#if 0 #pragma optimize("", off) #undef NDEBUG #undef assert #endif #include "clipper.hpp" #include "ShortestPath.hpp" #include "KDTreeIndirect.hpp" #include "MutablePriorityQueue.hpp" #include "Print.hpp" #include #include namespace Slic3r { // Naive implementation of the Traveling Salesman Problem, it works by always taking the next closest neighbor. // This implementation will always produce valid result even if some segments cannot reverse. template std::vector> chain_segments_closest_point(std::vector &end_points, KDTreeType &kdtree, CouldReverseFunc &could_reverse_func, EndPointType &first_point) { assert((end_points.size() & 1) == 0); size_t num_segments = end_points.size() / 2; assert(num_segments >= 2); for (EndPointType &ep : end_points) ep.chain_id = 0; std::vector> out; out.reserve(num_segments); size_t first_point_idx = &first_point - end_points.data(); out.emplace_back(first_point_idx / 2, (first_point_idx & 1) != 0); first_point.chain_id = 1; size_t this_idx = first_point_idx ^ 1; for (int iter = (int)num_segments - 2; iter >= 0; -- iter) { EndPointType &this_point = end_points[this_idx]; this_point.chain_id = 1; // Find the closest point to this end_point, which lies on a different extrusion path (filtered by the lambda). // Ignore the starting point as the starting point is considered to be occupied, no end point coud connect to it. size_t next_idx = find_closest_point(kdtree, this_point.pos, [this_idx, &end_points, &could_reverse_func](size_t idx) { return (idx ^ this_idx) > 1 && end_points[idx].chain_id == 0 && ((idx & 1) == 0 || could_reverse_func(idx >> 1)); }); assert(next_idx < end_points.size()); EndPointType &end_point = end_points[next_idx]; end_point.chain_id = 1; out.emplace_back(next_idx / 2, (next_idx & 1) != 0); this_idx = next_idx ^ 1; } #ifndef NDEBUG assert(end_points[this_idx].chain_id == 0); for (EndPointType &ep : end_points) assert(&ep == &end_points[this_idx] || ep.chain_id == 1); #endif /* NDEBUG */ return out; } // Chain perimeters (always closed) and thin fills (closed or open) using a greedy algorithm. // Solving a Traveling Salesman Problem (TSP) with the modification, that the sites are not always points, but points and segments. // Solving using a greedy algorithm, where a shortest edge is added to the solution if it does not produce a bifurcation or a cycle. // Return index and "reversed" flag. // https://en.wikipedia.org/wiki/Multi-fragment_algorithm // The algorithm builds a tour for the traveling salesman one edge at a time and thus maintains multiple tour fragments, each of which // is a simple path in the complete graph of cities. At each stage, the algorithm selects the edge of minimal cost that either creates // a new fragment, extends one of the existing paths or creates a cycle of length equal to the number of cities. template std::vector> chain_segments_greedy_constrained_reversals_(SegmentEndPointFunc end_point_func, CouldReverseFunc could_reverse_func, size_t num_segments, const PointType *start_near) { std::vector> out; if (num_segments == 0) { // Nothing to do. } else if (num_segments == 1) { // Just sort the end points so that the first point visited is closest to start_near. out.emplace_back(0, could_reverse_func(0) && start_near != nullptr && (end_point_func(0, true) - *start_near).template cast().squaredNorm() < (end_point_func(0, false) - *start_near).template cast().squaredNorm()); } else { // End points of segments for the KD tree closest point search. // A single end point is inserted into the search structure for loops, two end points are entered for open paths. struct EndPoint { EndPoint(const Vec2d &pos) : pos(pos) {} Vec2d pos; // Identifier of the chain, to which this end point belongs. Zero means unassigned. size_t chain_id = 0; // Link to the closest currently valid end point. EndPoint *edge_out = nullptr; // Distance to the next end point following the link. // Zero value -> start of the final path. double distance_out = std::numeric_limits::max(); size_t heap_idx = std::numeric_limits::max(); }; std::vector end_points; end_points.reserve(num_segments * 2); for (size_t i = 0; i < num_segments; ++ i) { end_points.emplace_back(end_point_func(i, true ).template cast()); end_points.emplace_back(end_point_func(i, false).template cast()); } // Construct the closest point KD tree over end points of segments. auto coordinate_fn = [&end_points](size_t idx, size_t dimension) -> double { return end_points[idx].pos[dimension]; }; KDTreeIndirect<2, double, decltype(coordinate_fn)> kdtree(coordinate_fn, end_points.size()); // Helper to detect loops in already connected paths. // Unique chain IDs are assigned to paths. If paths are connected, end points will not have their chain IDs updated, but the chain IDs // will remember an "equivalent" chain ID, which is the lowest ID of all the IDs in the path, and the lowest ID is equivalent to itself. class EquivalentChains { public: // Zero'th chain ID is invalid. EquivalentChains(size_t reserve) { m_equivalent_with.reserve(reserve); m_equivalent_with.emplace_back(0); } // Generate next equivalence class. size_t next() { m_equivalent_with.emplace_back(++ m_last_chain_id); return m_last_chain_id; } // Get equivalence class for chain ID. size_t operator()(size_t chain_id) { if (chain_id != 0) { for (size_t last = chain_id;;) { size_t lower = m_equivalent_with[last]; if (lower == last) { m_equivalent_with[chain_id] = lower; chain_id = lower; break; } last = lower; } } return chain_id; } size_t merge(size_t chain_id1, size_t chain_id2) { size_t chain_id = std::min((*this)(chain_id1), (*this)(chain_id2)); m_equivalent_with[chain_id1] = chain_id; m_equivalent_with[chain_id2] = chain_id; return chain_id; } #ifndef NDEBUG bool validate() { assert(m_last_chain_id >= 0); assert(m_last_chain_id + 1 == m_equivalent_with.size()); for (size_t i = 0; i < m_equivalent_with.size(); ++ i) { for (size_t last = i;;) { size_t lower = m_equivalent_with[last]; assert(lower <= last); if (lower == last) break; last = lower; } } return true; } #endif /* NDEBUG */ private: // Unique chain ID assigned to chains of end points of segments. size_t m_last_chain_id = 0; std::vector m_equivalent_with; } equivalent_chain(num_segments); // Find the first end point closest to start_near. EndPoint *first_point = nullptr; size_t first_point_idx = std::numeric_limits::max(); if (start_near != nullptr) { size_t idx = find_closest_point(kdtree, start_near->template cast()); assert(idx < end_points.size()); first_point = &end_points[idx]; first_point->distance_out = 0.; first_point->chain_id = equivalent_chain.next(); first_point_idx = idx; } EndPoint *initial_point = first_point; EndPoint *last_point = nullptr; // Assign the closest point and distance to the end points. for (EndPoint &end_point : end_points) { assert(end_point.edge_out == nullptr); if (&end_point != first_point) { size_t this_idx = &end_point - &end_points.front(); // Find the closest point to this end_point, which lies on a different extrusion path (filtered by the lambda). // Ignore the starting point as the starting point is considered to be occupied, no end point coud connect to it. size_t next_idx = find_closest_point(kdtree, end_point.pos, [this_idx, first_point_idx](size_t idx){ return idx != first_point_idx && (idx ^ this_idx) > 1; }); assert(next_idx < end_points.size()); EndPoint &end_point2 = end_points[next_idx]; end_point.edge_out = &end_point2; end_point.distance_out = (end_point2.pos - end_point.pos).squaredNorm(); } } // Initialize a heap of end points sorted by the lowest distance to the next valid point of a path. auto queue = make_mutable_priority_queue( [](EndPoint *ep, size_t idx){ ep->heap_idx = idx; }, [](EndPoint *l, EndPoint *r){ return l->distance_out < r->distance_out; }); queue.reserve(end_points.size() * 2 - 1); for (EndPoint &ep : end_points) if (first_point != &ep) queue.push(&ep); #ifndef NDEBUG auto validate_graph_and_queue = [&equivalent_chain, &end_points, &queue, first_point]() -> bool { assert(equivalent_chain.validate()); for (EndPoint &ep : end_points) { if (ep.heap_idx < queue.size()) { // End point is on the heap. assert(*(queue.cbegin() + ep.heap_idx) == &ep); assert(ep.chain_id == 0); } else { // End point is NOT on the heap, therefore it is part of the output path. assert(ep.heap_idx == std::numeric_limits::max()); assert(ep.chain_id != 0); if (&ep == first_point) { assert(ep.edge_out == nullptr); } else { assert(ep.edge_out != nullptr); // Detect loops. for (EndPoint *pt = &ep; pt != nullptr;) { // Out of queue. It is a final point. assert(pt->heap_idx == std::numeric_limits::max()); EndPoint *pt_other = &end_points[(pt - &end_points.front()) ^ 1]; if (pt_other->heap_idx < queue.size()) // The other side of this segment is undecided yet. break; pt = pt_other->edge_out; } } } } for (EndPoint *ep : queue) // Points in the queue are not connected yet. assert(ep->chain_id == 0); return true; }; #endif /* NDEBUG */ // Chain the end points: find (num_segments - 1) shortest links not forming bifurcations or loops. assert(num_segments >= 2); #ifndef NDEBUG double distance_taken_last = 0.; #endif /* NDEBUG */ for (int iter = int(num_segments) - 2;; -- iter) { assert(validate_graph_and_queue()); // Take the first end point, for which the link points to the currently closest valid neighbor. EndPoint &end_point1 = *queue.top(); #ifndef NDEBUG // Each edge added shall be longer than the previous one taken. assert(end_point1.distance_out > distance_taken_last - SCALED_EPSILON); distance_taken_last = end_point1.distance_out; #endif /* NDEBUG */ assert(end_point1.edge_out != nullptr); // No point on the queue may be connected yet. assert(end_point1.chain_id == 0); // Take the closest end point to the first end point, EndPoint &end_point2 = *end_point1.edge_out; bool valid = true; size_t end_point1_other_chain_id = 0; size_t end_point2_other_chain_id = 0; if (end_point2.chain_id > 0) { // The other side is part of the output path. Don't connect to end_point2, update end_point1 and try another one. valid = false; } else { // End points of the opposite ends of the segments. end_point1_other_chain_id = equivalent_chain(end_points[(&end_point1 - &end_points.front()) ^ 1].chain_id); end_point2_other_chain_id = equivalent_chain(end_points[(&end_point2 - &end_points.front()) ^ 1].chain_id); if (end_point1_other_chain_id == end_point2_other_chain_id && end_point1_other_chain_id != 0) // This edge forms a loop. Update end_point1 and try another one. valid = false; } if (valid) { // Remove the first and second point from the queue. queue.pop(); queue.remove(end_point2.heap_idx); assert(end_point1.edge_out = &end_point2); end_point2.edge_out = &end_point1; end_point2.distance_out = end_point1.distance_out; // Assign chain IDs to the newly connected end points, set equivalent_chain if two chains were merged. size_t chain_id = (end_point1_other_chain_id == 0) ? ((end_point2_other_chain_id == 0) ? equivalent_chain.next() : end_point2_other_chain_id) : ((end_point2_other_chain_id == 0) ? end_point1_other_chain_id : (end_point1_other_chain_id == end_point2_other_chain_id) ? end_point1_other_chain_id : equivalent_chain.merge(end_point1_other_chain_id, end_point2_other_chain_id)); end_point1.chain_id = chain_id; end_point2.chain_id = chain_id; assert(validate_graph_and_queue()); if (iter == 0) { // Last iteration. There shall be exactly one or two end points waiting to be connected. assert(queue.size() == ((first_point == nullptr) ? 