Removed GCode.pm
Removed the Perl bindigns for AvoidCrossingPerimeters, OozePrevention, SpiralVase, Wipe
Changed the std::set of extruder IDs to vector of IDs.
Removed some MSVC compiler warnings, removed obnoxious compiler warnings when compiling the Perl bindings.
Removed the questionable Pressure Advance feature. It is better to use the Pressure Advance implemented into a firmware.
Added a C++ implementation of GCodeReader and SpiralVase, thanks to @alexrj
Added a C++ implementation of GCodeTimeEstimator, thanks to @lordofhyphens
When extruding supports, the support is interleaved with interface
if possible (when extruded with the same extruder).
Otherwise the base is extruded first.
for lower memory consumption.
Rewrote the print path 3D preview to generate these indexed triangle / quad
sets, possibly with at least as possible duplication of vertices,
with a crease angle of 45 degrees, leading to maximum 8% overshoots
at the corners.
Reset the layer height profile when changing a print profile to an incompatible one.
Reset button on the layer height bar.
Fixed an update issue on zooming by a scroll wheel.
Fixed an issue when loading an AMF file: Object names are now retained.
This is similar to an ExtrusionLoop, but it is open.
It may contain multiple chained paths with differing parameters.
This allows one to have a hierarchy of paths, where the ExtrusionEntityCollection
will be chained by the G-code generator, but ExtrusionMultiPath will not.
inside ClipperUtils are now using bit shifts instead of multiplication
by doubles, which makes the scaling precise.
Removed the scale parameter from all offset functions.
Modified the safety offset to calculate offset per polygon instead
of over all polygons at once. The old way was not safe and very slow,
sometimes this meant a kiss of death for supports for example.
These could be calculated from the fill areas if needed.
On the other side, the non-classified (non-split) fill areas are stored
now for use in the "ensure vertical wall thickness" feature,
also the non-split fill areas are re-used when recalculating the infills.
This is safer than trying to stitch the fill region together from the
classified fragments.
Modified the "ensure vertical wall thickness" feature to use the non-split
fill areas instead of perimeter areas for the calculation
of non-supported regions. This is cheaper as the fill areas contain
roughly half the edges.
Fixed some cracks in the fill surfaces created by rounding all surfaces inside detect_surface_type().
Fixed https://github.com/prusa3d/Slic3r/issues/12
Bridging-Angle not optimal
Extended the "Ensure veritcal wall thickness" mode (merged with the original discover_horizontal_shells function), but this a work in progress. Already Slic3r with "ensure vertical wall thickness" produces less spurious infills inside solids.
direction over multiple regions. This allows a single bridge to be
drawn over holes, which are too close to each other to allow
for separate bridges.
Fixes Bridging-Angle not optimal
https://github.com/prusa3d/Slic3r/issues/12
Re-allowed adaptive infill line width for solid infills. The adaptive
infill line width works in some circumstances, see Issue #15,
but the original implementation often changed the line width too
aggressively. The current implementation limits the line width change
to 20%.
Fixes Gaps between infill and perimeter leads to errors in laydown on following layer
https://github.com/prusa3d/Slic3r/issues/15
to return a string with an error message instead. This was necessary
to avoid a hang-up on some Strawberry Perl distributions, when
a perl "croak" function is called after a C++ exception is caught.