset for centering the print onto the print area
|
||||
auto cx = scale_(width_mm)/2 - (px(print_bb.center()) - px(print_bb.min));
|
||||
auto cy = scale_(height_mm)/2 - (py(print_bb.center()) - py(print_bb.min));
|
||||
// // Offset for centering the print onto the print area
|
||||
// auto cx = scale_(width_mm)/2 - (px(print_bb.center()) - px(print_bb.min));
|
||||
// auto cy = scale_(height_mm)/2 - (py(print_bb.center()) - py(print_bb.min));
|
||||
|
||||
// Create the actual printer, forward any additional arguments to it.
|
||||
FilePrinter<format, LayerFormat> printer(width_mm, height_mm,
|
||||
std::forward<Args>(args)...);
|
||||
// // Create the actual printer, forward any additional arguments to it.
|
||||
// FilePrinter<format, LayerFormat> printer(width_mm, height_mm,
|
||||
// std::forward<Args>(args)...);
|
||||
|
||||
printer.print_config(print);
|
||||
// printer.print_config(print);
|
||||
|
||||
printer.layers(layers.size()); // Allocate space for all the layers
|
||||
// printer.layers(layers.size()); // Allocate space for all the layers
|
||||
|
||||
int st_prev = 0;
|
||||
const std::string jobdesc = "Rasterizing and compressing sliced layers";
|
||||
tbb::spin_mutex m;
|
||||
// int st_prev = 0;
|
||||
// const std::string jobdesc = "Rasterizing and compressing sliced layers";
|
||||
// tbb::spin_mutex m;
|
||||
|
||||
std::vector<long long> keys;
|
||||
keys.reserve(layers.size());
|
||||
for(auto& e : layers) keys.push_back(e.first);
|
||||
// std::vector<long long> keys;
|
||||
// keys.reserve(layers.size());
|
||||
// for(auto& e : layers) keys.push_back(e.first);
|
||||
|
||||
print.set_status(0, jobdesc);
|
||||
// print.set_status(0, jobdesc);
|
||||
|
||||
// Method that prints one layer
|
||||
auto process_layer = [&layers, &keys, &printer, &st_prev, &m,
|
||||
&jobdesc, print_bb, dir, cx, cy, &print]
|
||||
(unsigned layer_id)
|
||||
{
|
||||
LayerPtrs lrange = layers[keys[layer_id]];
|
||||
// // Method that prints one layer
|
||||
// auto process_layer = [&layers, &keys, &printer, &st_prev, &m,
|
||||
// &jobdesc, print_bb, dir, cx, cy, &print]
|
||||
// (unsigned layer_id)
|
||||
// {
|
||||
// LayerPtrs lrange = layers[keys[layer_id]];
|
||||
|
||||
printer.begin_layer(layer_id); // Switch to the appropriate layer
|
||||
// printer.begin_layer(layer_id); // Switch to the appropriate layer
|
||||
|
||||
for(Layer *lp : lrange) {
|
||||
Layer& l = *lp;
|
||||
// for(Layer *lp : lrange) {
|
||||
// Layer& l = *lp;
|
||||
|
||||
ExPolygonCollection slices = l.slices; // Copy the layer slices
|
||||
// ExPolygonCollection slices = l.slices; // Copy the layer slices
|
||||
|
||||
// Sort the polygons in the layer
|
||||
std::stable_sort(slices.expolygons.begin(), slices.expolygons.end(),
|
||||
[](const ExPolygon& a, const ExPolygon& b) {
|
||||
return a.contour.contains(b.contour.first_point()) ? false :
|
||||
true;
|
||||
});
|
||||
// // Sort the polygons in the layer
|
||||
// std::stable_sort(slices.expolygons.begin(), slices.expolygons.end(),
|
||||
// [](const ExPolygon& a, const ExPolygon& b) {
|
||||
// return a.contour.contains(b.contour.first_point()) ? false :
|
||||
// true;
|
||||
// });
|
||||
|
||||
// Draw all the polygons in the slice to the actual layer.