2 : 1)); if (first_point == nullptr) { first_point = queue.top(); queue.pop(); first_point->edge_out = nullptr; } last_point = queue.top(); last_point->edge_out = nullptr; queue.pop(); assert(queue.empty()); break; } } else { // This edge forms a loop. Update end_point1 and try another one. ++ iter; end_point1.edge_out = nullptr; // Update edge_out and distance. size_t this_idx = &end_point1 - &end_points.front(); // Find the closest point to this end_point, which lies on a different extrusion path (filtered by the filter lambda). size_t next_idx = find_closest_point(kdtree, end_point1.pos, [&end_points, &equivalent_chain, this_idx](size_t idx) { assert(end_points[this_idx].edge_out == nullptr); assert(end_points[this_idx].chain_id == 0); if ((idx ^ this_idx) <= 1 || end_points[idx].chain_id != 0) // Points of the same segment shall not be connected, // cannot connect to an already connected point (ideally those would be removed from the KD tree, but the update is difficult). return false; size_t chain1 = equivalent_chain(end_points[this_idx ^ 1].chain_id); size_t chain2 = equivalent_chain(end_points[idx ^ 1].chain_id); return chain1 != chain2 || chain1 == 0; }); assert(next_idx < end_points.size()); end_point1.edge_out = &end_points[next_idx]; end_point1.distance_out = (end_points[next_idx].pos - end_point1.pos).squaredNorm(); #ifndef NDEBUG // Each edge shall be longer than the last one removed from the queue. assert(end_point1.distance_out > distance_taken_last - SCALED_EPSILON); #endif /* NDEBUG */ // Update position of this end point in the queue based on the distance calculated at the line above. queue.update(end_point1.heap_idx); //FIXME Remove the other end point from the KD tree. // As the KD tree update is expensive, do it only after some larger number of points is removed from the queue. assert(validate_graph_and_queue()); } } assert(queue.empty()); // Now interconnect pairs of segments into a chain. assert(first_point != nullptr); out.reserve(num_segments); bool failed = false; do { assert(out.size() < num_segments); size_t first_point_id = first_point - &end_points.front(); size_t segment_id = first_point_id >> 1; bool reverse = (first_point_id & 1) != 0; EndPoint *second_point = &end_points[first_point_id ^ 1]; if (REVERSE_COULD_FAIL) { if (reverse && ! could_reverse_func(segment_id)) { failed = true; break; } } else { assert(! reverse || could_reverse_func(segment_id)); } out.emplace_back(segment_id, reverse); first_point = second_point->edge_out; } while (first_point != nullptr); if (REVERSE_COULD_FAIL) { if (failed) { if (start_near == nullptr) { // We may try the reverse order. out.clear(); first_point = last_point; failed = false; do { assert(out.size() < num_segments); size_t first_point_id = first_point - &end_points.front(); size_t segment_id = first_point_id >> 1; bool reverse = (first_point_id & 1) != 0; EndPoint *second_point = &end_points[first_point_id ^ 1]; if (reverse && ! could_reverse_func(segment_id)) { failed = true; break; } out.emplace_back(segment_id, reverse); first_point = second_point->edge_out; } while (first_point != nullptr); } } if (failed) // As a last resort, try a dumb algorithm, which is not sensitive to edge reversal constraints. out = chain_segments_closest_point(end_points, kdtree, could_reverse_func, (initial_point != nullptr) ? *initial_point : end_points.front()); } else { assert(! failed); } } assert(out.size() == num_segments); return out; } template void update_end_point_in_queue(QueueType &queue, const KDTreeType &kdtree, ChainsType &chains, std::vector &end_points, EndPointType &end_point, size_t first_point_idx, const EndPointType *first_point) { // Updating an end point or a 2nd from an end point. size_t this_idx = end_point.index(end_points); // If this segment is not the starting segment, then this end point or the opposite is unconnected. assert(first_point_idx == this_idx || first_point_idx == (this_idx ^ 1) || end_point.chain_id == 0 || end_point.opposite(end_points).chain_id == 0); end_point.edge_candidate = nullptr; if (first_point_idx == this_idx || (end_point.chain_id > 0 && first_point_idx == (this_idx ^ 1))) { // One may never flip the 1st edge, don't try it again. if (! end_point.heap_idx_invalid()) queue.remove(end_point.heap_idx); } else { // Update edge_candidate and distance. size_t chain1a = end_point.chain_id; size_t chain1b = end_points[this_idx ^ 1].chain_id; size_t this_chain = chains.equivalent(std::max(chain1a, chain1b)); // Find the closest point to this end_point, which lies on a different extrusion path (filtered by the filter lambda). size_t next_idx = find_closest_point(kdtree, end_point.pos, [&end_points, &chains, this_idx, first_point_idx, first_point, this_chain](size_t idx) { assert(end_points[this_idx].edge_candidate == nullptr); // Either this end of the edge or the other end of the edge is not yet connected. assert((end_points[this_idx ].chain_id == 0 && end_points[this_idx ].edge_out == nullptr) || (end_points[this_idx ^ 1].chain_id == 0 && end_points[this_idx ^ 1].edge_out == nullptr)); if ((idx ^ this_idx) <= 1 || idx == first_point_idx) // Points of the same segment shall not be connected. // Don't connect to the first point, we must not flip the 1st edge. return false; size_t chain2a = end_points[idx].chain_id; size_t chain2b = end_points[idx ^ 1].chain_id; if (chain2a > 0 && chain2b > 0) // Only unconnected end point or a point next to an unconnected end point may be connected to. // Ideally those would be removed from the KD tree, but the update is difficult. return false; assert(chain2a == 0 || chain2b == 0); size_t chain2 = chains.equivalent(std::max(chain2a, chain2b)); if (this_chain == chain2) // Don't connect back to the same chain, don't create a loop. return this_chain == 0; // Don't connect to a segment requiring flipping if the segment starts or ends with the first point. if (chain2a > 0) { // Chain requires flipping. assert(chain2b == 0); auto &chain = chains.chain(chain2); if (chain.begin == first_point || chain.end == first_point) return false; } // Everything is all right, try to connect. return true; }); assert(next_idx < end_points.size()); assert(chains.equivalent(end_points[next_idx].chain_id) != chains.equivalent(end_points[next_idx ^ 1].chain_id) || end_points[next_idx].chain_id == 0); end_point.edge_candidate = &end_points[next_idx]; end_point.distance_out = (end_points[next_idx].pos - end_point.pos).norm(); if (end_point.chain_id > 0) end_point.distance_out += chains.chain_flip_penalty(this_chain); if (end_points[next_idx].chain_id > 0) // The candidate chain is flipped. end_point.distance_out += chains.chain_flip_penalty(end_points[next_idx].chain_id); // Update position of this end point in the queue based on the distance calculated at the line above. if (end_point.heap_idx_invalid()) queue.push(&end_point); else queue.update(end_point.heap_idx); } } template std::vector> chain_segments_greedy_constrained_reversals2_(SegmentEndPointFunc end_point_func, CouldReverseFunc could_reverse_func, size_t num_segments, const PointType *start_near) { std::vector> out; if (num_segments == 0) { // Nothing to do. } else if (num_segments == 1) { // Just sort the end points so that the first point visited is closest to start_near. out.emplace_back(0, start_near != nullptr && (end_point_func(0, true) - *start_near).template cast().squaredNorm() < (end_point_func(0, false) - *start_near).template cast().squaredNorm()); } else { // End points of segments for the KD tree closest point search. // A single end point is inserted into the search structure for loops, two end points are entered for open paths. struct EndPoint { EndPoint(const Vec2d &pos) : pos(pos) {} Vec2d pos; // Candidate for a new connection link. EndPoint *edge_candidate = nullptr; // Distance to the next end point following the link. // Zero value -> start of the final path. double distance_out = std::numeric_limits::max(); size_t heap_idx = std::numeric_limits::max(); bool heap_idx_invalid() const { return this->heap_idx == std::numeric_limits::max(); } // Identifier of the chain, to which this end point belongs. Zero means unassigned. size_t chain_id = 0; // Double linked chain of segment end points in current path. EndPoint *edge_out = nullptr; size_t index(std::vector &endpoints) const { return this - endpoints.data(); } // Opposite end point of the same segment. EndPoint& opposite(std::vector &endpoints) { return endpoints[(this - endpoints.data()) ^ 1]; } const EndPoint& opposite(const std::vector &endpoints) const { return endpoints[(this - endpoints.data()) ^ 1]; } }; std::vector end_points; end_points.reserve(num_segments * 2); for (size_t i = 0; i < num_segments; ++ i) { end_points.emplace_back(end_point_func(i, true ).template cast()); end_points.emplace_back(end_point_func(i, false).template cast()); } // Construct the closest point KD tree over end points of segments. auto coordinate_fn = [&end_points](size_t idx, size_t dimension) -> double { return