|
||||
for (const Point &d : l.object()->copies())
|
||||
for (ExPolygon slice : slices.expolygons) {
|
||||
slice.translate(px(d), py(d));
|
||||
slice.translate(-px(print_bb.min) + cx,
|
||||
-py(print_bb.min) + cy);
|
||||
// // Draw all the polygons in the slice to the actual layer.
|
||||
// for (const Point &d : l.object()->copies())
|
||||
// for (ExPolygon slice : slices.expolygons) {
|
||||
// slice.translate(px(d), py(d));
|
||||
// slice.translate(-px(print_bb.min) + cx,
|
||||
// -py(print_bb.min) + cy);
|
||||
|
||||
printer.draw_polygon(slice, layer_id);
|
||||
}
|
||||
// printer.draw_polygon(slice, layer_id);
|
||||
// }
|
||||
|
||||
/*if(print.has_support_material() && layer_id > 0) {
|
||||
BOOST_LOG_TRIVIAL(warning) << "support material for layer "
|
||||
<< layer_id
|
||||
<< " defined but export is "
|
||||
"not yet implemented.";
|
||||
// /*if(print.has_support_material() && layer_id > 0) {
|
||||
// BOOST_LOG_TRIVIAL(warning) << "support material for layer "
|
||||
// << layer_id
|
||||
// << " defined but export is "
|
||||
// "not yet implemented.";
|
||||
|
||||
}*/
|
||||
// }*/
|
||||
|
||||
}
|
||||
// }
|
||||
|
||||
printer.finish_layer(layer_id); // Finish the layer for later saving it.
|
||||
// printer.finish_layer(layer_id); // Finish the layer for later saving it.
|
||||
|
||||
auto st = static_cast<int>(layer_id*80.0/layers.size());
|
||||
m.lock();
|
||||
if( st - st_prev > 10) {
|
||||
print.set_status(st, jobdesc);
|
||||
st_prev = st;
|
||||
}
|
||||
m.unlock();
|
||||
// auto st = static_cast<int>(layer_id*80.0/layers.size());
|
||||
// m.lock();
|
||||
// if( st - st_prev > 10) {
|
||||
// print.set_status(st, jobdesc);
|
||||
// st_prev = st;
|
||||
// }
|
||||
// m.unlock();
|
||||
|
||||
// printer.saveLayer(layer_id, dir); We could save the layer immediately
|
||||
};
|
||||
// // printer.saveLayer(layer_id, dir); We could save the layer immediately
|
||||
// };
|
||||
|
||||
// Print all the layers in parallel
|
||||
tbb::parallel_for<size_t, decltype(process_layer)>(0,
|
||||
layers.size(),
|
||||
process_layer);
|
||||
// // Print all the layers in parallel
|
||||
// tbb::parallel_for<size_t, decltype(process_layer)>(0,
|
||||
// layers.size(),
|
||||
// process_layer);
|
||||
|
||||
// Sequential version (for testing)
|
||||
// for(unsigned l = 0; l < layers.size(); ++l) process_layer(l);
|
||||
// // Sequential version (for testing)
|
||||
// // for(unsigned l = 0; l < layers.size(); ++l) process_layer(l);
|
||||
|
||||
// print.set_status(100, jobdesc);
|
||||
//// print.set_status(100, jobdesc);
|
||||
|
||||
// Save the print into the file system.
|
||||
print.set_status(90, "Writing layers to disk");
|
||||
printer.save(dir);
|
||||
print.set_status(100, "Writing layers completed");
|
||||
}
|
||||
// // Save the print into the file system.