end_points[idx].pos[dimension]; }; KDTreeIndirect<2, double, decltype(coordinate_fn)> kdtree(coordinate_fn, end_points.size()); // Chained segments with their sum of connection lengths. // The chain supports flipping all the segments, connecting the segments at the opposite ends. // (this is a very useful path optimization for infill lines). struct Chain { size_t num_segments = 0; double cost = 0.; double cost_flipped = 0.; EndPoint *begin = nullptr; EndPoint *end = nullptr; size_t equivalent_with = 0; // Flipping the chain has a time complexity of O(n). void flip(std::vector &endpoints) { assert(this->num_segments > 1); assert(this->begin->edge_out == nullptr); assert(this->end ->edge_out == nullptr); assert(this->begin->opposite(endpoints).edge_out != nullptr); assert(this->end ->opposite(endpoints).edge_out != nullptr); // Start of the current segment processed. EndPoint *ept = this->begin; // Previous end point to connect the other side of ept to. EndPoint *ept_prev = nullptr; do { EndPoint *ept_end = &ept->opposite(endpoints); EndPoint *ept_next = ept_end->edge_out; assert(ept_next == nullptr || ept_next->edge_out == ept_end); // Connect to the preceding segment. ept_end->edge_out = ept_prev; if (ept_prev != nullptr) ept_prev->edge_out = ept_end; ept_prev = ept; ept = ept_next; } while (ept != nullptr); ept_prev->edge_out = nullptr; // Swap the costs. std::swap(this->cost, this->cost_flipped); // Swap the ends. EndPoint *new_begin = &this->begin->opposite(endpoints); EndPoint *new_end = &this->end->opposite(endpoints); std::swap(this->begin->chain_id, new_begin->chain_id); std::swap(this->end ->chain_id, new_end ->chain_id); this->begin = new_begin; this->end = new_end; assert(this->begin->edge_out == nullptr); assert(this->end ->edge_out == nullptr); assert(this->begin->opposite(endpoints).edge_out != nullptr); assert(this->end ->opposite(endpoints).edge_out != nullptr); } double flip_penalty() const { return this->cost_flipped - this->cost; } }; // Helper to detect loops in already connected paths and to accomodate flipping of chains. // // Unique chain IDs are assigned to paths. If paths are connected, end points will not have their chain IDs updated, but the chain IDs // will remember an "equivalent" chain ID, which is the lowest ID of all the IDs in the path, and the lowest ID is equivalent to itself. // Chain IDs are indexed starting with 1. // // Chains remember their lengths and their lengths when each segment of the chain is flipped. class Chains { public: // Zero'th chain ID is invalid. Chains(size_t reserve) { m_chains.reserve(reserve / 2); // Indexing starts with 1. m_chains.emplace_back(); } // Generate next equivalence class. size_t next_id() { m_chains.emplace_back(); m_chains.back().equivalent_with = ++ m_last_chain_id; return m_last_chain_id; } // Get equivalence class for chain ID, update the "equivalent_with" along the equivalence path. size_t equivalent(size_t chain_id) { if (chain_id != 0) { for (size_t last = chain_id;;) { size_t lower = m_chains[last].equivalent_with; if (lower == last) { m_chains[chain_id].equivalent_with = lower; chain_id = lower; break; } last = lower; } } return chain_id; } // Return a lowest chain ID of the two input chains. // Produce a new chain ID of both chain IDs are zero. size_t merge(size_t chain_id1, size_t chain_id2) { if (chain_id1 == 0) return (chain_id2 == 0) ? this->next_id() : chain_id2; if (chain_id2 == 0) return chain_id1; assert(m_chains[chain_id1].equivalent_with == chain_id1); assert(m_chains[chain_id2].equivalent_with == chain_id2); size_t chain_id = std::min(chain_id1, chain_id2); m_chains[chain_id1].equivalent_with = chain_id; m_chains[chain_id2].equivalent_with = chain_id; return chain_id; } Chain& chain(size_t chain_id) { return m_chains[chain_id]; } const Chain& chain(size_t chain_id) const { return m_chains[chain_id]; } double chain_flip_penalty(size_t chain_id) { chain_id = this->equivalent(chain_id); return m_chains[chain_id].flip_penalty(); } #ifndef NDEBUG bool validate() { // Validate that the segments merged chain IDs make up a directed acyclic graph // with edges oriented towards the lower chain ID, therefore all ending up // in the lowest chain ID of all of them. assert(m_last_chain_id >= 0); assert(m_last_chain_id + 1 == m_chains.size()); for (size_t i = 0; i < m_chains.size(); ++ i) { for (size_t last = i;;) { size_t lower = m_chains[last].equivalent_with; assert(lower <= last); if (lower == last) break; last = lower; } } return true; } #endif /* NDEBUG */ private: std::vector m_chains; // Unique chain ID assigned to chains of end points of segments. size_t m_last_chain_id = 0; } chains(num_segments); // Find the first end point closest to start_near. EndPoint *first_point = nullptr; size_t first_point_idx = std::numeric_limits::max(); if (start_near != nullptr) { size_t idx = find_closest_point(kdtree, start_near->template cast()); assert(idx < end_points.size()); first_point = &end_points[idx]; first_point->distance_out = 0.; first_point->chain_id = chains.next_id(); Chain &chain = chains.chain(first_point->chain_id); chain.begin = first_point; chain.end = &first_point->opposite(end_points); first_point_idx = idx; } EndPoint *initial_point = first_point; EndPoint *last_point = nullptr; // Assign the closest point and distance to the end points. for (EndPoint &end_point : end_points) { assert(end_point.edge_candidate == nullptr); if (&end_point != first_point) { size_t this_idx = end_point.index(end_points); // Find the closest point to this end_point, which lies on a different extrusion path (filtered by the lambda). // Ignore the starting point as the starting point is considered to be occupied, no end point coud connect to it. size_t next_idx = find_closest_point(kdtree, end_point.pos, [this_idx, first_point_idx](size_t idx){ return idx != first_point_idx && (idx ^ this_idx) > 1; }); assert(next_idx < end_points.size()); EndPoint &end_point2 = end_points[next_idx]; end_point.edge_candidate = &end_point2; end_point.distance_out = (end_point2.pos - end_point.pos).norm(); } } // Initialize a heap of end points sorted by the lowest distance to the next valid point of a path. auto queue = make_mutable_priority_queue( [](EndPoint *ep, size_t idx){ ep->heap_idx = idx; }, [](EndPoint *l, EndPoint *r){ return l->distance_out < r->distance_out; }); queue.reserve(end_points.size() * 2); for (EndPoint &ep : end_points) if (first_point != &ep) queue.push(&ep); #ifndef NDEBUG auto validate_graph_and_queue = [&chains, &end_points, &queue, first_point]() -> bool { assert(chains.validate()); for (EndPoint &ep : end_points) { if (ep.heap_idx < queue.size()) { // End point is on the heap. assert(*(queue.cbegin() + ep.heap_idx) == &ep); // One side or the other of the segment is not yet connected. assert(ep.chain_id == 0 || ep.opposite(end_points).chain_id == 0); } else { // End point is NOT on the heap, therefore it must part of the output path. assert(ep.heap_idx_invalid()); assert(ep.chain_id != 0); if (&ep == first_point) { assert(ep.edge_out == nullptr); } else { assert(ep.edge_out != nullptr); // Detect loops. for (EndPoint *pt = &ep; pt != nullptr;) { // Out of queue. It is a final point. EndPoint *pt_other = &pt->opposite(end_points); if (pt_other->heap_idx < queue.size()) { // The other side of this segment is undecided yet. // assert(pt_other->edge_out == nullptr); break; } pt = pt_other->edge_out; } } } } for (EndPoint *ep : queue) // Points in the queue or the opposites of the same segment are not connected yet. assert(ep->chain_id == 0 || ep->opposite(end_points).chain_id == 0); return true; }; #endif /* NDEBUG */ // Chain the end points: find (num_segments - 1) shortest links not forming bifurcations or loops. assert(num_segments >= 2); #ifndef NDEBUG double distance_taken_last = 0.; #endif /* NDEBUG */ // Some links stored onto the priority queue are being invalidated during the calculation and they are not // updated immediately. If such a situation is detected for an end point pulled from the priority queue, // the end point is being updated and re-inserted into the priority queue. Therefore the number of iterations // required is higher than expected (it would be the number of links, num_segments - 1). // The limit here may not be necessary, but it guards us against an endless loop if something goes wrong. size_t num_iter = num_segments * 16; for (size_t num_connections_to_end = num_segments - 1; num_iter > 0; -- num_iter) { assert(validate_graph_and_queue()); // Take the first end point, for which the link points to the currently closest valid neighbor. EndPoint *end_point1 = queue.top(); assert(end_point1 != first_point); EndPoint *end_point1_other = &end_point1->opposite(end_points); // true if end_point1 is not the end of its chain, but the 2nd point. When connecting to the 2nd point, this chain needs // to be flipped first. bool chain1_flip = end_point1->chain_id > 0; // Either this point at the queue is not connected, or it is the 2nd point of a chain. // If connecting to a 2nd point of a chain, the 1st point shall not yet be connected and this chain will need // to be flipped. assert( chain1_flip || (end_point1->chain_id == 0 && end_point1->edge_out == nullptr)); assert(! chain1_flip || (end_point1_other->chain_id == 0 && end_point1_other->edge_out == nullptr)); assert(end_point1->edge_candidate != nullptr); #ifndef NDEBUG // Each edge added shall be longer than the previous one taken. //assert(end_point1->distance_out > distance_taken_last - SCALED_EPSILON); if (end_point1->distance_out < distance_taken_last - SCALED_EPSILON) { // printf("Warning: taking shorter length than previously is suspicious\n"); } distance_taken_last = end_point1->distance_out; #endif /* NDEBUG */ // Take the closest end point to the first end point, EndPoint *end_point2 = end_point1->edge_candidate; EndPoint *end_point2_other = &end_point2->opposite(end_points); bool chain2_flip = end_point2->chain_id > 0; // Is the link from end_point1 to end_point2 still valid? If yes, the link may be taken. Otherwise the link needs to be refreshed. bool valid = true; size_t end_point1_chain_id = 0; size_t end_point2_chain_id = 0; if (end_point2->chain_id > 0 && end_point2_other->chain_id > 0) { // The other side is part of the