|
||||
// print.set_status(90, "Writing layers to disk");
|
||||
// printer.save(dir);
|
||||
// print.set_status(100, "Writing layers completed");
|
||||
//}
|
||||
|
||||
}
|
||||
|
||||
|
@ -57,7 +57,7 @@ void SpatIndex::insert(const SpatElement &el)
|
||||
|
||||
bool SpatIndex::remove(const SpatElement& el)
|
||||
{
|
||||
return m_impl->m_store.remove(el);
|
||||
return m_impl->m_store.remove(el) == 1;
|
||||
}
|
||||
|
||||
std::vector<SpatElement>
|
||||
|
@ -1,6 +1,9 @@
|
||||
#include "SLAPrint.hpp"
|
||||
#include "SLA/SLASupportTree.hpp"
|
||||
|
||||
#include <tbb/parallel_for.h>
|
||||
//#include <tbb/spin_mutex.h>//#include "tbb/mutex.h"
|
||||
|
||||
#include "I18N.hpp"
|
||||
|
||||
//! macro used to mark string used at localization,
|
||||
@ -9,12 +12,15 @@
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
using SlicedModel = SlicedSupports;
|
||||
using SupportTreePtr = std::unique_ptr<sla::SLASupportTree>;
|
||||
|
||||
class SLAPrintObject::SupportData {
|
||||
public:
|
||||
sla::EigenMesh3D emesh; // index-triangle representation
|
||||
sla::PointSet support_points; // all the support points (manual/auto)
|
||||
std::unique_ptr<sla::SLASupportTree> support_tree_ptr; // the supports
|
||||
SlicedSupports slice_cache; // sliced supports
|
||||
sla::EigenMesh3D emesh; // index-triangle representation
|
||||
sla::PointSet support_points; // all the support points (manual/auto)
|
||||
SupportTreePtr support_tree_ptr; // the supports
|
||||
SlicedSupports support_slices; // sliced supports
|
||||
};
|
||||
|
||||
namespace {
|
||||
@ -88,8 +94,14 @@ SLAPrint::ApplyStatus SLAPrint::apply(const Model &model,
|
||||
m_model.assign_copy(model);
|
||||
// Generate new SLAPrintObjects.
|
||||
for (ModelObject *model_object : m_model.objects) {
|
||||
//TODO
|
||||
m_objects.emplace_back(new SLAPrintObject(this, model_object));
|
||||
auto po = new SLAPrintObject(this, model_object);
|
||||
m_objects.emplace_back(po);
|
||||
for(ModelInstance *oinst : model_object->instances) {
|
||||
Point tr = Point::new_scale(oinst->get_offset()(X),
|
||||
oinst->get_offset()(Y));
|
||||
auto rotZ = float(oinst->get_rotation()(Z));
|
||||
po->m_instances.emplace_back(tr, rotZ);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -105,19 +117,33 @@ void SLAPrint::process()
|
||||
// Assumption: at this point the print objects should be populated only with
|
||||
// the model objects we have to process and the instances are also filtered
|
||||
|
||||
auto slice_model = [](const SLAPrintObject&) {
|
||||
// shortcut to initial layer height
|
||||
auto ilh = float(m_material_config.initial_layer_height.getFloat());
|
||||
|
||||
auto slice_model = [ilh](SLAPrintObject& po) {
|
||||
auto lh = float(po.m_config.layer_height.getFloat());
|
||||
|
||||
ModelObject *o = po.m_model_object;
|
||||
|
||||
TriangleMesh&& mesh = o->raw_mesh();
|
||||
TriangleMeshSlicer slicer(&mesh);
|
||||
auto bb3d = mesh.bounding_box();
|
||||
|
||||
auto H = bb3d.max(Z) - bb3d.min(Z);
|
||||
std::vector<float> heights = {ilh};
|
||||
for(float h = ilh; h < H; h += lh) heights.emplace_back(h);
|
||||
auto& layers = po.m_model_slices;
|
||||
slicer.slice(heights, &layers, [](){});
|
||||
};
|
||||
|
||||
auto support_points = [](const SLAPrintObject&) {
|
||||
auto support_points = [](SLAPrintObject&) {
|
||||
// for(SLAPrintObject *po : pobjects) {
|
||||
// TODO: calculate automatic support points
|
||||
// po->m_supportdata->slice_cache contains the slices at this point
|
||||
//}
|
||||
};
|
||||
|
||||
auto support_tree = [this](const SLAPrintObject& po) {