output path. Don't connect to end_point2, update end_point1 and try another one. valid = false; } else { // End points of the opposite ends of the segments. end_point1_chain_id = chains.equivalent((chain1_flip ? end_point1 : end_point1_other)->chain_id); end_point2_chain_id = chains.equivalent((chain2_flip ? end_point2 : end_point2_other)->chain_id); if (end_point1_chain_id == end_point2_chain_id && end_point1_chain_id != 0) // This edge forms a loop. Update end_point1 and try another one. valid = false; else { // Verify whether end_point1.distance_out still matches the current state of the two end points to be connected and their chains. // Namely, the other chain may have been flipped in the meantime. double dist = (end_point2->pos - end_point1->pos).norm(); if (chain1_flip) dist += chains.chain_flip_penalty(end_point1_chain_id); if (chain2_flip) dist += chains.chain_flip_penalty(end_point2_chain_id); if (std::abs(dist - end_point1->distance_out) > SCALED_EPSILON) // The distance changed due to flipping of one of the chains. Refresh this end point in the queue. valid = false; } if (valid && first_point != nullptr) { // Verify that a chain starting or ending with the first_point does not get flipped. if (chain1_flip) { Chain &chain = chains.chain(end_point1_chain_id); if (chain.begin == first_point || chain.end == first_point) valid = false; } if (valid && chain2_flip) { Chain &chain = chains.chain(end_point2_chain_id); if (chain.begin == first_point || chain.end == first_point) valid = false; } } } if (valid) { // Remove the first and second point from the queue. queue.pop(); queue.remove(end_point2->heap_idx); assert(end_point1->edge_candidate == end_point2); end_point1->edge_candidate = nullptr; Chain *chain1 = (end_point1_chain_id == 0) ? nullptr : &chains.chain(end_point1_chain_id); Chain *chain2 = (end_point2_chain_id == 0) ? nullptr : &chains.chain(end_point2_chain_id); assert(chain1 == nullptr || (chain1_flip ? (chain1->begin == end_point1_other || chain1->end == end_point1_other) : (chain1->begin == end_point1 || chain1->end == end_point1))); assert(chain2 == nullptr || (chain2_flip ? (chain2->begin == end_point2_other || chain2->end == end_point2_other) : (chain2->begin == end_point2 || chain2->end == end_point2))); if (chain1_flip) chain1->flip(end_points); if (chain2_flip) chain2->flip(end_points); assert(chain1 == nullptr || chain1->begin == end_point1 || chain1->end == end_point1); assert(chain2 == nullptr || chain2->begin == end_point2 || chain2->end == end_point2); size_t chain_id = chains.merge(end_point1_chain_id, end_point2_chain_id); Chain &chain = chains.chain(chain_id); { Chain chain_dst; chain_dst.begin = (chain1 == nullptr) ? end_point1_other : (chain1->begin == end_point1) ? chain1->end : chain1->begin; chain_dst.end = (chain2 == nullptr) ? end_point2_other : (chain2->begin == end_point2) ? chain2->end : chain2->begin; chain_dst.cost = (chain1 == 0 ? 0. : chain1->cost) + (chain2 == 0 ? 0. : chain2->cost) + (end_point2->pos - end_point1->pos).norm(); chain_dst.cost_flipped = (chain1 == 0 ? 0. : chain1->cost_flipped) + (chain2 == 0 ? 0. : chain2->cost_flipped) + (end_point2_other->pos - end_point1_other->pos).norm(); chain_dst.num_segments = (chain1 == 0 ? 1 : chain1->num_segments) + (chain2 == 0 ? 1 : chain2->num_segments); chain_dst.equivalent_with = chain_id; chain = chain_dst; } if (chain.begin != end_point1_other && ! end_point1_other->heap_idx_invalid()) queue.remove(end_point1_other->heap_idx); if (chain.end != end_point2_other && ! end_point2_other->heap_idx_invalid()) queue.remove(end_point2_other->heap_idx); end_point1->edge_out = end_point2; end_point2->edge_out = end_point1; end_point1->chain_id = chain_id; end_point2->chain_id = chain_id; end_point1_other->chain_id = chain_id; end_point2_other->chain_id = chain_id; if (chain.begin != first_point) chain.begin->chain_id = 0; if (chain.end != first_point) chain.end->chain_id = 0; if (-- num_connections_to_end == 0) { assert(validate_graph_and_queue()); // Last iteration. There shall be exactly one or two end points waiting to be connected. assert(queue.size() <= ((first_point == nullptr) ? 4 : 2)); if (first_point == nullptr) { // Find the first remaining end point. do { first_point = queue.top(); queue.pop(); } while (first_point->edge_out != nullptr); assert(first_point->edge_out == nullptr); } // Find the first remaining end point. do { last_point = queue.top(); queue.pop(); } while (last_point->edge_out != nullptr); assert(last_point->edge_out == nullptr); #ifndef NDEBUG while (! queue.empty()) { assert(queue.top()->edge_out != nullptr && queue.top()->chain_id > 0); queue.pop(); } #endif /* NDEBUG */ break; } else { //FIXME update the 2nd end points on the queue. // Update end points of the flipped segments. update_end_point_in_queue(queue, kdtree, chains, end_points, chain.begin->opposite(end_points), first_point_idx, first_point); update_end_point_in_queue(queue, kdtree, chains, end_points, chain.end->opposite(end_points), first_point_idx, first_point); if (chain1_flip) update_end_point_in_queue(queue, kdtree, chains, end_points, *chain.begin, first_point_idx, first_point); if (chain2_flip) update_end_point_in_queue(queue, kdtree, chains, end_points, *chain.end, first_point_idx, first_point); // End points of chains shall certainly stay in the queue. assert(chain.begin == first_point || chain.begin->heap_idx < queue.size()); assert(chain.end == first_point || chain.end ->heap_idx < queue.size()); assert(&chain.begin->opposite(end_points) != first_point && (chain.begin == first_point ? chain.begin->opposite(end_points).heap_idx_invalid() : chain.begin->opposite(end_points).heap_idx < queue.size())); assert(&chain.end ->opposite(end_points) != first_point && (chain.end == first_point ? chain.end ->opposite(end_points).heap_idx_invalid() : chain.end ->opposite(end_points).heap_idx < queue.size())); } } else { // This edge forms a loop. Update end_point1 and try another one. update_end_point_in_queue(queue, kdtree, chains, end_points, *end_point1, first_point_idx, first_point); #ifndef NDEBUG // Each edge shall be longer than the last one removed from the queue. //assert(end_point1->distance_out > distance_taken_last - SCALED_EPSILON); if (end_point1->distance_out < distance_taken_last - SCALED_EPSILON) { // printf("Warning: taking shorter length than previously is suspicious\n"); } #endif /* NDEBUG */ //FIXME Remove the other end point from the KD tree. // As the KD tree update is expensive, do it only after some larger number of points is removed from the queue. } assert(validate_graph_and_queue()); } assert(queue.empty()); // Now interconnect pairs of segments into a chain. assert(first_point != nullptr); out.reserve(num_segments); bool failed = false; do { assert(out.size() < num_segments); size_t first_point_id = first_point - &end_points.front(); size_t segment_id = first_point_id >> 1; bool reverse = (first_point_id & 1) != 0; EndPoint *second_point = &end_points[first_point_id ^ 1]; if (REVERSE_COULD_FAIL) { if (reverse && ! could_reverse_func(segment_id)) { failed = true; break; } } else { assert(! reverse || could_reverse_func(segment_id)); } out.emplace_back(segment_id, reverse); first_point = second_point->edge_out; } while (first_point != nullptr); if (REVERSE_COULD_FAIL) { if (failed) { if (start_near == nullptr) { // We may try the reverse order. out.clear(); first_point = last_point; failed = false; do { assert(out.size() < num_segments); size_t first_point_id = first_point - &end_points.front(); size_t segment_id = first_point_id >> 1; bool reverse = (first_point_id & 1) != 0; EndPoint *second_point = &end_points[first_point_id ^ 1]; if (reverse && ! could_reverse_func(segment_id)) { failed = true; break; } out.emplace_back(segment_id, reverse); first_point = second_point->edge_out; } while (first_point != nullptr); } } if (failed) // As a last resort, try a dumb algorithm, which is not sensitive to edge reversal constraints. out = chain_segments_closest_point(end_points, kdtree, could_reverse_func, (initial_point != nullptr) ? *initial_point : end_points.front()); } else { assert(! failed); } } assert(out.size() == num_segments); return out; } template std::vector> chain_segments_greedy_constrained_reversals(SegmentEndPointFunc end_point_func, CouldReverseFunc could_reverse_func, size_t num_segments, const PointType *start_near) { return chain_segments_greedy_constrained_reversals_(end_point_func, could_reverse_func, num_segments, start_near); } template std::vector> chain_segments_greedy(SegmentEndPointFunc end_point_func, size_t num_segments, const PointType *start_near) { auto could_reverse_func = [](size_t /* idx */) -> bool { return true; }; return chain_segments_greedy_constrained_reversals_(end_point_func, could_reverse_func, num_segments, start_near); } template std::vector> chain_segments_greedy_constrained_reversals2(SegmentEndPointFunc end_point_func, CouldReverseFunc could_reverse_func, size_t num_segments, const PointType *start_near) { return chain_segments_greedy_constrained_reversals2_(end_point_func, could_reverse_func, num_segments, start_near); } template std::vector> chain_segments_greedy2(SegmentEndPointFunc end_point_func, size_t num_segments, const PointType *start_near) { auto could_reverse_func = [](size_t /* idx */) -> bool { return true; }; return chain_segments_greedy_constrained_reversals2_(end_point_func, could_reverse_func, num_segments, start_near); } std::vector> chain_extrusion_entities(std::vector &entities, const Point *start_near) { auto segment_end_point = [&entities](size_t idx, bool first_point) -> const Point& { return first_point ? entities[idx]->first_point() : entities[idx]->last_point(); }; auto could_reverse = [&entities](size_t idx) { const ExtrusionEntity *ee = entities[idx]; return ee->is_loop() || ee->can_reverse(); }; std::vector> out = chain_segments_greedy_constrained_reversals(segment_end_point, could_reverse, entities.size(), start_near); for (std::pair &segment : out) { ExtrusionEntity *ee = entities[segment.first]; if (ee->is_loop()) // Ignore reversals for loops, as the start point equals the end point. segment.second = false; // Is can_reverse() respected by the reversals? assert(ee->can_reverse() || ! segment.second); } return out; } void reorder_extrusion_entities(std::vector &entities, const std::vector> &chain) { assert(entities.size() == chain.size()); std::vector out; out.reserve(entities.size()); for (const std::pair &idx : chain) { assert(entities[idx.first] != nullptr); out.emplace_back(entities[idx.first]); if (idx.second) out.back()->reverse(); } entities.swap(out); } void chain_and_reorder_extrusion_entities(std::vector &entities, const Point *start_near) { reorder_extrusion_entities(entities, chain_extrusion_entities(entities, start_near)); } std::vector> chain_extrusion_paths(std::vector &extrusion_paths, const Point *start_near) { auto segment_end_point = [&extrusion_paths](size_t idx, bool first_point) -> const Point& { return first_point ? extrusion_paths[idx].first_point() : extrusion_paths[idx].last_point(); }; return chain_segments_greedy(segment_end_point, extrusion_paths.size(), start_near); } void reorder_extrusion_paths(std::vector &extrusion_paths, const std::vector> &chain) { assert(extrusion_paths.size() == chain.size()); std::vector out; out.reserve(extrusion_paths.size()); for (const std::pair &idx : chain) { out.emplace_back(std::move(extrusion_paths[idx.first])); if (idx.second) out.back().reverse(); } extrusion_paths.swap(out); } void chain_and_reorder_extrusion_paths(std::vector &extrusion_paths, const Point *start_near) { reorder_extrusion_paths(extrusion_paths, chain_extrusion_paths(extrusion_paths, start_near)); } std::vector chain_points(const Points &points, Point *start_near) { auto segment_end_point = [&points](size_t idx, bool /* first_point */) -> const Point& { return points[idx]; }; std::vector> ordered = chain_segments_greedy(segment_end_point, points.size(), start_near); std::vector out; out.reserve(ordered.size()); for (auto &segment_and_reversal : ordered) out.emplace_back(segment_and_reversal.first); return out; } #ifndef NDEBUG // #define DEBUG_SVG_OUTPUT #endif /* NDEBUG */ #ifdef DEBUG_SVG_OUTPUT void svg_draw_polyline_chain(const char *name, size_t idx, const Polylines &polylines) { BoundingBox bbox = get_extents(polylines); SVG svg(debug_out_path("%s-%d.svg", name, idx).c_str(), bbox); svg.draw(polylines); for (size_t i = 1; i < polylines.size(); ++i) svg.draw(Line(polylines[i - 1].last_point(), polylines[i].first_point()), "red"); } #endif /* DEBUG_SVG_OUTPUT */ // Flip the sequences of polylines to lower the total length of connecting lines. static inline void improve_ordering_by_segment_flipping(Polylines &polylines, bool fixed_start) { #ifndef NDEBUG auto cost = [&polylines]() { double sum = 0.; for (size_t i = 1; i < polylines.size(); ++i) sum += (polylines[i].first_point() - polylines[i - 1].last_point()).cast().norm(); return sum; }; double cost_initial = cost(); static int iRun = 0; ++ iRun; #ifdef DEBUG_SVG_OUTPUT svg_draw_polyline_chain("improve_ordering_by_segment_flipping-initial", iRun, polylines); #endif /* DEBUG_SVG_OUTPUT */ #endif /* NDEBUG */ struct Connection { Connection(size_t heap_idx = std::numeric_limits::max(), bool flipped = false) : heap_idx(heap_idx), flipped(flipped) {} // Position of this object on MutablePriorityHeap. size_t heap_idx; // Is segment_idx flipped? bool flipped; double squaredNorm(const Polylines &polylines, const std::vector &connections) const { return ((this + 1)->start_point(polylines, connections) - this->end_point(polylines, connections)).squaredNorm(); } double norm(const Polylines &polylines, const std::vector &connections) const { return sqrt(this->squaredNorm(polylines, connections)); } double squaredNorm(const Polylines &polylines, const std::vector &connections, bool try_flip1, bool try_flip2) const { return ((this + 1)->start_point(polylines, connections, try_flip2) - this->end_point(polylines, connections, try_flip1)).squaredNorm(); } double norm(const Polylines &polylines, const std::vector &connections, bool try_flip1, bool try_flip2) const { return sqrt(this->squaredNorm(polylines, connections, try_flip1, try_flip2)); } Vec2d start_point(const Polylines &polylines, const std::vector &connections, bool flip = false) const { const Polyline &pl = polylines[this - connections.data()]; return ((this->flipped == flip) ? pl.points.front() : pl.points.back()).cast(); } Vec2d end_point(const Polylines &polylines, const std::vector &connections, bool flip = false) const { const Polyline &pl = polylines[this - connections.data()]; return ((this->flipped == flip) ? pl.points.back() : pl.points.front()).cast(); } bool in_queue() const { return this->heap_idx != std::numeric_limits::max(); } void flip() { this->flipped = ! this->flipped; } }; std::vector connections(polylines.size()); #ifndef NDEBUG auto cost_flipped = [fixed_start, &polylines, &connections]() { assert(! fixed_start || ! connections.front().flipped); double sum = 0.; for (size_t i = 1; i < polylines.size(); ++ i) sum += connections[i - 1].norm(polylines, connections); return sum; }; double cost_prev = cost_flipped(); assert(std::abs(cost_initial - cost_prev) < SCALED_EPSILON); auto print_statistics = [&polylines, &connections]() { #if 0 for (size_t i = 1; i < polylines.size(); ++ i) printf("Connecting %d with %d: Current length %lf flip(%d, %d), left flipped: %lf, right flipped: %lf, both flipped: %lf, \n", int(i - 1), int(i), unscale(connections[i - 1].norm(polylines, connections)), int(connections[i - 1].flipped), int(connections[i].flipped), unscale(connections[i - 1].norm(polylines, connections, true, false)), unscale(connections[i - 1].norm(polylines, connections, false, true)), unscale(connections[i - 1].norm(polylines, connections, true, true))); #endif }; print_statistics(); #endif /* NDEBUG */ // Initialize a MutablePriorityHeap of connections between polylines. auto queue = make_mutable_priority_queue( [](Connection *connection, size_t idx){ connection->heap_idx = idx; }, // Sort by decreasing connection distance. [&polylines, &connections](Connection *l, Connection *r){ return l->squaredNorm(polylines, connections) > r->squaredNorm(polylines, connections); }); queue.reserve(polylines.size() - 1); for (size_t i = 0; i + 1 < polylines.size(); ++ i) queue.push(&connections[i]); static constexpr size_t itercnt = 100; size_t iter = 0; for (; ! queue.empty() && iter < itercnt; ++ iter) { Connection &connection = *queue.top(); queue.pop(); connection.heap_idx = std::numeric_limits::max(); size_t idx_first = &connection - connections.data(); // Try to flip segments starting with idx_first + 1 to the end. // Calculate the last segment to be flipped to improve the total path length. double length_current = connection.norm(polylines, connections); double length_flipped = connection.norm(polylines, connections, false, true); int best_idx_forward = int(idx_first); double best_improvement_forward = 0.; for (size_t i = idx_first + 1; i + 1 < connections.size(); ++ i) { length_current += connections[i].norm(polylines, connections); double this_improvement = length_current - length_flipped - connections[i].norm(polylines, connections, true, false); length_flipped += connections[i].norm(polylines, connections, true, true); if (this_improvement > best_improvement_forward) { best_improvement_forward = this_improvement; best_idx_forward = int(i); } // if (length_flipped > 1.5 * length_current) // break; } if (length_current - length_flipped > best_improvement_forward) // Best improvement by flipping up to the end. best_idx_forward = int(connections.size()) - 1; // Try to flip segments starting with idx_first - 1 to the start. // Calculate the last segment to be flipped to improve the total path length. length_current = connection.norm(polylines, connections); length_flipped = connection.norm(polylines, connections, true, false); int best_idx_backwards = int(idx_first); double best_improvement_backwards = 0.; for (int i = int(idx_first) - 1; i >= 0; -- i) { length_current += connections[i].norm(polylines, connections); double this_improvement = length_current - length_flipped - connections[i].norm(polylines, connections, false, true); length_flipped += connections[i].norm(polylines, connections, true, true); if (this_improvement > best_improvement_backwards) { best_improvement_backwards = this_improvement; best_idx_backwards = int(i); } // if (length_flipped > 1.5 * length_current) // break; } if (! fixed_start && length_current - length_flipped > best_improvement_backwards) // Best improvement by flipping up to the start including the first polyline. best_idx_backwards = -1; int update_begin = int(idx_first); int update_end = best_idx_forward; if (best_improvement_backwards > 0. && best_improvement_backwards > best_improvement_forward) { // Flip the sequence of polylines from idx_first to best_improvement_forward + 1. update_begin = best_idx_backwards; update_end = int(idx_first); } assert(update_begin <= update_end); if (update_begin == update_end) continue; for (int i = update_begin + 1; i <= update_end; ++ i) connections[i].flip(); #ifndef NDEBUG double cost = cost_flipped(); assert(cost < cost_prev); cost_prev = cost; print_statistics(); #endif /* NDEBUG */ update_end = std::min(update_end + 1, int(connections.size()) - 1); for (int i = std::max(0, update_begin); i < update_end; ++ i) { Connection &c = connections[i]; if (c.in_queue()) queue.update(c.heap_idx); else queue.push(&c); } } // Flip the segments based on the flip flag. for (Polyline &pl : polylines) if (connections[&pl - polylines.data()].flipped) pl.reverse(); #ifndef NDEBUG double cost_final = cost(); #ifdef DEBUG_SVG_OUTPUT svg_draw_polyline_chain("improve_ordering_by_segment_flipping-final", iRun, polylines); #endif /* DEBUG_SVG_OUTPUT */ assert(cost_final <= cost_prev); assert(cost_final <= cost_initial); #endif /* NDEBUG */ } struct FlipEdge { FlipEdge(const Vec2d &p1, const Vec2d &p2, size_t source_index) : p1(p1), p2(p2), source_index(source_index) {} void flip() { std::swap(this->p1, this->p2); } Vec2d p1; Vec2d p2; size_t source_index; }; struct ConnectionCost { ConnectionCost(double cost, double cost_flipped) : cost(cost), cost_flipped(cost_flipped) {} ConnectionCost() : cost(0.), cost_flipped(0.) {} void flip() { std::swap(this->cost, this->cost_flipped); } double cost = 0; double cost_flipped = 0; }; static inline ConnectionCost