|
||||
auto support_tree = [this](SLAPrintObject& po) {
|
||||
auto& emesh = po.m_supportdata->emesh;
|
||||
auto& pts = po.m_supportdata->support_points; // nowhere filled yet
|
||||
auto& supportd = *po.m_supportdata;
|
||||
@ -141,19 +167,112 @@ void SLAPrint::process()
|
||||
}
|
||||
};
|
||||
|
||||
auto base_pool = [](const SLAPrintObject&) {
|
||||
auto base_pool = [](SLAPrintObject&) {
|
||||
|
||||
};
|
||||
|
||||
auto slice_supports = [](const SLAPrintObject&) {
|
||||
auto slice_supports = [](SLAPrintObject&) {
|
||||
|
||||
};
|
||||
|
||||
auto rasterize = []() {
|
||||
auto rasterize = [this, ilh]() {
|
||||
using Layer = ExPolygons;
|
||||
using LayerCopies = std::vector<SLAPrintObject::Instance>;
|
||||
struct LayerRef {
|
||||
std::reference_wrapper<const Layer> lref;
|
||||
std::reference_wrapper<const LayerCopies> copies;
|
||||
LayerRef(const Layer& lyr, const LayerCopies& cp) :
|
||||
lref(std::cref(lyr)), copies(std::cref(cp)) {}
|
||||
};
|
||||
|
||||
using LayerRefs = std::vector<LayerRef>;
|
||||
|
||||
// layers according to quantized height levels
|
||||
std::map<long long, LayerRefs> levels;
|
||||
|
||||
// For all print objects, go through its initial layers and place them
|
||||
// into the layers hash
|
||||
long long initlyridx = static_cast<long long>(scale_(ilh));
|
||||
for(SLAPrintObject *o : m_objects) {
|
||||
auto& oslices = o->m_model_slices;
|
||||
auto& firstlyr = oslices.front();
|
||||
auto& initlevel = levels[initlyridx];
|
||||
initlevel.emplace_back(firstlyr, o->m_instances);
|
||||
double lh = o->m_config.layer_height.getFloat();
|
||||
|
||||
size_t li = 1;
|
||||
for(auto lit = std::next(oslices.begin());
|
||||
lit != oslices.end();
|
||||
++lit)
|
||||
{
|
||||
double h = ilh + li++ * lh;
|
||||
long long lyridx = static_cast<long long>(scale_(h));
|
||||
auto& lyrs = levels[lyridx];
|
||||
lyrs.emplace_back(*lit, o->m_instances);
|
||||
}
|
||||
}
|
||||
|
||||
// collect all the keys
|
||||
std::vector<long long> keys; keys.reserve(levels.size());
|
||||
for(auto& e : levels) keys.emplace_back(e.first);
|
||||
|
||||
{ // create a raster printer for the current print parameters
|
||||
// I don't know any better
|
||||
auto& ocfg = m_objects.front()->m_config;
|
||||
auto& matcfg = m_material_config;
|
||||
auto& printcfg = m_printer_config;
|
||||
|
||||
double w = printcfg.display_width.getFloat();
|
||||
double h = printcfg.display_height.getFloat();
|
||||
unsigned pw = printcfg.display_pixels_x.getInt();
|
||||
unsigned ph = printcfg.display_pixels_y.getInt();
|
||||
double lh = ocfg.layer_height.getFloat();
|
||||
double exp_t = matcfg.exposure_time.getFloat();
|
||||
double iexp_t = matcfg.initial_exposure_time.getFloat();
|
||||
|
||||
m_printer.reset(new SLAPrinter(w, h, pw, ph, lh, exp_t, iexp_t));
|
||||
}
|
||||
|
||||
// Allocate space for all the layers
|
||||
SLAPrinter& printer = *m_printer;
|
||||
printer.layers(unsigned(levels.size()));
|
||||
|
||||
// procedure to process one height level. This will run in parallel
|
||||
auto process_level = [&keys, &levels, &printer](unsigned level_id) {
|
||||
LayerRefs& lrange = levels[keys[level_id]];
|
||||
|
||||
for(auto& lyrref : lrange) { // for all layers in the current level
|
||||
const Layer& l = lyrref.lref; // get the layer reference
|
||||
const LayerCopies& copies = lyrref.copies;
|
||||
ExPolygonCollection sl = l;
|
||||
|
||||
// Switch to the appropriate layer in the printer
|
||||
printer.begin_layer(level_id);
|
||||
|
||||
// Draw all the polygons in the slice to the actual layer.
|
||||
for(auto& cp : copies) {
|
||||
for(ExPolygon slice : sl.expolygons) {
|
||||
slice.translate(cp.shift(X), cp.shift(Y));
|
||||
slice.rotate(cp.rotation);
|
||||
printer.draw_polygon(slice, level_id);
|
||||
}
|
||||
}
|
||||
|
||||
// Finish the layer for later saving it.
|
||||
printer.finish_layer(level_id);
|
||||
}
|
||||
};
|
||||
|
||||
// Sequential version (for testing)
|
||||
// for(unsigned l = 0; l < levels.size(); ++l) process_level(l);
|
||||
|
||||
// Print all the layers in parallel
|
||||
tbb::parallel_for<size_t, decltype(process_level)>(0,
|
||||
levels.size(),
|
||||
process_level);
|
||||
};
|
||||
|
||||
using slaposFn = std::function<void(const SLAPrintObject&)>;
|
||||
using slaposFn = std::function<void(SLAPrintObject&)>;
|
||||
using slapsFn = std::function<void(void)>;
|
||||
|
||||
std::array<SLAPrintObjectStep, slaposCount> objectsteps = {
|
||||
@ -168,7 +287,7 @@ void SLAPrint::process()
|
||||
std::array<slaposFn, slaposCount> pobj_program =
|
||||
{
|
||||
slice_model,
|
||||
[](const SLAPrintObject&){}, // slaposSupportIslands now empty
|
||||
[](SLAPrintObject&){}, // slaposSupportIslands now empty
|
||||
support_points,
|
||||
support_tree,
|
||||
base_pool,
|
||||
@ -229,11 +348,6 @@ void SLAPrint::render_supports(SLASupportRenderer &renderer)
|
||||
std::cout << "Would show the SLA supports" << std::endl;
|
||||
}
|
||||
|
||||
void SLAPrint::export_raster(const std::string &fname)
|
||||
{
|
||||
std::cout << "Would export the SLA raster" << std::endl;
|
||||
}
|
||||
|
||||
SLAPrintObject::SLAPrintObject(SLAPrint *print, ModelObject *model_object):
|
||||
Inherited(print),
|
||||
m_model_object(model_object),
|
||||
@ -242,6 +356,7 @@ SLAPrintObject::SLAPrintObject(SLAPrint *print, ModelObject *model_object):
|
||||
{
|
||||
m_supportdata->emesh = sla::to_eigenmesh(*m_model_object);
|
||||
m_supportdata->support_points = sla::support_points(*m_model_object);
|
||||
|
||||
std::cout << "support points copied " << m_supportdata->support_points.rows() << std::endl;
|
||||
}
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
#define slic3r_SLAPrint_hpp_
|
||||
|
||||
#include "PrintBase.hpp"
|
||||
#include "PrintExport.hpp"
|
||||
#include "Point.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
@ -58,8 +59,10 @@ protected:
|
||||
// Slic3r::Point objects in scaled G-code coordinates
|
||||
Point shift;
|
||||
// Rotation along the Z axis, in radians.
|
||||
float rotation;
|
||||
float rotation;
|
||||
Instance(const Point& tr, float rotZ): shift(tr), rotation(rotZ) {}
|
||||
};
|
||||
|
||||
bool set_instances(const std::vector<Instance> &instances);
|
||||
// Invalidates the step, and its depending steps in SLAPrintObject and SLAPrint.
|
||||
bool invalidate_step(SLAPrintObjectStep step);
|
||||
@ -75,6 +78,7 @@ private:
|
||||
|
||||
// Which steps have to be performed. Implicitly: all
|
||||
std::vector<bool> m_stepmask;
|
||||
std::vector<ExPolygons> m_model_slices;
|
||||
|
||||
class SupportData;
|
||||
std::unique_ptr<SupportData> m_supportdata;
|
||||
@ -132,6 +136,7 @@ private: // Prevents erroneous use by other classes.