operator-(const ConnectionCost &lhs, const ConnectionCost& rhs) { return ConnectionCost(lhs.cost - rhs.cost, lhs.cost_flipped - rhs.cost_flipped); } static inline std::pair minimum_crossover_cost( const std::vector &edges, const std::pair &span1, const ConnectionCost &cost1, const std::pair &span2, const ConnectionCost &cost2, const std::pair &span3, const ConnectionCost &cost3, const double cost_current) { auto connection_cost = [&edges]( const std::pair &span1, const ConnectionCost &cost1, bool reversed1, bool flipped1, const std::pair &span2, const ConnectionCost &cost2, bool reversed2, bool flipped2, const std::pair &span3, const ConnectionCost &cost3, bool reversed3, bool flipped3) { auto first_point = [&edges](const std::pair &span, bool flipped) { return flipped ? edges[span.first].p2 : edges[span.first].p1; }; auto last_point = [&edges](const std::pair &span, bool flipped) { return flipped ? edges[span.second - 1].p1 : edges[span.second - 1].p2; }; auto point = [first_point, last_point](const std::pair &span, bool start, bool flipped) { return start ? first_point(span, flipped) : last_point(span, flipped); }; auto cost = [](const ConnectionCost &acost, bool flipped) { assert(acost.cost >= 0. && acost.cost_flipped >= 0.); return flipped ? acost.cost_flipped : acost.cost; }; // Ignore reversed single segment spans. auto simple_span_ignore = [](const std::pair& span, bool reversed) { return span.first + 1 == span.second && reversed; }; assert(span1.first < span1.second); assert(span2.first < span2.second); assert(span3.first < span3.second); return simple_span_ignore(span1, reversed1) || simple_span_ignore(span2, reversed2) || simple_span_ignore(span3, reversed3) ? // Don't perform unnecessary calculations simulating reversion of single segment spans. std::numeric_limits::max() : // Calculate the cost of reverting chains and / or flipping segment orientations. cost(cost1, flipped1) + cost(cost2, flipped2) + cost(cost3, flipped3) + (point(span2, ! reversed2, flipped2) - point(span1, reversed1, flipped1)).norm() + (point(span3, ! reversed3, flipped3) - point(span2, reversed2, flipped2)).norm(); }; #ifndef NDEBUG { double c = connection_cost(span1, cost1, false, false, span2, cost2, false, false, span3, cost3, false, false); assert(std::abs(c - cost_current) < SCALED_EPSILON); } #endif /* NDEBUG */ double cost_min = cost_current; size_t flip_min = 0; // no flip, no improvement for (size_t i = 0; i < (1 << 6); ++ i) { // From the three combinations of 1,2,3 ordering, the other three are reversals of the first three. double c1 = (i == 0) ? cost_current : connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, cost2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, cost3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0); double c2 = connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, cost3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, cost2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0); double c3 = connection_cost(span2, cost2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, cost1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, cost3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0); if (c1 < cost_min) { cost_min = c1; flip_min = i; } if (c2 < cost_min) { cost_min = c2; flip_min = i + (1 << 6); } if (c3 < cost_min) { cost_min = c3; flip_min = i + (2 << 6); } } return std::make_pair(cost_min, flip_min); } static inline std::pair minimum_crossover_cost( const std::vector &edges, const std::pair &span1, const ConnectionCost &cost1, const std::pair &span2, const ConnectionCost &cost2, const std::pair &span3, const ConnectionCost &cost3, const std::pair &span4, const ConnectionCost &cost4, const double cost_current) { auto connection_cost = [&edges]( const std::pair &span1, const ConnectionCost &cost1, bool reversed1, bool flipped1, const std::pair &span2, const ConnectionCost &cost2, bool reversed2, bool flipped2, const std::pair &span3, const ConnectionCost &cost3, bool reversed3, bool flipped3, const std::pair &span4, const ConnectionCost &cost4, bool reversed4, bool flipped4) { auto first_point = [&edges](const std::pair &span, bool flipped) { return flipped ? edges[span.first].p2 : edges[span.first].p1; }; auto last_point = [&edges](const std::pair &span, bool flipped) { return flipped ? edges[span.second - 1].p1 : edges[span.second - 1].p2; }; auto point = [first_point, last_point](const std::pair &span, bool start, bool flipped) { return start ? first_point(span, flipped) : last_point(span, flipped); }; auto cost = [](const ConnectionCost &acost, bool flipped) { assert(acost.cost >= 0. && acost.cost_flipped >= 0.); return flipped ? acost.cost_flipped : acost.cost; }; // Ignore reversed single segment spans. auto simple_span_ignore = [](const std::pair& span, bool reversed) { return span.first + 1 == span.second && reversed; }; assert(span1.first < span1.second); assert(span2.first < span2.second); assert(span3.first < span3.second); assert(span4.first < span4.second); return simple_span_ignore(span1, reversed1) || simple_span_ignore(span2, reversed2) || simple_span_ignore(span3, reversed3) || simple_span_ignore(span4, reversed4) ? // Don't perform unnecessary calculations simulating reversion of single segment spans. std::numeric_limits::max() : // Calculate the cost of reverting chains and / or flipping segment orientations. cost(cost1, flipped1) + cost(cost2, flipped2) + cost(cost3, flipped3) + cost(cost4, flipped4) + (point(span2, ! reversed2, flipped2) - point(span1, reversed1, flipped1)).norm() + (point(span3, ! reversed3, flipped3) - point(span2, reversed2, flipped2)).norm() + (point(span4, ! reversed4, flipped4) - point(span3, reversed3, flipped3)).norm(); }; #ifndef NDEBUG { double c = connection_cost(span1, cost1, false, false, span2, cost2, false, false, span3, cost3, false, false, span4, cost4, false, false); assert(std::abs(c - cost_current) < SCALED_EPSILON); } #endif /* NDEBUG */ double cost_min = cost_current; size_t flip_min = 0; // no flip, no improvement for (size_t i = 0; i < (1 << 8); ++ i) { // From the three combinations of 1,2,3 ordering, the other three are reversals of the first three. size_t permutation = 0; for (double c : { (i == 0) ? cost_current : connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, cost2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, cost3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, cost2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, cost4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, cost3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, cost3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, cost2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, cost3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, cost4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span2, cost2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span4, cost4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, cost2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, cost3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span4, cost4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, cost3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span2, cost2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(span2, cost2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, cost1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, cost3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(span2, cost2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, cost1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, cost4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, cost3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(span2, cost2, (i & 1) != 0, (i & (1 << 1)) != 0, span3, cost3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, cost1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(span2, cost2, (i & 1) != 0, (i & (1 << 1)) != 0, span4, cost4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, cost1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, cost3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(span3, cost3, (i & 1) != 0, (i & (1 << 1)) != 0, span1, cost1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, cost2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(span3, cost3, (i & 1) != 0, (i & (1 << 1)) != 0, span2, cost2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, cost1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0) }) { if (c < cost_min) { cost_min = c; flip_min = i + (permutation << 8); } ++ permutation; } } return std::make_pair(cost_min, flip_min); } static inline void do_crossover(const std::vector &edges_in, std::vector &edges_out, const std::pair &span1, const std::pair &span2, const std::pair &span3, size_t i) { assert(edges_in.size() == edges_out.size()); auto do_it = [&edges_in, &edges_out]( const std::pair &span1, bool reversed1, bool flipped1, const std::pair &span2, bool reversed2, bool flipped2, const std::pair &span3, bool reversed3, bool flipped3) { auto it_edges_out = edges_out.begin(); auto copy_span = [&edges_in, &edges_out, &it_edges_out](std::pair span, bool reversed, bool flipped) { assert(span.first < span.second); auto it = it_edges_out; if (reversed) std::reverse_copy(edges_in.begin() + span.first, edges_in.begin() + span.second, it_edges_out); else std::copy (edges_in.begin() + span.first, edges_in.begin() + span.second, it_edges_out); it_edges_out += span.second - span.first; if (reversed != flipped) { for (; it != it_edges_out; ++ it) it->flip(); } }; copy_span(span1, reversed1, flipped1); copy_span(span2, reversed2, flipped2); copy_span(span3, reversed3, flipped3); }; switch (i >> 6) { case 0: do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0); break; case 1: do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0); break; default: assert((i >> 6) == 2); do_it(span2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0); } assert(edges_in.size() == edges_out.size()); } static inline void do_crossover(const std::vector &edges_in, std::vector &edges_out, const std::pair &span1, const std::pair &span2, const std::pair &span3, const std::pair &span4, size_t i) { assert(edges_in.size() == edges_out.size()); auto do_it = [&edges_in, &edges_out]( const std::pair &span1, bool reversed1, bool flipped1, const std::pair &span2, bool reversed2, bool flipped2, const std::pair &span3, bool reversed3, bool flipped3, const std::pair &span4, bool reversed4, bool flipped4) { auto it_edges_out = edges_out.begin(); auto copy_span = [&edges_in, &edges_out, &it_edges_out](std::pair span, bool reversed, bool flipped) { assert(span.first < span.second); auto it = it_edges_out; if (reversed) std::reverse_copy(edges_in.begin() + span.first, edges_in.begin() + span.second, it_edges_out); else std::copy (edges_in.begin() + span.first, edges_in.begin() + span.second, it_edges_out); it_edges_out += span.second - span.first; if (reversed != flipped) { for (; it != it_edges_out; ++ it) it->flip(); } }; copy_span(span1, reversed1, flipped1); copy_span(span2, reversed2, flipped2); copy_span(span3, reversed3, flipped3); copy_span(span4, reversed4, flipped4); }; switch (i >> 8) { case 0: assert(i != 0); // otherwise it would be a no-op do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0); break; case 1: do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0); break; case 2: do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0); break; case 3: do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0); break; case 4: do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0); break; case 5: do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0); break; case 6: do_it(span2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0); break; case 7: do_it(span2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0); break; case 8: do_it(span2, (i & 1) != 0, (i & (1 << 1)) != 0, span3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0); break; case 9: do_it(span2, (i & 1) != 0, (i & (1 << 1)) != 0, span4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0); break; case 10: do_it(span3, (i & 1) != 0, (i & (1 << 1)) != 0, span1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0); break; default: assert((i >> 8) == 11); do_it(span3, (i & 1) != 0, (i & (1 << 1)) != 0, span2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0); break; } assert(edges_in.size() == edges_out.size()); } static inline void reorder_by_two_exchanges_with_segment_flipping(std::vector &edges) { if (edges.size() < 2) return; std::vector connections(edges.size()); std::vector edges_tmp(edges); std::vector> connection_lengths(edges.size() - 1, std::pair(0., 0)); std::vector connection_tried(edges.size(), false); for (size_t iter = 0; iter < edges.size(); ++ iter) { // Initialize connection costs and connection lengths. for (size_t i = 1; i < edges.size(); ++ i) { const FlipEdge &e1 = edges[i - 1]; const FlipEdge &e2 = edges[i]; ConnectionCost &c = connections[i]; c = connections[i - 1]; double l = (e2.p1 - e1.p2).norm(); c.cost += l; c.cost_flipped += (e2.p2 - e1.p1).norm(); connection_lengths[i - 1] = std::make_pair(l, i); } std::sort(connection_lengths.begin(), connection_lengths.end(), [](const std::pair &l, const std::pair &r) { return l.first > r.first; }); std::fill(connection_tried.begin(), connection_tried.end(), false); size_t crossover1_pos_final = std::numeric_limits::max(); size_t crossover2_pos_final = std::numeric_limits::max(); size_t crossover_flip_final = 0; for (const std::pair &first_crossover_candidate : connection_lengths) { double longest_connection_length = first_crossover_candidate.first; size_t longest_connection_idx = first_crossover_candidate.second; connection_tried[longest_connection_idx] = true; // Find the second crossover connection with the lowest total chain cost. size_t crossover_pos_min = std::numeric_limits::max(); double crossover_cost_min = connections.back().cost; size_t crossover_flip_min = 0; for (size_t j = 1; j < connections.size(); ++ j) if (! connection_tried[j]) { size_t a = j; size_t b = longest_connection_idx; if (a > b) std::swap(a, b); std::pair cost_and_flip = minimum_crossover_cost(edges, std::make_pair(size_t(0), a), connections[a - 1], std::make_pair(a, b), connections[b - 1] - connections[a], std::make_pair(b, edges.size()), connections.back() - connections[b], connections.back().cost); if (cost_and_flip.second > 0 && cost_and_flip.first < crossover_cost_min) { crossover_pos_min = j; crossover_cost_min = cost_and_flip.first; crossover_flip_min = cost_and_flip.second; assert(crossover_cost_min < connections.back().cost + EPSILON); } } if (crossover_cost_min < connections.back().cost) { // The cost of the chain with the proposed two crossovers has a lower total cost than the current chain. Apply the crossover. crossover1_pos_final = longest_connection_idx; crossover2_pos_final = crossover_pos_min; crossover_flip_final = crossover_flip_min; break; } else { // Continue with another long candidate edge. } } if (crossover_flip_final > 0) { // Pair of cross over positions and flip / reverse constellation has been found, which improves the total cost of the connection. // Perform a crossover. if (crossover1_pos_final > crossover2_pos_final) std::swap(crossover1_pos_final, crossover2_pos_final); do_crossover(edges, edges_tmp, std::make_pair(size_t(0), crossover1_pos_final), std::make_pair(crossover1_pos_final, crossover2_pos_final), std::make_pair(crossover2_pos_final, edges.size()), crossover_flip_final); edges.swap(edges_tmp); } else { // No valid pair of cross over positions was found improving the total cost. Giving up. break; } } } static inline void reorder_by_three_exchanges_with_segment_flipping(std::vector &edges) { if (edges.size() < 3) { reorder_by_two_exchanges_with_segment_flipping(edges); return; } std::vector connections(edges.size()); std::vector edges_tmp(edges); std::vector> connection_lengths(edges.size() - 1, std::pair(0., 0)); std::vector connection_tried(edges.size(), false); for (size_t iter = 0; iter < edges.size(); ++ iter) { // Initialize connection costs and connection lengths. for (size_t i = 1; i < edges.size(); ++ i) { const FlipEdge &e1 = edges[i - 1]; const FlipEdge &e2 = edges[i]; ConnectionCost &c = connections[i]; c = connections[i - 1]; double l = (e2.p1 - e1.p2).norm(); c.cost += l; c.cost_flipped += (e2.p2 - e1.p1).norm(); connection_lengths[i - 1] = std::make_pair(l, i); } std::sort(connection_lengths.begin(), connection_lengths.end(), [](const std::pair &l, const std::pair &r) { return l.first > r.first; }); std::fill(connection_tried.begin(), connection_tried.end(), false); size_t crossover1_pos_final = std::numeric_limits::max(); size_t crossover2_pos_final = std::numeric_limits::max(); size_t crossover3_pos_final = std::numeric_limits::max(); size_t crossover_flip_final = 0; for (const std::pair &first_crossover_candidate : connection_lengths) { double longest_connection_length = first_crossover_candidate.first; size_t longest_connection_idx = first_crossover_candidate.second; connection_tried[longest_connection_idx] = true; // Find the second crossover connection with the lowest total chain cost. size_t crossover_pos_min = std::numeric_limits::max(); double crossover_cost_min = connections.back().cost; for (size_t j = 1; j < connections.size(); ++ j) if (! connection_tried[j]) { for (size_t k = j + 1; k < connections.size(); ++ k) if (! connection_tried[k]) { size_t a = longest_connection_idx; size_t b = j; size_t c = k; if (a > c) std::swap(a, c); if (a > b) std::swap(a, b); if (b > c) std::swap(b, c); std::pair cost_and_flip = minimum_crossover_cost(edges, std::make_pair(size_t(0), a), connections[a - 1], std::make_pair(a, b), connections[b - 1] - connections[a], std::make_pair(b, c), connections[c - 1] - connections[b], std::make_pair(c, edges.size()), connections.back() - connections[c], connections.back().cost); if (cost_and_flip.second > 0 && cost_and_flip.first < crossover_cost_min) { crossover_cost_min = cost_and_flip.first; crossover1_pos_final = a; crossover2_pos_final = b; crossover3_pos_final = c; crossover_flip_final = cost_and_flip.second; assert(crossover_cost_min < connections.back().cost + EPSILON); } } } if (crossover_flip_final > 0) { // The cost of the chain with the proposed two crossovers has a lower total cost than the current chain. Apply the crossover. break; } else { // Continue with another long candidate edge. } } if (crossover_flip_final > 0) { // Pair of cross over positions and flip / reverse constellation has been found, which improves the total cost of the connection. // Perform a crossover. do_crossover(edges, edges_tmp, std::make_pair(size_t(0), crossover1_pos_final), std::make_pair(crossover1_pos_final, crossover2_pos_final), std::make_pair(crossover2_pos_final, crossover3_pos_final), std::make_pair(crossover3_pos_final, edges.size()), crossover_flip_final); edges.swap(edges_tmp); } else { // No valid pair of cross over positions was found improving the total cost. Giving up. break; } } } typedef Eigen::Matrix Matrixd; class FourOptCosts { public: FourOptCosts(const ConnectionCost &c1, const ConnectionCost &c2, const ConnectionCost &c3, const ConnectionCost &c4) : costs { &c1, &c2, &c3, &c4 } {} double operator()(size_t piece_idx, bool flipped) const { return flipped ? costs[piece_idx]->cost_flipped : costs[piece_idx]->cost; } private: const ConnectionCost* costs[4]; }; static inline std::pair minimum_crossover_cost( const FourOptCosts &segment_costs, const Matrixd &segment_end_point_distance_matrix, const double cost_current) { // Distance from the end of span1 to the start of span2. auto end_point_distance = [&segment_end_point_distance_matrix](size_t span1, bool reversed1, bool flipped1, size_t span2, bool reversed2, bool flipped2) { return segment_end_point_distance_matrix(span1 * 4 + (! reversed1) * 2 + flipped1, span2 * 4 + reversed2 * 2 + flipped2); }; auto connection_cost = [&segment_costs, end_point_distance]( const size_t span1, bool reversed1, bool flipped1, const size_t span2, bool reversed2, bool flipped2, const size_t span3, bool reversed3, bool flipped3, const size_t span4, bool reversed4, bool flipped4) { // Calculate the cost of reverting chains and / or flipping segment orientations. return segment_costs(span1, flipped1) + segment_costs(span2, flipped2) + segment_costs(span3, flipped3) + segment_costs(span4, flipped4) + end_point_distance(span1, reversed1, flipped1, span2, reversed2, flipped2) + end_point_distance(span2, reversed2, flipped2, span3, reversed3, flipped3) + end_point_distance(span3, reversed3, flipped3, span4, reversed4, flipped4); }; #ifndef NDEBUG { double c = connection_cost(0, false, false, 1, false, false, 2, false, false, 3, false, false); assert(std::abs(c - cost_current) < SCALED_EPSILON); } #endif /* NDEBUG */ double cost_min = cost_current; size_t flip_min = 0; // no flip, no improvement for (size_t i = 0; i < (1 << 8); ++ i) { // From the three combinations of 1,2,3 ordering, the other three are reversals of the first three. size_t permutation = 0; for (double c : { (i == 0) ? cost_current : connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 1, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 1, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(1, (i & 1) != 0, (i & (1 << 1)) != 0, 0, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(1, (i & 1) != 0, (i & (1 << 1)) != 0, 0, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(1, (i & 1) != 0, (i & (1 << 1)) != 0, 2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 0, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(1, (i & 1) != 0, (i & (1 << 1)) != 0, 3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 0, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(2, (i & 1) != 0, (i & (1 << 1)) != 0, 0, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0), connection_cost(2, (i & 1) != 0, (i & (1 << 1)) != 0, 1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 0, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0) }) { if (c < cost_min) { cost_min = c; flip_min = i + (permutation << 8); } ++ permutation; } } return std::make_pair(cost_min, flip_min); } static inline void reorder_by_three_exchanges_with_segment_flipping2(std::vector &edges) { if (edges.size() < 3) { reorder_by_two_exchanges_with_segment_flipping(edges); return; } std::vector connections(edges.size()); std::vector edges_tmp(edges); std::vector> connection_lengths(edges.size() - 1, std::pair(0., 0)); std::vector connection_tried(edges.size(), false); for (size_t iter = 0; iter < edges.size(); ++ iter) { // Initialize connection costs and connection lengths. for (size_t i = 1; i < edges.size(); ++ i) { const FlipEdge &e1 = edges[i - 1]; const FlipEdge &e2 = edges[i]; ConnectionCost &c = connections[i]; c = connections[i - 1]; double l = (e2.p1 - e1.p2).norm(); c.cost += l; c.cost_flipped += (e2.p2 - e1.p1).norm(); connection_lengths[i - 1] = std::make_pair(l, i); } std::sort(connection_lengths.begin(), connection_lengths.end(), [](const std::pair &l, const std::pair &r) { return l.first > r.first; }); std::fill(connection_tried.begin(), connection_tried.end(), false); size_t crossover1_pos_final = std::numeric_limits::max(); size_t crossover2_pos_final = std::numeric_limits::max(); size_t crossover3_pos_final = std::numeric_limits::max(); size_t crossover_flip_final = 0; // Distances between the end points of the four pieces of the current segment sequence. #ifdef NDEBUG Matrixd segment_end_point_distance_matrix(4 * 4, 4 * 4); #else /* NDEBUG */ Matrixd segment_end_point_distance_matrix = Matrixd::Constant(4 * 4, 4 * 4, std::numeric_limits::max()); #endif /* NDEBUG */ for (const std::pair &first_crossover_candidate : connection_lengths) { double longest_connection_length = first_crossover_candidate.first; size_t longest_connection_idx = first_crossover_candidate.second; connection_tried[longest_connection_idx] = true; // Find the second crossover connection with the lowest total chain cost. size_t crossover_pos_min = std::numeric_limits::max(); double crossover_cost_min = connections.back().cost; for (size_t j = 1; j < connections.size(); ++ j) if (! connection_tried[j]) { for (size_t k = j + 1; k < connections.size(); ++ k) if (! connection_tried[k]) { size_t a = longest_connection_idx; size_t b = j; size_t c = k; if (a > c) std::swap(a, c); if (a > b) std::swap(a, b); if (b > c) std::swap(b, c); const Vec2d* endpts[16] = { &edges[0].p1, &edges[0].p2, &edges[a - 1].p2, &edges[a - 1].p1, &edges[a].p1, &edges[a].p2, &edges[b - 1].p2, &edges[b - 1].p1, &edges[b].p1, &edges[b].p2, &edges[c - 1].p2, &edges[c - 1].p1, &edges[c].p1, &edges[c].p2, &edges.back().p2, &edges.back().p1 }; for (size_t v = 0; v < 16; ++ v) { const Vec2d &p1 = *endpts[v]; for (size_t u = (v & (~3)) + 4; u < 16; ++ u) segment_end_point_distance_matrix(u, v) = segment_end_point_distance_matrix(v, u) = (*endpts[u] - p1).norm(); } FourOptCosts segment_costs(connections[a - 1], connections[b - 1] - connections[a], connections[c - 1] - connections[b], connections.back() - connections[c]); std::pair cost_and_flip = minimum_crossover_cost(segment_costs, segment_end_point_distance_matrix, connections.back().cost); if (cost_and_flip.second > 0 && cost_and_flip.first < crossover_cost_min) { crossover_cost_min = cost_and_flip.first; crossover1_pos_final = a; crossover2_pos_final = b; crossover3_pos_final = c; crossover_flip_final = cost_and_flip.second; assert(crossover_cost_min < connections.back().cost + EPSILON); } } } if (crossover_flip_final > 0) { // The cost of the chain with the proposed two crossovers has a lower total cost than the current chain. Apply the crossover. break; } else { // Continue with another long candidate edge. } } if (crossover_flip_final > 0) { // Pair of cross over positions and flip / reverse constellation has been found, which improves the total cost of the connection. // Perform a crossover. do_crossover(edges, edges_tmp, std::make_pair(size_t(0), crossover1_pos_final), std::make_pair(crossover1_pos_final, crossover2_pos_final), std::make_pair(crossover2_pos_final, crossover3_pos_final), std::make_pair(crossover3_pos_final, edges.size()), crossover_flip_final); edges.swap(edges_tmp); } else { // No valid pair of cross over positions was found improving the total cost. Giving up. break; } } } // Flip the sequences of polylines to lower the total length of connecting lines. static inline void improve_ordering_by_two_exchanges_with_segment_flipping(Polylines &polylines, bool fixed_start) { #ifndef NDEBUG auto cost = [&polylines]() { double sum = 0.; for (size_t i = 1; i < polylines.size(); ++i) sum += (polylines[i].first_point() - polylines[i - 1].last_point()).cast().norm(); return sum; }; double cost_initial = cost(); static int iRun = 0; ++ iRun; #ifdef DEBUG_SVG_OUTPUT svg_draw_polyline_chain("improve_ordering_by_two_exchanges_with_segment_flipping-initial", iRun, polylines); #endif /* DEBUG_SVG_OUTPUT */ #endif /* NDEBUG */ std::vector edges; edges.reserve(polylines.size()); std::transform(polylines.begin(), polylines.end(), std::back_inserter(edges), [&polylines](const Polyline &pl){ return FlipEdge(pl.first_point().cast(), pl.last_point().cast(), &pl - polylines.data()); }); #if 1 reorder_by_two_exchanges_with_segment_flipping(edges); #else // reorder_by_three_exchanges_with_segment_flipping(edges); reorder_by_three_exchanges_with_segment_flipping2(edges); #endif Polylines out; out.reserve(polylines.size()); for (const FlipEdge &edge : edges) { Polyline &pl = polylines[edge.source_index]; out.emplace_back(std::move(pl)); if (edge.p2 == pl.first_point().cast()) { // Polyline is flipped. out.back().reverse(); } else { // Polyline is not flipped. assert(edge.p1 == pl.first_point().cast()); } } #ifndef NDEBUG double cost_final = cost(); #ifdef DEBUG_SVG_OUTPUT svg_draw_polyline_chain("improve_ordering_by_two_exchanges_with_segment_flipping-final", iRun, out); #endif /* DEBUG_SVG_OUTPUT */ assert(cost_final <= cost_initial); #endif /* NDEBUG */ } Polylines chain_polylines(Polylines &&polylines, const Point *start_near) { #ifdef DEBUG_SVG_OUTPUT static int iRun = 0; ++ iRun; svg_draw_polyline_chain("chain_polylines-initial", iRun, polylines); #endif /* DEBUG_SVG_OUTPUT */ Polylines out; if (! polylines.empty()) { auto segment_end_point = [&polylines](size_t idx, bool first_point) -> const Point& { return first_point ? polylines[idx].first_point() : polylines[idx].last_point(); }; std::vector> ordered = chain_segments_greedy2(segment_end_point, polylines.size(), start_near); out.reserve(polylines.size()); for (auto &segment_and_reversal : ordered) { out.emplace_back(std::move(polylines[segment_and_reversal.first])); if (segment_and_reversal.second) out.back().reverse(); } if (out.size() > 1 && start_near == nullptr) { improve_ordering_by_two_exchanges_with_segment_flipping(out, start_near != nullptr); //improve_ordering_by_segment_flipping(out, start_near != nullptr); } } #ifdef DEBUG_SVG_OUTPUT svg_draw_polyline_chain("chain_polylines-final", iRun, out); #endif /* DEBUG_SVG_OUTPUT */ return out; } template static inline T chain_path_items(const Points &points, const T &items) { auto segment_end_point = [&points](size_t idx, bool /* first_point */) -> const Point& { return points[idx]; }; std::vector> ordered = chain_segments_greedy(segment_end_point, points.size(), nullptr); T out; out.reserve(items.size()); for (auto &segment_and_reversal : ordered) out.emplace_back(items[segment_and_reversal.first]); return out; } ClipperLib::PolyNodes chain_clipper_polynodes(const Points &points, const ClipperLib::PolyNodes &items) { return chain_path_items(points, items); } std::vector chain_print_object_instances(const Print &print) { // Order objects using a nearest neighbor search. Points object_reference_points; std::vector> instances; for (size_t i = 0; i < print.objects().size(); ++ i) { const PrintObject &object = *print.objects()[i]; for (size_t j = 0; j < object.instances().size(); ++ j) { // Sliced PrintObjects are centered, object.instances()[j].shift is the center of the PrintObject in G-code coordinates. object_reference_points.emplace_back(object.instances()[j].shift); instances.emplace_back(i, j); } } auto segment_end_point = [&object_reference_points](size_t idx, bool /* first_point */) -> const Point& { return object_reference_points[idx]; }; std::vector> ordered = chain_segments_greedy(segment_end_point, instances.size(), nullptr); std::vector out; out.reserve(instances.size()); for (auto &segment_and_reversal : ordered) { const std::pair &inst = instances[segment_and_reversal.first]; out.emplace_back(&print.objects()[inst.first]->instances()[inst.second]); } return out; } } // namespace Slic3r