|
||||
|
||||
public:
|
||||
SLAPrint(): m_stepmask(slapsCount, true) {}
|
||||
|
||||
virtual ~SLAPrint() { this->clear(); }
|
||||
|
||||
PrinterTechnology technology() const noexcept { return ptSLA; }
|
||||
@ -143,14 +148,21 @@ public:
|
||||
|
||||
void render_supports(SLASupportRenderer& renderer);
|
||||
|
||||
void export_raster(const std::string& fname);
|
||||
template<class Fmt> void export_raster(const std::string& fname) {
|
||||
if(m_printer) m_printer->save<Fmt>(fname);
|
||||
std::cout << "Would export the SLA raster" << std::endl;
|
||||
}
|
||||
|
||||
private:
|
||||
using SLAPrinter = FilePrinter<FilePrinterFormat::SLA_PNGZIP>;
|
||||
using SLAPrinterPtr = std::unique_ptr<SLAPrinter>;
|
||||
|
||||
Model m_model;
|
||||
SLAPrinterConfig m_printer_config;
|
||||
SLAMaterialConfig m_material_config;
|
||||
PrintObjects m_objects;
|
||||
std::vector<bool> m_stepmask;
|
||||
SLAPrinterPtr m_printer;
|
||||
|
||||
friend SLAPrintObject;
|
||||
};
|
||||
|
@ -6,6 +6,11 @@
|
||||
#include <wx/panel.h>
|
||||
#include <wx/stdpaths.h>
|
||||
|
||||
// For zipped archive creation
|
||||
#include <wx/stdstream.h>
|
||||
#include <wx/wfstream.h>
|
||||
#include <wx/zipstrm.h>
|
||||
|
||||
// Print now includes tbb, and tbb includes Windows. This breaks compilation of wxWidgets if included before wx.
|
||||
#include "libslic3r/Print.hpp"
|
||||
#include "libslic3r/SLAPrint.hpp"
|
||||
@ -75,13 +80,53 @@ void BackgroundSlicingProcess::process_fff()
|
||||
}
|
||||
}
|
||||
|
||||
// Pseudo type for specializing LayerWriter trait class
|
||||
struct SLAZipFmt {};
|
||||
|
||||
// The implementation of creating zipped archives with wxWidgets
|
||||
template<> class LayerWriter<SLAZipFmt> {
|
||||
wxFileName fpath;
|
||||
wxFFileOutputStream zipfile;
|
||||
wxZipOutputStream zipstream;
|
||||
wxStdOutputStream pngstream;
|
||||
|
||||
public:
|
||||
|
||||
inline LayerWriter(const std::string& zipfile_path):
|
||||
fpath(zipfile_path),
|
||||
zipfile(zipfile_path),
|
||||
zipstream(zipfile),
|
||||
pngstream(zipstream)
|
||||
{
|
||||
if(!zipfile.IsOk())
|
||||
throw std::runtime_error("Cannot create zip file.");
|
||||
}
|
||||
|
||||
inline void next_entry(const std::string& fname) {
|
||||
zipstream.PutNextEntry(fname);
|
||||
}
|
||||
|
||||
inline std::string get_name() const {
|
||||
return fpath.GetName().ToStdString();
|
||||
}
|
||||
|
||||
template<class T> inline LayerWriter& operator<<(const T& arg) {
|
||||
pngstream << arg; return *this;
|
||||
}
|
||||
|
||||
inline void close() {
|
||||
zipstream.Close();
|
||||
zipfile.Close();
|
||||
}
|
||||
};
|
||||
|
||||
void BackgroundSlicingProcess::process_sla() {
|
||||
assert(m_print == m_sla_print);
|
||||
m_print->process();
|
||||
if(!m_print->canceled() && ! this->is_step_done(bspsGCodeFinalize)) {
|
||||
this->set_step_started(bspsGCodeFinalize);
|
||||
if (! m_export_path.empty()) {
|
||||
m_sla_print->export_raster(m_export_path);
|
||||
m_sla_print->export_raster<SLAZipFmt>(m_export_path);
|
||||
m_print->set_status(100, "Zip file exported to " + m_export_path);
|
||||
}
|
||||
this->set_step_done(bspsGCodeFinalize);
|
||||
|
Loading…
Reference in New Issue
Block a user